Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,909)

Search Parameters:
Keywords = pollution monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2266 KiB  
Review
Uncovering Plastic Pollution: A Scoping Review of Urban Waterways, Technologies, and Interdisciplinary Approaches
by Peter Cleveland, Donna Cleveland, Ann Morrison, Khoi Hoang Dinh, An Nguyen Pham Hai, Luca Freitas Ribeiro and Khanh Tran Duy
Sustainability 2025, 17(15), 7009; https://doi.org/10.3390/su17157009 (registering DOI) - 1 Aug 2025
Abstract
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, [...] Read more.
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, addressed, and reconceptualized. Drawing from the literature across environmental science, technology, and social studies, we identify four interconnected areas of focus: urban pollution pathways, innovations in monitoring and methods, community-based interventions, and interdisciplinary perspectives. Our analysis combines qualitative synthesis with visual mapping techniques, including keyword co-occurrence networks, to explore how real-time tools, such as IoT sensors, multi-sensor systems, and geospatial technologies, are transforming the ways plastic waste is tracked and analyzed. The review also considers the growing use of novel theoretical frameworks, such as post-phenomenology and ecological materialism, to better understand the role of plastics as both pollutants and ecological agents. Despite progress, the literature reveals persistent gaps in longitudinal studies, regional representation, and policy translation, particularly across the Global South. We emphasize the value of participatory models and community-led research in bridging these gaps and advancing more inclusive and responsive solutions. These insights inform the development of plastic tracker technologies currently being piloted in Vietnam and contribute to broader sustainability goals, including SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production), and SDG 14 (Life Below Water). Full article
Show Figures

Figure 1

29 pages, 1477 KiB  
Review
Bioinformation and Monitoring Technology for Environmental DNA Analysis: A Review
by Hyo Jik Yoon, Joo Hyeong Seo, Seung Hoon Shin, Mohamed A. A. Abedlhamid and Seung Pil Pack
Biosensors 2025, 15(8), 494; https://doi.org/10.3390/bios15080494 (registering DOI) - 1 Aug 2025
Abstract
Environmental DNA (eDNA) analysis has emerged as a transformative tool in environmental monitoring, enabling non-invasive detection of species and microbial communities across diverse ecosystems. This study systematically reviews the role of bioinformation technology in eDNA analysis, focusing on methodologies and applications across air, [...] Read more.
Environmental DNA (eDNA) analysis has emerged as a transformative tool in environmental monitoring, enabling non-invasive detection of species and microbial communities across diverse ecosystems. This study systematically reviews the role of bioinformation technology in eDNA analysis, focusing on methodologies and applications across air, soil, groundwater, sediment, and aquatic environments. Advances in molecular biology, high-throughput sequencing, bioinformatics tools, and field-deployable detection systems have significantly improved eDNA detection sensitivity, allowing for early identification of invasive species, monitoring ecosystem health, and tracking pollutant degradation processes. Airborne eDNA monitoring has demonstrated potential for assessing microbial shifts due to air pollution and tracking pathogen transmission. In terrestrial environments, eDNA facilitates soil and groundwater pollution assessments and enhances understanding of biodegradation processes. In aquatic ecosystems, eDNA serves as a powerful tool for biodiversity assessment, invasive species monitoring, and wastewater-based epidemiology. Despite its growing applicability, challenges remain, including DNA degradation, contamination risks, and standardization of sampling protocols. Future research should focus on integrating eDNA data with remote sensing, machine learning, and ecological modeling to enhance predictive environmental monitoring frameworks. As technological advancements continue, eDNA-based approaches are poised to revolutionize environmental assessment, conservation strategies, and public health surveillance. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Figure 1

11 pages, 3192 KiB  
Data Descriptor
Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level
by Jailene Marlen Jaramillo-Perez, Bárbara A. Macías-Hernández, Edgar Tello-Leal and René Ventura-Houle
Data 2025, 10(8), 125; https://doi.org/10.3390/data10080125 (registering DOI) - 1 Aug 2025
Abstract
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research [...] Read more.
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research contains records with measurements of the air pollutants ozone (O3) and carbon monoxide (CO), as well as meteorological parameters such as temperature (T), relative humidity (RH), and barometric pressure (BP). This dataset was collected using a set of low-cost sensors over a four-month study period (March to June) in 2024. The monitoring of air pollutants and meteorological parameters was conducted in a city with high industrial activity, heavy traffic, and close proximity to a petrochemical refinery plant. The data were subjected to a series of statistical analyses for visualization using plots that allow for the identification of their behavior. Finally, the dataset can be utilized for air quality studies, public health research, and the development of prediction models based on mathematical approaches or artificial intelligence algorithms. Full article
Show Figures

