Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = pollen tetrads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7427 KiB  
Article
Analysis of Meiotic Behavior and 2n Pollen Formation Frequency in Triploid Hybrids of Chinese Jujube
by Yunxi Zhong, Lixin Ge, Yinfang Song, Zhi Luo, Jiurui Wang, Mengjun Liu and Fenfen Yan
Plants 2025, 14(11), 1643; https://doi.org/10.3390/plants14111643 - 28 May 2025
Viewed by 434
Abstract
The Chinese jujube (Ziziphus jujuba Mill.), an economically significant fruit tree native to China, is valued for both fresh and dried uses. In plants, 2n gametes serve as the fundamental basis for creating a sexual polyploid germplasm. This study investigated the 2n [...] Read more.
The Chinese jujube (Ziziphus jujuba Mill.), an economically significant fruit tree native to China, is valued for both fresh and dried uses. In plants, 2n gametes serve as the fundamental basis for creating a sexual polyploid germplasm. This study investigated the 2n gametogenesis frequency in triploid hybrid jujubes through meiotic analysis of the hybrid strain Q161 and a two-year pollen analysis on hybrid progeny, assessing the natural 2n pollen frequencies to identify a high-2n-pollen germplasm and revealing the occurrence of 2n pollen. Meiotic analysis of the triploid hybrid Q161 (2n = 36) revealed cytological anomalies, including binucleate cells (22.80% abnormal tetrads), with natural 2n pollen production rates reaching 4.00% and 4.67% over two consecutive years. Scanning electron microscopy (SEM) revealed that the 2n pollen exhibited pronounced exine ornamentation with cerebroid sculpturing and tubercle-like structures at the apertures. Analysis of the triploid progeny for two consecutive years demonstrated a pollen viability of 30.45% and 23.83% (CV: 19. 39–29.69%), with the mean 2n pollen frequencies of 22.52% and 7.64%, peaking at 52.16% and 28.95% in elite individuals. Six triploid germplasm accessions with naturally elevated 2n pollen frequencies were identified. Under natural conditions, a triploid hybrid germplasm in Chinese jujube produces 2n pollen grains due to abnormal meiotic behavior, and a natural triploid germplasm with high pollen productivity was identified. This research provides a critical theoretical foundation for sexual polyploid breeding strategies. Full article
Show Figures

Figure 1

14 pages, 4208 KiB  
Article
The Transcription Factor LoTDF1 Plays a Role in Early Anther Development in Lily (Lilium Oriental Hybrids)
by Juanjuan Sui, Yan Tang, Xing Cao and Jingxia Yang
Horticulturae 2025, 11(4), 398; https://doi.org/10.3390/horticulturae11040398 - 9 Apr 2025
Viewed by 556
Abstract
Lilies are one of the most popular ornamental flowers in the world. However, the abundant pollen produced in their anthers causes significant inconvenience for producers and consumers. Pollen abortion induced by molecular breeding techniques is one of the effective ways to solve this [...] Read more.
Lilies are one of the most popular ornamental flowers in the world. However, the abundant pollen produced in their anthers causes significant inconvenience for producers and consumers. Pollen abortion induced by molecular breeding techniques is one of the effective ways to solve this problem. In this study, the LoTDF1 gene, which is involved in regulating lily anther development, was identified and cloned from lily anthers based on transcriptome data. The open reading frame of LoTDF1 is 936 bp and encodes a protein with 311 amino acids. Multiple sequence alignment and phylogenetic tree analysis revealed that the LoTDF1 protein contained a conserved R2R3 domain, belonging to the MYB transcription factor family. Subcellular localization and transcriptional activation assays demonstrated that LoTDF1 localized to the nucleus and functioned as a transcription activator. The transcriptional activation domain was located within the last 195 amino acids (117–311a) of the C-terminus, and there may be more than one transcriptional activation domain in the region. The expression level of the LoTDF1 gene was highest during the pollen mother cell (PMC) stage of lily anther development (2 cm anther), followed by the tetrad stage (4 cm anther). In situ hybridization experiments further confirmed that LoTDF1 transcripts were predominantly localized in PMCs, tapetal cells, middle layer cells, dyads, and tetrads. The experiment data suggest that LoTDF1 plays a critical role in regulating early anther development in lily. LoTDF1 could be a promising candidate gene for molecular breeding strategies aimed at developing pollen-free lily cultivars to enhance commercial and consumer appeal. Full article
Show Figures

