Air Quality and Air Pollutant Correlation in Xi’an, China: A Case Study of Differences Before, During, and After Lockdown Due to the COVID-19 Pandemic
Abstract
1. Introduction
2. Methods
2.1. Data Sources
2.2. Classification of Epidemic Prevention and Control Stages
3. Results and Discussion
3.1. Annual Variation in Air Pollutants
3.2. Number of Days with Particulate Matter Exceeding the National Standard
3.3. Monthly Variation in Pollutant Concentration
3.4. Comparative Analysis of Pollutant Concentrations
3.5. Correlation Analysis Between Various Pollutants
4. Conclusions
- After the epidemic lockdown (2023), the annual average concentrations of PM2.5, PM10, SO2, NO2, and CO decreased, while the concentration of O3 increased. Compared to before the epidemic lockdown, the average concentrations of PM2.5, PM10, SO2, NO2, O3, and CO during the epidemic lockdown (2020–2022) decreased by 18.7%, 15.4%, 29.4%, 20.9%, 0.03%, and 28.1%, respectively.
- Compared to before the epidemic lockdown, the proportion of PM10 exceeding the first and second level standards in the city decreased by 6.0% and 8.3%, respectively. The proportion of PM2.5 exceeding the first and second level standards in urban areas under the epidemic lockdown decreased by 8.4% and 5.0%, respectively.
- The monthly changes in concentration of PM2.5, PM10, CO, SO2, and NO2 were “higher in winter and lower in summer”. The monthly average concentration of O3 changed in a “unimodal” structure. The concentrations of SO2, NO2, and PM10 decreased the most in January, by 46.4%, 33.5%, and 26.4%, respectively. The concentration of CO decreased the most in April, by 37.3%. PM2.5 decreased the most in May, with a decrease of 26.7%. O3 showed the largest increase in November, reaching 28.6%.
- After taking relevant measures, such as shutting down some factories, schools, restaurants, and other entertainment facilities, and reducing unnecessary outings for residents, the significant reduction in anthropogenic sources led to a decrease in pollutant emissions, resulting in an improvement in air quality. Therefore, long-term management of air quality in Xi’an is still needed. This paper explores more detailed information so that the decision-makers can choose adequate strategies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Z.; Wu, Z.; Herzog, O.; Hei, J.; Li, L.; Li, X. Compound health effects and risk assessment of extreme heat and ozone air pollution under climate change: A case study of 731 urban areas in China. Sustain. Cities Soc. 2025, 119, 106084. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, A.B.; Arora, T.; Singh, S.; Singh, R. Critical review on emerging health effects associated with the indoor air quality and its sustainable management. Sci. Total Environ. 2023, 872, 162163. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Chen, Y.; Kim, H. Influences of meteorology on emission sources and physicochemical properties of particulate matter in Seoul, Korea during the heating period. Atmos. Environ. 2023, 303, 119733. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.; Zhai, T.; Jin, S.; Wang, C.; Fang, B.; Xia, T. Association of Cardiovascular Disease Mortality and Ambient Temperature Variation in Shanghai, China: Beyond Air Quality Index PM2.5. Atmosphere 2025, 16, 119. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, M.; Wu, Y.; Zheng, P.; Gao, X.; Wang, J. Impact of air pollution on the progress-free survival of non-small cell lung cancer patients with anti-PD-1/PD-L1 immunotherapy: A cohort study. Environ. Pollut. 2025, 368, 125683. [Google Scholar] [CrossRef]