Figure 1

20 pages, 5041 KiB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 (registering DOI) - 1 Aug 2025
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

9 pages, 7006 KiB  
Interesting Images
Coral Bleaching and Recovery on Urban Reefs off Jakarta, Indonesia, During the 2023–2024 Thermal Stress Event
by Tries B. Razak, Muhammad Irhas, Laura Nikita, Rindah Talitha Vida, Sera Maserati and Cut Aja Gita Alisa
Diversity 2025, 17(8), 540; https://doi.org/10.3390/d17080540 (registering DOI) - 1 Aug 2025
Abstract
Urban coral reefs in Jakarta Bay and the Thousand Islands, Indonesia, are chronically exposed to land-based pollution and increasing thermal stress. These reefs—including the site of Indonesia’s first recorded coral bleaching event in 1983—remain highly vulnerable to climate-induced disturbances. During the fourth global [...] Read more.
Urban coral reefs in Jakarta Bay and the Thousand Islands, Indonesia, are chronically exposed to land-based pollution and increasing thermal stress. These reefs—including the site of Indonesia’s first recorded coral bleaching event in 1983—remain highly vulnerable to climate-induced disturbances. During the fourth global coral bleaching event (GCBE), we recorded selective bleaching in the region, associated with a Degree Heating Weeks (DHW) value of 4.8 °C-weeks. Surveys conducted in January 2024 across a shelf gradient at four representative islands revealed patchy bleaching, affecting various taxa at depths ranging from 3 to 13 m. A follow-up survey in May 2024, which tracked the fate of 42 tagged bleached colonies, found that 36% had fully recovered, 26% showed partial recovery, and 38% had died. Bleaching responses varied across taxa, depths, and microhabitats, often occurring in close proximity to unaffected colonies. While some corals demonstrated resilience, the overall findings underscore the continued vulnerability of urban reefs to escalating thermal stress. This highlights the urgent need for a comprehensive and coordinated national strategy—not only to monitor bleaching and assess reef responses, but also to strengthen protection measures and implement best-practice restoration. Such efforts are increasingly critical in the face of more frequent and severe bleaching events projected under future climate scenarios. Full article
(This article belongs to the Collection Interesting Images from the Sea)
Show Figures

Figure 1

14 pages, 3804 KiB  
Article
Geospatial Analysis of Heavy Metal Concentrations in the Coastal Marine Environment of Beihai, Guangxi During April 2021
by Chaolu, Bo Miao and Na Qian
Coasts 2025, 5(3), 27; https://doi.org/10.3390/coasts5030027 (registering DOI) - 1 Aug 2025
Abstract
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, [...] Read more.
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, phosphate, and salinity. Our results reveal higher heavy metal concentrations in the northern nearshore waters and lower levels in southern offshore areas, with surface waters generally exhibiting greater enrichment than bottom waters. Surface concentrations show a decreasing trend from the northeast to the southwest, likely influenced by prevailing northeast monsoon winds. While bottom water concentrations decline from the northwest to the southeast, which indicates the influence of riverine runoff, particularly from the Qinzhou Bay estuary. Heavy metal levels in southern Beihai waters are comparable to those in the Beibu Gulf, except for Hg and Zn, which are significantly higher in the water of the Beibu Gulf. Notably, heavy metal concentrations in both Beihai and Beibu Gulf remain considerably lower than those observed in the coastal waters of Guangdong. Overall, Beihai’s coastal seawater meets China’s Class I quality standards. Nonetheless, continued monitoring is essential, especially of the potential ecological impacts of Hg and Zn on marine life. Full article
Show Figures