Figure 1

25 pages, 3652 KiB  
Article
Cell-Type-Specific Heat-Induced Changes in the Proteomes of Pollen Mother Cells and Microspores Provide New Insights into Tomato Pollen Production Under Elevated Temperature
by Priya Thapa, Jun Guo, Kajol Pradhan, Dibya Thapa, Sudhakar Madhavarapu, Jing Zou, Jesse Potts, Hui Li, Joshua O’Hair, Chen Wang, Suping Zhou, Yong Yang, Tara Fish and Theodore W. Thannhauser
Proteomes 2025, 13(2), 13; https://doi.org/10.3390/proteomes13020013 - 25 Mar 2025
Cited by 1 | Viewed by 880
Abstract
Background: Tomatoes are self-pollinating plants, and successful fruit set depends on the production of functional pollen within the same flower. Our previous studies have shown that the ‘Black Vernissage’ tomato variety exhibits greater resilience to heat stress in terms of pollen productivity compared [...] Read more.
Background: Tomatoes are self-pollinating plants, and successful fruit set depends on the production of functional pollen within the same flower. Our previous studies have shown that the ‘Black Vernissage’ tomato variety exhibits greater resilience to heat stress in terms of pollen productivity compared to the ‘Micro-Tom’ variety. Pollen productivity is determined by meiotic activity during microsporogenesis and the development of free microspores during gametogenesis. This study focused on identifying heat stress (HS)-induced proteomes in pollen mother cells (PMCs) and microspores. Methods: Tomato plants were grown under two temperature conditions: 26 °C (non-heat-treated control) and 37 °C (heat-treated). Homogeneous cell samples of meiotic PMCs (prior to the tetrad stage) and free microspores were collected using laser capture microdissection (LCM). The heat-induced proteomes were identified using tandem mass tag (TMT)–quantitative proteomics analysis. Results: The enrichment of the meiotic cell cycle in PMCs and the pre-mitotic process in free microspores confirmed the correlation between proteome expression and developmental stage. Under HS, PMCs in both tomato varieties were enriched with heat shock proteins (HSPs). However, the ‘Black Vernissage’ variety exhibited a greater diversity of HSP species and a higher level of enrichment compared to the ‘Micro-Tom’ variety. Additionally, several proteins involved in gene expression and protein translation were downregulated in PMCs and microspores of both varieties. In the PMC proteomes, the relative abundance of proteins showed no significant differences between the two varieties under normal conditions, with very few exceptions. However, HS induced significant differential expression both within and between the varieties. More importantly, these heat-induced differentially abundant proteins (DAPs) in PMCs are directly involved in meiotic cell division, including the meiosis-specific protein ASY3 (Solyc01g079080), the cell division protein kinase 2 (Solyc11g070140), COP9 signalosome complex subunit 1 (Solyc01g091650), the kinetochore protein ndc80 (Solyc01g104570), MORC family CW-type zinc finger 3 (Solyc02g084700), and several HSPs that function in protecting the fidelity of the meiotic processes, including the DNAJ chaperone (Solyc04g009770, Solyc05g055160), chaperone protein htpG (Solyc04g081570), and class I and class II HSPs. In the microspores, most of the HS-induced DAPs were consistently observed across both varieties, with only a few proteins showing significant differences between them under heat stress. These HS-induced DAPs include proteases, antioxidant proteins, and proteins related to cell wall remodeling and the generation of pollen exine. Conclusions: HS induced more dynamic proteomic changes in meiotic PMCs compared to microspores, and the inter-varietal differences in the PMC proteomes align with the effects of HS on pollen productivity observed in the two varieties. This research highlights the importance of the cell-type-specific proteomics approach in identifying the molecular mechanisms that are critical for the pollen developmental process under elevated temperature conditions. Full article
(This article belongs to the Section Plant Proteomics)
Show Figures