- Bagheri, G.; Schlenczek, O.; Turco, L.; Thiede, B.; Stieger, K.; Kosub, J.M.; Clauberg, S.; Pöhlker, M.L.; Pöhlker, C.; Moláček, J.; et al. Size, concentration, and origin of human exhaled particles and their dependence on human factors with implications on infection transmission. J. Aerosol Sci. 2023, 168, 106102. [Google Scholar] [CrossRef]
- Schiavo, B.; Meza-Figueroa, D.; Vizuete-Jaramillo, E.; Robles-Morua, A.; Angulo-Molina, A.; Reyes-Castro, P.A.; Inguaggiato, C.; Gonzalez-Grijalva, B.; Pedroza-Montero, M. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. Environ. Geochem. Health 2023, 45, 3229–3250. [Google Scholar] [CrossRef]
- Zhou, F.R.; Yang, J.R.; Wen, G.; Ma, Y.; Pan, H.; Geng, H.; Cao, J.; Zhao, M.; Xu, C. Estimating spatio-temporal variability of aerosol pollution in Yunnan Province, China. Atmos. Pollut. Res. 2022, 13, 101450. [Google Scholar] [CrossRef]
- Song, H.; Dong, Y.H.; Yang, J.Y.; Zhang, X.; Nie, X.X.; Fan, Y.X. Concentration Characteristics and Correlations with Other Pollutants of Atmospheric Particulate Matter as Affected by Relevant Policies. Int. J. Environ. Res. Public Health 2023, 20, 1051. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.M.D.; Castelhano, F.J.; Sitoe, G.A.A.; Hoinaski, L.; Amini, H.; Saldiva, P.H.N.; Requia, W.J. The mediating role of air pollution in the relationship between greenspace and cardiorespiratory admissions in Brazil. Environ. Pollut. 2025, 369, 125849. [Google Scholar] [CrossRef]
- Tian, Y.L.; Li, X.Y.; Sun, H.T.; Xue, W.H.; Song, J.X. Characteristics of atmospheric pollution and the impacts of environmental management over a megacity, northwestern China. Urban Clim. 2022, 42, 101114. [Google Scholar] [CrossRef]
- Norbu, N.; Sheng, X.; Liu, Q.; Han, H.; Zhang, X. Effect of Heating Emissions on the Fractal Size Distribution of Atmospheric Particle Concentrations. Atmosphere 2024, 15, 95. [Google Scholar] [CrossRef]
- Wang, J.; Li, T.N.; Li, Z.Q.; Fang, C.S. Study on the Spatial and Temporal Distribution Characteristics and Influencing Factors of Particulate Matter Pollution in Coal Production Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 3228. [Google Scholar] [CrossRef] [PubMed]
- Nakyai, T.; Santasnachok, M.; Thetkathuek, A.; Phatrabuddha, N. Influence of meteorological factors on air pollution and health risks: A comparative analysis of industrial and urban areas in Chonburi Province, Thailand. Environ. Adv. 2025, 19, 100608. [Google Scholar] [CrossRef]
- Behera, N.; Gokhale, S. Understanding meteorological factors influencing heavy air pollution in Guwahati, India. Atmos. Pollut. Res. 2025, 16, 102337. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, H.; Li, K.P.; Nie, X.X.; Fan, Y.S.; Wang, H.; Ma, J.Y. Comparison of the Application of Three Methods for the Determination of Outdoor PM2.5 Design Concentrations for Fresh Air Filtration Systems in China. Int. J. Environ. Res. Public Health 2022, 19, 16537. [Google Scholar] [CrossRef]
- Wu, Z.T.; Chen, X.; Li, G.X.; Tian, L.; Wang, Z.; Xiong, X.Q.; Yang, C.; Zhou, Z.J.; Pan, X.C. Attributable risk and economic cost of hospital admissions for mental disorders due to PM2.5 in Beijing. Sci. Total Environ. 2020, 718, 137274. [Google Scholar] [CrossRef]