Figure 1

42 pages, 28030 KiB  
Article
Can AI and Urban Design Optimization Mitigate Cardiovascular Risks Amid Rapid Urbanization? Unveiling the Impact of Environmental Stressors on Health Resilience
by Mehdi Makvandi, Zeinab Khodabakhshi, Yige Liu, Wenjing Li and Philip F. Yuan
Sustainability 2025, 17(15), 6973; https://doi.org/10.3390/su17156973 (registering DOI) - 31 Jul 2025
Abstract
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health [...] Read more.
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health (+76.9%, 2019–2025) and optimization and algorithmic approaches (+63.7%), the compounded and synergistic impacts of these stressors remain inadequately explored or addressed within current urban planning frameworks. This study presents a Mixed Methods Systematic Review (MMSR) to investigate the potential of AI-driven urban design optimizations in mitigating these multi-scalar environmental health risks. Specifically, it explores the complex interactions between urbanization, traffic-related pollutants, green infrastructure, and architectural intelligence, identifying critical gaps in the integration of computational optimization with nature-based solutions (NBS). To empirically substantiate these theoretical insights, this study draws on longitudinal 24 h dynamic blood pressure (BP) monitoring (3–9 months), revealing that chronic exposure to environmental noise (mean 79.84 dB) increases cardiovascular risk by approximately 1.8-fold. BP data (average 132/76 mmHg), along with observed hypertensive spikes (systolic > 172 mmHg, diastolic ≤ 101 mmHg), underscore the inadequacy of current urban design strategies in mitigating health risks. Based on these findings, this paper advocates for the integration of AI-driven approaches to optimize urban environments, offering actionable recommendations for developing adaptive, human-centric, and health-responsive urban planning frameworks that enhance resilience and public health in the face of accelerating urbanization. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

18 pages, 4489 KiB  
Article
Influence of Regional PM2.5 Sources on Air Quality: A Network-Based Spatiotemporal Analysis in Northern Thailand
by Khuanchanok Chaichana, Supanut Chaidee, Sayan Panma, Nattakorn Sukantamala, Neda Peyrone and Anchalee Khemphet
Mathematics 2025, 13(15), 2468; https://doi.org/10.3390/math13152468 - 31 Jul 2025
Abstract
Northern Thailand frequently suffers from severe PM2.5 air pollution, especially during the dry season, due to agricultural burning, local emissions, and transboundary haze. Understanding how pollution moves across regions and identifying source–receptor relationships are critical for effective air quality management. This study investigated [...] Read more.
Northern Thailand frequently suffers from severe PM2.5 air pollution, especially during the dry season, due to agricultural burning, local emissions, and transboundary haze. Understanding how pollution moves across regions and identifying source–receptor relationships are critical for effective air quality management. This study investigated the spatial and temporal dynamics of PM2.5 in northern Thailand. Specifically, it explored how pollution at one monitoring station influenced concentrations at others and revealed the seasonal structure of PM2.5 transmission using network-based analysis. We developed a Python-based framework to analyze daily PM2.5 data from 2022 to 2023, selecting nine representative stations across eight provinces based on spatial clustering and shape-based criteria. Delaunay triangulation was used to define spatial connections among stations, capturing the region’s irregular geography. Cross-correlation and Granger causality were applied to identify time-lagged relationships between stations for each season. Trophic coherence analysis was used to evaluate the hierarchical structure and seasonal stability of the resulting networks. The analysis revealed seasonal patterns of PM2.5 transmission, with certain stations, particularly in Chiang Mai and Lampang, consistently acting as source nodes. Provinces such as Phayao and Phrae were frequently identified as receptors, especially during the winter and rainy seasons. Trophic coherence varied by season, with the winter network showing the highest coherence, indicating a more hierarchical but less stable structure. The rainy season exhibited the lowest coherence, reflecting greater structural stability. PM2.5 spreads through structured, seasonal pathways in northern Thailand. Network patterns vary significantly across seasons, highlighting the need for adaptive air quality strategies. This framework can help identify influential monitoring stations for early warning and support more targeted, season-specific air quality management strategies in northern Thailand. Full article
(This article belongs to the Special Issue Application of Mathematical Theory in Data Science)
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Quantifying Ozone-Driven Forest Losses in Southwestern China (2019–2023)
by Qibing Xia, Jingwei Zhang, Zongxin Lv, Duojun Wu, Xiao Tang and Huizhi Liu
Atmosphere 2025, 16(8), 927; https://doi.org/10.3390/atmos16080927 (registering DOI) - 31 Jul 2025
Abstract
As a key tropospheric photochemical pollutant, ground-level ozone (O3) poses significant threats to ecosystems through its strong oxidative capacity. With China’s rapid industrialization and urbanization, worsening O3 pollution has emerged as a critical environmental concern. This study examines O3 [...] Read more.
As a key tropospheric photochemical pollutant, ground-level ozone (O3) poses significant threats to ecosystems through its strong oxidative capacity. With China’s rapid industrialization and urbanization, worsening O3 pollution has emerged as a critical environmental concern. This study examines O3’s impacts on forest ecosystems in Southwestern China (Yunnan, Guizhou, Sichuan, and Chongqing), which harbors crucial forest resources. We analyzed high-resolution monitoring data from over 200 stations (2019–2023), employing spatial interpolation to derive the regional maximum daily 8 h average O3 (MDA8-O3, ppb) and accumulated O3 exposure over 40 ppb (AOT40) metrics. Through AOT40-based exposure–response modeling, we quantified the forest relative yield losses (RYL), economic losses (ECL) and ECL/GDP (GDP: gross domestic product) ratios in this region. Our findings reveal alarming O3 increases across the region, with a mean annual MDA8-O3 anomaly trend of 2.4% year−1 (p < 0.05). Provincial MDA8-O3 anomaly trends varied from 1.4% year−1 (Yunnan, p = 0.059) to 4.3% year−1 (Guizhou, p < 0.001). Strong correlations (r > 0.85) between annual RYL and annual MDA8-O3 anomalies demonstrate the detrimental effects of O3 on forest biomass. The RYL trajectory showed an initial decline during 2019–2020 and accelerated losses during 2020–2023, peaking at 13.8 ± 6.4% in 2023. Provincial variations showed a 5-year averaged RYL ranging from 7.10% (Chongqing) to 15.85% (Yunnan). O3 exposure caused annual ECL/GDP averaging 4.44% for Southwestern China, with Yunnan suffering the most severe consequences (ECL/GDP averaging 8.20%, ECL averaging CNY 29.8 billion). These results suggest that O3-driven forest degradation may intensify, potentially undermining the regional carbon sequestration capacity, highlighting the urgent need for policy interventions. We recommend enhanced monitoring networks and stricter control methods to address these challenges. Full article
(This article belongs to the Special Issue Coordinated Control of PM2.5 and O3 and Its Impacts in China)
Show Figures