Graphical abstract

19 pages, 5581 KiB  
Article
Genetic Analysis and Fine Mapping of Spontaneously Mutated Male Sterility Gene in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
by Qian Xu, Xiaochun Wei, Yanyan Zhao, Jianqi Feng, Peiyun Wang, Cong Ding, Wenjing Zhang, Henan Su, Weiwei Chen, Fang Wei, Yuxiang Yuan and Xiaowei Zhang
Plants 2025, 14(5), 779; https://doi.org/10.3390/plants14050779 - 3 Mar 2025
Viewed by 704
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis), an important traditional vegetable indigenous to China, is a typical cross-pollinated Brassica crop exhibiting pronounced heterosis. However, its small flower organs make artificial pollination for hybrid seed production highly challenging. The use of male-sterile [...] Read more.
Chinese cabbage (Brassica rapa L. ssp. pekinensis), an important traditional vegetable indigenous to China, is a typical cross-pollinated Brassica crop exhibiting pronounced heterosis. However, its small flower organs make artificial pollination for hybrid seed production highly challenging. The use of male-sterile lines has emerged as a crucial approach in hybrid seed production. Therefore, understanding the genetic and molecular mechanisms underlying male sterility in Chinese cabbage holds profound theoretical and economic importance and is pivotal for advancing Chinese cabbage crossbreeding. Here, cytological comparative analysis of anthers from sterile line 366-2S and fertile line 366-2F revealed abnormalities in 366-2S during the late tetrad stage, including delayed tapetum degradation and the aggregation of tetrad microspores without separation, which prevented pollen production and caused male sterility. Construction of the F2 segregating population, with 366-2S as the female parent and genetically diverse fertile material Y636-9 as the male parent, indicated that male sterility in 366-2S is controlled by a single recessive gene. Using bulked segregant analysis sequencing and kompetitive allele-specific polymerase chain reaction (KASP) technology, the sterile gene was mapped to 65 kb between the PA11 and PA13 markers, with 11 genes in the candidate region. Functional annotation, expression, and sequence variation analyses identified BraA09g012710.3C, encoding acyl-CoA synthetase 5, as a candidate gene for 366-2S male sterility. Quantitative real-time polymerase chain reaction analysis revealed minimal expression of BraA09g012710.3C in 366-2S but high expression in the flower buds of 366-2F. Further analysis of candidate gene DNA sequences identified a large deletion encompassing BraA09g012710.3C, BraA09g012720.3C, BraA09g012730.3C, and BraA09g012740.3C in sterile line 366-2S (A09: 7452347–7479709). Cloning and verification of the other three deleted genes in the F2 population via agarose gel electrophoresis confirmed their presence in F2 sterile individuals, indicating that their deletion was not associated with male sterility, underscoring BraA09g012710.3C as the key gene driving male sterility in 366-2S. Full article
(This article belongs to the Special Issue Reproductive and Developmental Mechanisms of Vegetable Crops)
Show Figures