- Feng, R.; Xu, H.; Wang, Z.; Gu, Y.; Liu, Z.; Zhang, H.; Zhang, T.; Wang, Q.; Zhang, Q.; Liu, S.; et al. Quantifying air pollutant variations during COVID-19 lockdown in a capital city in Northwest China. Atmosphere 2021, 12, 788. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Wang, S.; He, S.; He, P. Heterogeneous effects of COVID-19 lockdown measures on air quality in Northern China. Appl. Energy 2021, 282, 116179. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.T.; Branco, P.T.; Sousa, S.I. Health and economic burden avoided due to air pollution reduction during the COVID-19 Lockdown: Portugal case study. Sustain. Cities Soc. 2024, 106, 105371. [Google Scholar] [CrossRef]
- Morawska, L.; Li, Y.; Salthammer, T. Lessons from the COVID-19 pandemic for ventilation and indoor air quality. Science 2024, 385, 396–401. [Google Scholar] [CrossRef]
- He, J.; Harkins, C.; O’Dell, K.; Li, M.; Francoeur, C.; Aikin, K.C.; Anenberg, S.; Baker, B.; Brown, S.S.; Coggon, M.M.; et al. COVID-19 perturbation on US air quality and human health impact assessment. Proc. Natl. Acad. Sci. Nexus 2024, 3, pgad483. [Google Scholar] [CrossRef]
- Mi, K.; Zhuang, R.L.; Zhang, Z.H.; Gao, J.; Pei, Q. Spatiotemporal characteristics of PM2.5 and its associated gas pollutants, a case in China. Sustain. Cities Soc. 2019, 45, 287–295. [Google Scholar] [CrossRef]
- Persis, J.; Amar, A.B. Predictive modeling and analysis of air quality–Visualizing before and during COVID-19 scenarios. J. Environ. Manag. 2023, 327, 116911. [Google Scholar] [CrossRef]
- Rahimi, I.; Chen, F.; Gandomi, A.H. A review on COVID-19 forecasting models. Neural Comput. Appl. 2023, 35, 23671–23681. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment–A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; de Leeuw, G. The impact of the control measures during the COVID-19 outbreak on air pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Ramacher, M.O.P. Incorporating dynamic population activities in modeling exposure to urban air pollution: Insights from COVID-19 lockdowns in three European cities. Air Qual. Atmos. Health 2025, 18, 1507–1526. [Google Scholar] [CrossRef]
- Silva, A.C.T.; Branco, P.T.; Ferrini Rodrigues, P.; Sousa, S.I. Sustainable policies for air pollution reduction after COVID-19 pandemic: Lessons learnt from the impact of the different lockdown periods on air quality. Sustain. Dev. 2023, 31, 959–975. [Google Scholar] [CrossRef]
- Arregocés, H.A.; Rojano, R.; Restrepo, G. Impact of lockdown on particulate matter concentrations in Colombia during the COVID-19 pandemic. Sci. Total Environ. 2021, 764, 142874. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci. Adv. 2020, 6, eabd4049. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, F.; Grigoriev, P.; Sauerberg, M.; Alliger, I.; Mühlichen, M.; Camarda, C.G. Spatial disparities in the mortality burden of the COVID-19 pandemic across 569 European regions (2020–2021). Nat. Commun. 2024, 15, 4246. [Google Scholar] [CrossRef] [PubMed]
- Achebak, H.; Garatachea, R.; Pay, M.T.; Jorba, O.; Guevara, M.; Pérez García-Pando, C.; Ballester, J. Geographic sources of ozone air pollution and mortality burden in Europe. Nat. Med. 2024, 30, 1732–1738. [Google Scholar] [CrossRef]
- Carballo, I.H.; Bakola, M.; Stuckler, D. The impact of air pollution on COVID-19 incidence, severity, and mortality: A systematic review of studies in Europe and North America. Environ. Res. 2022, 215, 114155. [Google Scholar] [CrossRef]
- Schiavo, B.; Morton-Bermea, O.; Arredondo-Palacios, T.E.; Meza-Figueroa, D.; Robles-Morua, A.; García-Martínez, R.; Valera-Fernández, D.; Inguaggiato, C.; Gonzalez-Grijalva, B. Analysis of COVID-19 Lockdown Effects on Urban Air Quality: A Case Study of Monterrey, Mexico. Sustainability 2022, 15, 642. [Google Scholar] [CrossRef]