Figure 1

11 pages, 711 KiB  
Article
Cadmium Accumulation and Regulation in the Freshwater Mussel Anodonta woodiana
by Xiubao Chen, Chao Song, Jiazhen Jiang, Tao Jiang, Junren Xue, Ibrahim Bah, Mengying Gu, Meiyi Wang and Shunlong Meng
Toxics 2025, 13(8), 646; https://doi.org/10.3390/toxics13080646 - 30 Jul 2025
Abstract
Cadmium (Cd) pollution poses a serious threat to freshwater ecosystems. The freshwater mussel Anodonta woodiana is increasingly used as a bioindicator for monitoring Cd pollution in aquatic environments. However, the primary routes of Cd accumulation in A. woodiana remain unclear, and the molecular [...] Read more.
Cadmium (Cd) pollution poses a serious threat to freshwater ecosystems. The freshwater mussel Anodonta woodiana is increasingly used as a bioindicator for monitoring Cd pollution in aquatic environments. However, the primary routes of Cd accumulation in A. woodiana remain unclear, and the molecular regulatory mechanisms underlying Cd accumulation are poorly understood. To address these gaps, this study employed a novel stable isotope dual-tracer technique to trace Cd from water (waterborne 112Cd) and the green alga Chlorella vulgaris (dietary 113Cd) during the simultaneous exposure experiment. Comparative transcriptomic analysis was then conducted to characterize molecular responses in A. woodiana following Cd exposure. The results showed that although newly accumulated 112Cd and 113Cd increased with exposure concentration and duration, the relative importance of 112Cd (91.6 ± 2.8%) was significantly higher than that of 113Cd (8.4 ± 2.8%) (p < 0.05). Cd exposure induced differentially expressed genes primarily enriched in the metabolic processes, cellular processes, and/or the ubiquitin-mediated proteolysis pathway. Within the ubiquitin-mediated proteolysis pathway, TRIP12 (E3 ubiquitin-protein ligase TRIP12) and Cul5 (cullin-5) were significantly upregulated. The findings will provide critical insights for interpreting Cd biomonitoring data in freshwater environments using mussels as bioindicators. Full article
(This article belongs to the Special Issue The Impact of Heavy Metals on Aquatic Ecosystems)
Show Figures