Figure 1

25 pages, 5398 KiB  
Article
Integrated Transcriptomics and Metabolomics Analysis Reveals Convergent and Divergent Key Molecular Networks of Dominant Genic Male Sterility and Cytoplasmic Male Sterility in Cabbage
by Nan Zhang, Linqian Kuang, Limei Yang, Yong Wang, Fengqing Han, Yangyong Zhang, Shaohui Wang, Honghao Lv and Jialei Ji
Int. J. Mol. Sci. 2025, 26(3), 1259; https://doi.org/10.3390/ijms26031259 - 31 Jan 2025
Viewed by 1021
Abstract
Cytoplasmic male sterility (CMS) and dominant genic male sterility (DGMS) both result in the inability to produce or release functional pollen, making them pivotal systems in the hybridization breeding programs of Brassica crops such as cabbage (B. oleracea var. capitata). However, [...] Read more.
Cytoplasmic male sterility (CMS) and dominant genic male sterility (DGMS) both result in the inability to produce or release functional pollen, making them pivotal systems in the hybridization breeding programs of Brassica crops such as cabbage (B. oleracea var. capitata). However, the underling molecular mechanisms are still largely unexplored. This study integrated transcriptomic and metabolomic analyses of cabbage DGMS line, Ogura CMS line, and the maintainer line to uncover the molecular mechanisms underlying these sterility types. The joint analysis predominantly identified significantly enriched pathways, including carbohydrate metabolism, flavonoid biosynthesis, and phenylpropanoid pathways between the MS lines and the maintainer. Especially, the CMS line exhibited a broader range of metabolic perturbations, with a total of 3556 significantly differentially expressed genes (DEGs) and 439 differentially accumulated metabolites (DAMs) detected, particularly in the vitamin B6 metabolism pathway, which showed significant alterations. Given the differences in the inactivation period of microspores in CMS and DGMS lines, we found that DEGs unique to DGMS and maintainer line, such as BoGRPs and BoLTPs, primarily regulate fertility development before the unicellular stage. The DEGs shared between CMS_vs_maintainer and DGMS_vs_maintainer mainly govern microspore development after release from the tetrad, such as BoHXK1 and BoIDH. Additionally, the DEGs unique to CMS_vs_maintainer may contribute to other damage in floral organs beyond male fertility, potentially leading to severe bud abortion, such as BoPNPO. These findings provide a comprehensive framework for understanding the molecular mechanisms of male sterility and offer valuable insights into future breeding strategies in cruciferous vegetables. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics, 3rd Edition)
Show Figures

Figure 1

19 pages, 16034 KiB  
Article
Comprehensive Analysis of β-1,3-Glucanase Genes in Wolfberry and Their Implications in Pollen Development
by Xin Zhang, Pinjie Zheng, Xurui Wen and Zhanlin Bei
Plants 2025, 14(1), 52; https://doi.org/10.3390/plants14010052 - 27 Dec 2024
Cited by 4 | Viewed by 716
Abstract
β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (Lycium barbarum), including their chromosomal distribution, evolutionary relationships, and expression profiles. [...] Read more.
β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (Lycium barbarum), including their chromosomal distribution, evolutionary relationships, and expression profiles. A total of 58 Glu genes were identified, distributed across all 12 chromosomes. Evolutionary analysis revealed six distinct branches within wolfberry and nine distinct branches when compared with Arabidopsis thaliana. Expression analysis showed that 45 Glu genes were expressed in berries, with specific genes also being expressed in flowers and leaves. Notably, LbaGlu28 exhibited significant expression during the tetrad stage of pollen development and was localized in the cell wall. These findings provide valuable insights into the functional significance of Glu genes in wolfberry, highlighting their roles in development and their potential involvement in reproductive processes, particularly in pollen development. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