- Hui, D.S.; Azhar, E.I.; Kim, Y.J.; Memish, Z.A.; Oh, M.D.; Zumla, A. Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect. Dis. 2018, 18, e217–e227. [Google Scholar] [CrossRef]
- Amoroso, N.; Cilli, R.; Maggipinto, T.; Monaco, A.; Tangaro, S.; Bellotti, R. Satellite data and machine learning reveal a significant correlation between NO2 and COVID-19 mortality. Environ. Res. 2022, 204, 111970. [Google Scholar] [CrossRef]
- Mehmood, K.; Bao, Y.; Mushtaq, S.; Saifullah; Khan, M.A.; Siddique, N.; Bilal, M.; Heng, Z.; Huan, L.; Tariq, M.; et al. Perspectives from remote sensing to investigate the COVID-19 pandemic: A future-oriented approach. Front. Public Health 2022, 10, 938811. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, R.; Zhang, G.; Albanwan, H. Spatial temporal analysis of traffic patterns during the COVID-19 epidemic by vehicle detection using planet remote-sensing satellite images. Remote Sens. 2021, 13, 208. [Google Scholar] [CrossRef]
- Ye, J.; Song, Y.; Liu, Y.; Zhong, Y. Assessment of medical waste generation, associated environmental impact, and management issues after the outbreak of COVID-19: A case study of the Hubei Province in China. PLoS ONE 2022, 17, e0259207. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Shen, Y.; Liu, X.; Liu, X.; Chen, J.; Li, D.; Xu, M.; Wang, L.; Duan, E.; Hou, L.A.; et al. Important revelations of different degrees of COVID-19 lockdown on improving regional air quality: A case study of Shijiazhuang, China. Environ. Sci. Pollut. Res. 2023, 30, 21313–21325. [Google Scholar] [CrossRef]
- Han, L.; Zhao, J.; Gu, Z. Assessing air quality changes in heavily polluted cities during the COVID-19 pandemic: A case study in Xi’an, China. Sustain. Cities Soc. 2021, 70, 102934. [Google Scholar] [CrossRef]
- Hasnain, A.; Hashmi, M.Z.; Bhatti, U.A.; Nadeem, B.; Wei, G.; Zha, Y.; Sheng, Y. Assessment of Air Pollution before, during and after the COVID-19 Pandemic Lockdown in Nanjing, China. Atmosphere 2021, 12, 743. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, Z.; Xu, L.; Tang, J.; Chen, Y. Modeling the resumption of work and production of enterprises during COVID-19: An SIR-based quantitative framework. Front. Public Health 2022, 10, 1066299. [Google Scholar] [CrossRef]
- Jiang, Z.; Cheng, H.; Zhang, P.; Kang, T. Influence of urban morphological parameters on the distribution and diffusion of air pollutants: A case study in China. J. Environ. Sci. 2021, 105, 163–172. [Google Scholar] [CrossRef] [PubMed]
- GB3095-2012; Ambient Air Quality Standards. China Environmental Science Press: Beijing, China, 2012.
- HJ663-2013; Technical Regulation for Ambient Air Quality Assessment (On Trial). China Environmental Science Press: Beijing, China, 2013.
- Zhang, Q.; Yang, J.; Niu, T.; Wen, K.H.; Hong, X.; Wu, Y.; Wang, M. Analysis of the evolving factors of social media users’ emotions and behaviors: A longitudinal study from China’s COVID-19 opening policy period. BMC Public Health 2023, 23, 2230. [Google Scholar] [CrossRef]
- Shen, J.; Duan, H.; Zhang, B.; Wang, J.; Ji, J.S.; Wang, J.; Pan, L.; Wang, X.; Zhao, K.; Ying, B.; et al. Prevention and control of COVID-19 in public transportation: Experience from China. Environ. Pollut. 2020, 266, 115291. [Google Scholar] [CrossRef]
- Adame, J.A.; Gutierrez-Alvarez, I.; Notario, A.; Yela, M. Contrasting ozone responses driven by Mediterranean ventilation and anticyclonic blocking under high-temperatures in coastal Southwestern Europe. Atmos. Res. 2025, 327, 108350. [Google Scholar] [CrossRef]