Figure 1

39 pages, 14288 KiB  
Article
Design and Performance Study of a Magnetic Flux Leakage Pig for Subsea Pipeline Defect Detection
by Fei Qu, Shengtao Chen, Meiyu Zhang, Kang Zhang and Yongjun Gong
J. Mar. Sci. Eng. 2025, 13(8), 1462; https://doi.org/10.3390/jmse13081462 - 30 Jul 2025
Abstract
Subsea pipelines, operating in high-pressure and high-salinity conditions, face ongoing risks of leakage. Pipeline leaks can pollute the marine environment and, in severe cases, cause safety incidents, endangering human lives and property. Regular integrity inspections of subsea pipelines are critical to prevent corrosion-related [...] Read more.
Subsea pipelines, operating in high-pressure and high-salinity conditions, face ongoing risks of leakage. Pipeline leaks can pollute the marine environment and, in severe cases, cause safety incidents, endangering human lives and property. Regular integrity inspections of subsea pipelines are critical to prevent corrosion-related leaks. This study develops a magnetic flux leakage (MFL)-based pig for detecting corrosion in subsea pipelines. Using a three-dimensional finite element model, this study analyzes the effects of defect geometry, lift-off distance, and operating speed on MFL signals. It proposes a defect estimation method based on axial peak-to-valley values and radial peak spacing, with inversion accuracy validated against simulation results. This study establishes a theoretical and practical framework for subsea pipeline integrity management, providing an effective solution for corrosion monitoring. Full article
(This article belongs to the Special Issue Theoretical Research and Design of Subsea Pipelines)
Show Figures

Figure 1

19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

21 pages, 2028 KiB  
Article
Graphene Oxide-Supported QuEChERS Extraction Coupled with LC-MS/MS for Trace-Level Analysis of Wastewater Pharmaceuticals
by Weronika Rogowska and Piotr Kaczyński
Appl. Sci. 2025, 15(15), 8441; https://doi.org/10.3390/app15158441 - 30 Jul 2025
Viewed by 74
Abstract
Detecting pharmaceuticals in environmental matrices, particularly in wastewater, is crucial due to their potential environmental occurrence and unpredictable ecological and health-related consequences. These substances, often present in trace amounts, require highly sensitive and selective analytical methods for effective monitoring. A modified version of [...] Read more.
Detecting pharmaceuticals in environmental matrices, particularly in wastewater, is crucial due to their potential environmental occurrence and unpredictable ecological and health-related consequences. These substances, often present in trace amounts, require highly sensitive and selective analytical methods for effective monitoring. A modified version of the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method was evaluated to evaluate 18 pharmaceuticals and 2 metabolites in wastewater samples using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The method’s performance was assessed using linearity, recovery, precision, limits of quantification (LOQ) and detection (LOD), and the matrix effect (ME). The final method was based on acetonitrile, Na2EDTA, citrate buffer, and graphene oxide (GO). Finally, the calibration curves prepared in acetonitrile and the matrix extract showed a correlation coefficient of 0.99. Most of the compounds had LOQ values lower than 0.5 μg⋅mL−1. Recoveries were achieved in the 70–98% range, with RSD lower than 13%. GO allowed the elimination of the ME, which occurred in the range of −11% to 15%. The results indicate that a low-cost and straightforward method is suitable for routinely monitoring pharmaceuticals in wastewater, which is crucial for minimizing the impact of pollutants on aquatic ecosystems. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 92
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

38 pages, 6652 KiB  
Review
Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review
by Aleksandra Kaczmarek and Jan Blachowski
Remote Sens. 2025, 17(15), 2628; https://doi.org/10.3390/rs17152628 - 29 Jul 2025
Viewed by 230
Abstract
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, [...] Read more.
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, leakage, seismic activity, and environmental pollution are observed. Existing research focuses on monitoring subsurface elements of the storage, while on the surface it is limited to ground movement observations. The review was carried out based on 191 research contributions related to geological storage. It emphasizes the importance of monitoring underground gas storage (UGS) sites and their surroundings to ensure sustainable and safe operation. It details surface monitoring methods, distinguishing geodetic surveys and remote sensing techniques. Remote sensing, including active methods such as InSAR and LiDAR, and passive methods of multispectral and hyperspectral imaging, provide valuable spatiotemporal information on UGS sites on a large scale. The review covers modelling and prediction methods used to analyze the environmental impacts of UGS, with data-driven models employing geostatistical tools and machine learning algorithms. The limited number of contributions treating geological storage sites holistically opens perspectives for the development of complex approaches capable of monitoring and modelling its environmental impacts. Full article
(This article belongs to the Special Issue Advancements in Environmental Remote Sensing and GIS)
Show Figures

Figure 1

Back to TopTop