14 pages, 8258 KiB  
Article
Fine-Mapping of Tomato male sterile-24 Locus and Marker Development for ms-24 and Its Alleles, ms-10, ms-35, and ms-36
by Li Zhang, Mengxia Yang, Kai Wei, Wencai Yang, Shanshan Li, Xiaoxuan Wang, Yanmei Guo, Lei Liu, Can Zhu, Yongchen Du, Junming Li, Xin Li and Zejun Huang
Horticulturae 2024, 10(12), 1322; https://doi.org/10.3390/horticulturae10121322 - 11 Dec 2024
Cited by 1 | Viewed by 1077
Abstract
Male sterility is an essential trait for minimizing costs and ensuring seed purity in the production of tomato hybrid seeds. However, its application in commercial breeding faces challenges such as instability, low stigma exsertion rates, and the lack of molecular markers to facilitate [...] Read more.
Male sterility is an essential trait for minimizing costs and ensuring seed purity in the production of tomato hybrid seeds. However, its application in commercial breeding faces challenges such as instability, low stigma exsertion rates, and the lack of molecular markers to facilitate the efficient backcrossing of male sterile loci into elite tomato lines. This study characterized the male sterile-24 (ms-24) mutant, which demonstrated exserted stigmas and complete male sterility. Our histological examination revealed that ms-24 anthers displayed dysfunctional development of the tetrads and tapetum. The ms-24 locus was finely mapped to a 149 kb interval containing 22 putative genes. Among these, Solyc02g079810, also known as MS-10, encodes a basic helix–loop–helix (bHLH) transcription factor essential for tapetum and pollen development. A sequencing analysis revealed an approximately 4.9 kb retrotransposon insertion in the first exon of the MS-10 gene in ms-24. Allelism tests confirmed that ms-24 was allelic to ms-10, which is also allelic to ms-35 and ms-36. The same retrotransposon insertion was also identified in the ms-10 mutant, and a similar insertion of retrotransposon was detected in the second exon of the MS-10 gene in the ms-36 mutant. Based on these retrotransposon sequences, codominant insertion–deletion (InDel) markers, MS-24I and MS-35I, were developed for the precise identification of the ms-24, ms-10, ms-35, and ms-36 alleles. These findings establish a foundational basis for subsequent investigations into the molecular mechanisms underlying male sterility and enhance the selection process of male sterile lines in tomato hybrid breeding programs. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