- Carrasco-Venegas, L.A.; Castañeda-Pérez, L.G.; Martínez-Hilario, D.G.; Medina-Collana, J.T.; González-Fernández, J.V.; Gutiérrez-Cuba, C.; Cuba-Torre, H.R.; Pilco-Nuñez, A.; Ancieta-Dextre, C.A.; Rodriguez-Taranco, O.J. Mathematical Modeling of Photochemical and Chemical Interactions in Photochemical Smog Formation. Processes 2025, 13, 1384. [Google Scholar] [CrossRef]
- Yao, T.; Li, X.; Li, Z.; Yang, X.; Zhang, J.; Wang, Y.; Guo, J.; Li, J. Investigation of the Earliest Ozone Pollution Events in Hangzhou Bay, China Based on Observations and ERA5 Reanalysis Data. Toxics 2025, 13, 99. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, W.; Chen, D. Impacts of Thermal Power Industry Emissions on Air Quality in China. Sustainability 2025, 17, 441. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Y.; Wang, T.; Shen, J.; Zhao, T.; Dong, L. Spatial correlation network on synergy between carbon reduction and pollution control in key areas for air pollution prevent and control. J. Clean. Prod. 2025, 491, 144777. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Yang, C.; Yang, X.; Zhao, X.; Wan, Z.; Xu, Y.; Guo, Q.; Sun, H.; Chen, D.; et al. Spatio-temporal variation of air quality and its driving factors in Jinan and Qingdao during 2014–2022. J. Hazard. Mater. 2025, 486, 137065. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, S.; Li, T.; Chen, L.; Yang, L. Association between ambient air pollution and outpatient visits of cardiovascular diseases in Zibo, China: A time series analysis. Front. Public Health 2025, 12, 1492056. [Google Scholar] [CrossRef]
- Zhang, Z.; Bird, A.; Zhang, C.; Dong, Z. Not all gravel deserts in northern China are sources of regionally deposited dust. Atmos. Environ. 2022, 273, 118984. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Y.; He, B.; Cao, C. Spatio-temporal distribution and transport pathways analysis of sand and dust weather in North China. Nat. Hazards 2024, 121, 7425–7445. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Teodoro, L.; de Matos, D.M. GroundCap: A Visually Grounded Image Captioning Dataset. arXiv 2025, arXiv:2502.13898. [Google Scholar] [CrossRef]
- Wu, S.; Ma, X.; Zhang, X.; Chen, J.; Yao, Y.; Li, D. Investigation into hydrogen induced fracture of cable bolts under deep stress corrosion coupling conditions. Tunn. Undergr. Space Technol. 2024, 147, 105729. [Google Scholar] [CrossRef]
- Wu, S.; Hao, W.; Yao, Y.; Li, D. Investigation into durability degradation and fracture of cable bolts through laboratorial tests and hydrogeochemical modelling in underground conditions. Tunn. Undergr. Space Technol. 2023, 138, 105198. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Z.; Chen, J.; Yao, Y.; Li, D. Characterisation of stress corrosion durability and time-dependent performance of cable bolts in underground mine environments. Eng. Fail. Anal. 2023, 150, 107292. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, Z.; Gu, Q.; Wang, H.; Guo, J.; Li, X.; Deng, K.; Zhang, Y.; Zhang, C.; Jiang, H.; et al. Wear failure of pipelines transporting cemented paste backfill: A review. Phys. Fluids 2025, 37, 071309. [Google Scholar] [CrossRef]








| Content | Lockdown | Year | Days | Max (μg/m3) | Avg (μg/m3) | Min (μg/m3) | Exceeding the Primary Standard Days | Percentage Exceeding the Standard (%) | Exceeding the Secondary Standard Days | Percentage Exceeding the Standard (%) |
|---|---|---|---|---|---|---|---|---|---|---|
| PM10 (μg/m3) | Before | 2018 | 363 | 568 | 118.9 | 20 | 316 | 87.1 | 92 | 25.3 |