16 pages, 5816 KiB  
Article
Identification and Gene Fine Mapping of the Bisexual Sterility Mutant Meiosis Abnormal Bisexual Sterility 1 in Rice
by Yingchun Wan, Xiaoqing Liu, Nan Wang, Zhengming Zeng and Yudong Jiang
Curr. Issues Mol. Biol. 2024, 46(11), 12978-12993; https://doi.org/10.3390/cimb46110773 - 14 Nov 2024
Viewed by 948
Abstract
Exploring the genes regulating rice fertility is of great value for studying the molecular mechanisms of rice reproductive development and production practices. In this study, we identified a sterile mutant from the mutant library induced by ethyl methanesulfonate (EMS), designated as meiosis abnormal [...] Read more.
Exploring the genes regulating rice fertility is of great value for studying the molecular mechanisms of rice reproductive development and production practices. In this study, we identified a sterile mutant from the mutant library induced by ethyl methanesulfonate (EMS), designated as meiosis abnormal bisexual sterility 1 (mabs1). The mabs1 mutant exhibits no phenotypic differences from the wild-type during the vegetative growth phase but shows complete sterility during the reproductive growth phase. Phenotypic observations revealed that both pollen and embryo sac fertility are lost in mabs1. Notably, in mabs1, the development of the anther inner and outer walls, tapetum degeneration, and callose synthesis and degradation all proceed normally, yet meiosis fails to form normal tetrads. Genetic analysis indicated that this mutant trait is controlled by a single recessive nuclear gene. By constructing a genetic segregation population, we successfully mapped the MABS1 gene to a 49 kb region between primer markers Y7 and Y9 on chromosome 1. Resequencing revealed a single-nucleotide substitution in the exon of the LOC_Os01g66170 gene, which resulted in a change from Valine to Isoleucine. Subsequent sequencing of this locus in both wild-type and mabs1 mutants confirmed this mutation. Therefore, we have identified the gene at LOC_Os01g66170 as a candidate for MABS1, a previously unreported novel gene involved in rice meiosis. Through RT-qPCR, we found that the expression levels of multiple meiosis-related genes were significantly changed in the mabs1 mutant. Therefore, we believe that MABS1 is also involved in the process of rice meiosis. This study lays the groundwork for a functional study of MABS1. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 5857 KiB  
Article
Genome-Wide Analysis of the Histone Modification Gene (HM) Family and Expression Investigation during Anther Development in Rice (Oryza sativa L.)
by Yongxiang Huang, Jiawei Liu, Long Cheng, Duo Xu, Sijia Liu, Hanqiao Hu, Yu Ling, Rongchao Yang and Yueqin Zhang
Plants 2024, 13(17), 2496; https://doi.org/10.3390/plants13172496 - 6 Sep 2024
Viewed by 1353
Abstract
Histone modification plays a crucial role in chromatin remodeling and regulating gene expression, and participates in various biological processes, including plant development and responses to stress. Several gene families related to histone modification have been reported in various plant species. However, the identification [...] Read more.
Histone modification plays a crucial role in chromatin remodeling and regulating gene expression, and participates in various biological processes, including plant development and responses to stress. Several gene families related to histone modification have been reported in various plant species. However, the identification of members and their functions in the rice (Oryza sativa L.) histone modification gene family (OsHM) at the whole-genome level remains unclear. In this study, a total of 130 OsHMs were identified through a genome-wide analysis. The OsHM gene family can be classified into 11 subfamilies based on a phylogenetic analysis. An analysis of the genes structures and conserved motifs indicates that members of each subfamily share specific conserved protein structures, suggesting their potential conserved functions. Molecular evolutionary analysis reveals that a significant number of OsHMs proteins originated from gene duplication events, particularly segmental duplications. Additionally, transcriptome analysis demonstrates that OsHMs are widely expressed in various tissues of rice and are responsive to multiple abiotic stresses. Fourteen OsHMs exhibit high expression in rice anthers and peaked at different pollen developmental stages. RT-qPCR results further elucidate the expression patterns of these 14 OsHMs during different developmental stages of anthers, highlighting their high expression during the meiosis and tetrad stages, as well as in the late stage of pollen development. Remarkably, OsSDG713 and OsSDG727 were further identified to be nucleus-localized. This study provides a fundamental framework for further exploring the gene functions of HMs in plants, particularly for researching their functions and potential applications in rice anthers’ development and male sterility. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 3746 KiB  
Article
Morphological Study on the Differentiation of Flower Buds and the Embryological Stages of Male and Female Floral Organs in Lespedeza davurica (Laxm.) Schindl. cv. JinNong (Fabaceae)
by Lirong Tong and Juan Wang
Plants 2024, 13(12), 1661; https://doi.org/10.3390/plants13121661 - 15 Jun 2024
Viewed by 1344
Abstract
Lespedeza davurica (Laxm.) is a leguminous plant with significant ecological benefits, but its embryonic development mechanism remains unclear. We investigated the flower bud differentiation, megaspore and microspore formation, gametophyte development, and embryo and endosperm development in L. davurica. Our aim was to [...] Read more.
Lespedeza davurica (Laxm.) is a leguminous plant with significant ecological benefits, but its embryonic development mechanism remains unclear. We investigated the flower bud differentiation, megaspore and microspore formation, gametophyte development, and embryo and endosperm development in L. davurica. Our aim was to elucidate the relationship between the external morphology and internal development processes of male and female floral organs during growth, as well as the reproductive factors influencing fruiting. The results indicated that although the pistil develops later than the stamen during flower bud differentiation, both organs mature synchronously before flowering. L. davurica pollen exhibits three germination grooves, a reticulate outer wall, and papillary structures on the anther surface. In vivo pollination experiments revealed abnormal spiral growth of L. davurica pollen tubes within the style and the occurrence of callus plugs, which may reduce the seed setting rate. The anther wall development follows the dicotyledonous type, with tetrads formed through microspore meiosis exhibiting both left–right symmetry and tetrahedral arrangements. L. davurica has a single ovule, and the embryo sac develops in the monosporic polygonum type. After dormancy, the zygote undergoes multiple divisions, progressing through spherical, heart-shaped, and torpedo-shaped embryo stages, culminating in a mature embryo. A mature seed comprises cotyledons, hypocotyl, embryo, radicle, and seed coat. Phylogenetic tree analysis reveals a close genetic relationship between L. davurica and other leguminous plants from the genera Lespedeza and Medicago. This study provides valuable insights into the regulation of flowering and hybrid breeding in leguminous plants and offers a new perspective on the development of floral organs and seed setting rates. Full article
(This article belongs to the Special Issue Plant Reproduction and Embryonic Development)
Show Figures