| 2019 | 363 | 576 | 102.5 | 10 | 288 | 79.3 | 72 | 19.8 | ||
| During | 2020 | 366 | 297 | 90.0 | 16 | 289 | 79.0 | 41 | 11.2 | |
| 2021 | 365 | 658 | 95.7 | 8 | 263 | 72.1 | 60 | 16.4 | ||
| 2022 | 365 | 570 | 95.2 | 9 | 294 | 80.6 | 56 | 15.3 | ||
| After | 2023 | 365 | 1116 | 95.8 | 11 | 242 | 66.3 | 60 | 16.4 | |
| PM2.5 (μg/m3) | Before | 2018 | 363 | 292 | 60.7 | 9 | 228 | 62.8 | 94 | 25.9 |
| 2019 | 363 | 292 | 57.7 | 5 | 200 | 55.1 | 79 | 21.8 | ||
| During | 2020 | 366 | 225 | 50.3 | 6 | 193 | 52.7 | 73 | 20.0 | |
| 2021 | 365 | 278 | 42.7 | 4 | 166 | 45.5 | 45 | 12.3 | ||
| 2022 | 365 | 202 | 51.3 | 5 | 195 | 53.4 | 88 | 24.1 | ||
| After | 2023 | 365 | 294 | 49.4 | 6 | 161 | 44.1 | 70 | 19.2 |
| Pollutant | Before | During | After | Variation (During and Before Lockdown) | Variation (During and Before Lockdown) | Variation (During and Before Lockdown) | |||
|---|---|---|---|---|---|---|---|---|---|
| PM2.5 (μg/m3) | Net | % | Net | % | Net | % | |||
| Max | 292 | 278 | 294 | −14.0 | −4.8 | 16.0 | 5.8 | 2.0 | 0.7 |
| Avg | 59.2 | 48.1 | 49.4 | −11.0 | −18.7 | 1.2 | 2.6 | −9.8 | −16.6 |
| Min | 5 | 4 | 6 | −1.0 | −20.0 | 2.0 | 50.0 | 1.0 | 20.0 |
| PM10 (μg/m3) | Net | % | Net | % | Net | % | |||
| Max | 576 | 658 | 1116 | 82.0 | 14.2 | 458.0 | 69.6 | 540.0 | 93.8 |
| Avg | 110.7 | 93.6 | 95.8 | −17.1 | −15.4 | 2.2 | 2.3 | −14.9 | −13.4 |
| Min | 10 | 8 | 11 | −2.0 | −20.0 | 3.0 | 37.5 | 1.0 | 10.0 |
| SO2 (μg/m3) | Net | % | Net | % | Net | % | |||
| Max | 50 | 22 | 27 | −28.0 | −56.0 | 5.0 | 22.7 | −23.0 | −46.0 |
| Avg | 10.6 | 7.5 | 7.0 | −3.1 | −29.5 | −0.5 | −6.8 | −3.6 | −34.3 |
| Min | 2 | 3 | 2 | 1.0 | 50.0 | −1.0 | −33.3 | 0.0 | 0.0 |
| NO2 (μg/m3) | Net | % | Net | % | Net | % | |||
| Max | 114 | 93 | 93 | −21.0 | −18.4 | 0.0 | 0.0 | −21.0 | −18.4 |
| Avg | 49.7 | 39.3 | 36.0 | −10.4 | −20.9 | −3.3 | −8.4 | −13.7 | −27.6 |
| Min | 12 | 6 | 8 | −6.0 | −50.0 | 2.0 | 33.3 | −4.0 | −33.3 |
| CO (mg/m3) | Net | % | Net | % | Net | % | |||
| Max | 3.23 | 2.12 | 2.1 | −1.1 | −34.4 | 0.0 | −0.9 | −1.1 | −35.0 |
| Avg | 1.1 | 0.8 | 0.7 | −0.3 | −27.6 | −0.1 | −6.6 | −0.3 | −32.4 |
| Min | 0.34 | 0.25 | 0.28 | −0.1 | −26.5 | 0.0 | 12.0 | −0.1 | −17.6 |
| O3 (μg/m3) | Net | % | Net | % | Net | % | |||
| Max | 149 | 138 | 146 | −11.0 | −7.4 | 8.0 | 5.8 | −3.0 | −2.0 |
| Avg | 51.6 | 51.6 | 56.8 | 0.0 | 0.0 | 5.3 | 10.2 | 5.3 | 10.2 |
| Min | 4 | 4 | 8 | 0.0 | 0.0 | 4.0 | 100.0 | 4.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Zhang, X.; Yu, T. Air Quality and Air Pollutant Correlation in Xi’an, China: A Case Study of Differences Before, During, and After Lockdown Due to the COVID-19 Pandemic. Atmosphere 2025, 16, 1246. https://doi.org/10.3390/atmos16111246
Liu F, Zhang X, Yu T. Air Quality and Air Pollutant Correlation in Xi’an, China: A Case Study of Differences Before, During, and After Lockdown Due to the COVID-19 Pandemic. Atmosphere. 2025; 16(11):1246. https://doi.org/10.3390/atmos16111246
Chicago/Turabian StyleLiu, Fuquan, Xin Zhang, and Tao Yu. 2025. "Air Quality and Air Pollutant Correlation in Xi’an, China: A Case Study of Differences Before, During, and After Lockdown Due to the COVID-19 Pandemic" Atmosphere 16, no. 11: 1246. https://doi.org/10.3390/atmos16111246
APA StyleLiu, F., Zhang, X., & Yu, T. (2025). Air Quality and Air Pollutant Correlation in Xi’an, China: A Case Study of Differences Before, During, and After Lockdown Due to the COVID-19 Pandemic. Atmosphere, 16(11), 1246. https://doi.org/10.3390/atmos16111246