Figure 1

49 pages, 18874 KiB  
Article
Morphological and Ultrastructural Features of Selected Epidendroideae Pollen Dispersal Units and New Insights into Their Chemical Nature
by Carola Purgina, Silvia Ulrich, Martina Weber and Friðgeir Grímsson
Plants 2024, 13(8), 1114; https://doi.org/10.3390/plants13081114 - 16 Apr 2024
Cited by 2 | Viewed by 1943
Abstract
Orchidaceae display enormous diversity in their flower morphology, which is particularly evident in their pollen dispersal units (pollinia, pollinaria). The packaging of pollen by elastoviscin leads to a great diversity of these morphologically and structurally complex pollen units. Despite being one of the [...] Read more.
Orchidaceae display enormous diversity in their flower morphology, which is particularly evident in their pollen dispersal units (pollinia, pollinaria). The packaging of pollen by elastoviscin leads to a great diversity of these morphologically and structurally complex pollen units. Despite being one of the most diverse angiosperm families, the available palynological data on orchids remain limited and sometimes contradicting. This study provides new insights into the pollen morphology and ultrastructure of five orchid species from the subfamily Epidendroideae, using combined light, scanning electron, and transmission electron microscopy. The aim was to compare the morphology and ultrastructure of pollen dispersal units and to elucidate the chemical nature of the pollen wall layers and of elastoviscin. Our combined light and electron microscopy investigation demonstrated the presence of six tetrad types even within a single pollinium, which is unique for orchids. The application of different staining methods confirmed the assumed lipidic nature of elastoviscin and the differences in its contrast and ultrastructure suggest a mixture of sticky materials with dissimilar chemical compositions. This study affirmed that sporopollenin is mostly restricted to the outer pollen grains of peripheral tetrads in compact and sectile pollinia, while inner tetrads exhibit highly reduced non-sporopollenin pollen walls. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

17 pages, 23846 KiB  
Article
Abnormal Calcium Accumulation and ROS Homeostasis-Induced Tapetal Programmed Cell Death Lead to Pollen Abortion of Petaloid-Type Cytoplasmic Male Sterility in Camellia oleifera
by Xiaolei Gao, Ying Yang, Jiawei Ye, Huan Xiong, Deyi Yuan and Feng Zou
Agronomy 2024, 14(3), 585; https://doi.org/10.3390/agronomy14030585 - 14 Mar 2024
Cited by 3 | Viewed by 1560
Abstract
Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of heterosis. The petaloid anther abortion in oil tea (Camellia oleifera Abel.) constitutes a CMS phenomenon, which is of great value for the hybrid breeding of oil tea. However, as the [...] Read more.
Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of heterosis. The petaloid anther abortion in oil tea (Camellia oleifera Abel.) constitutes a CMS phenomenon, which is of great value for the hybrid breeding of oil tea. However, as the mechanism of its CMS is still poorly understood, it is necessary to study the cytology and physiological characteristics of anther abortion. In this study, a C. oleifera cultivar, Huashuo (HS), and its petalized CMS mutant (HSP) were used as materials to explore this mechanism. Compared with HS, cytological analysis demonstrated that HSP showed early-onset tapetum programmed cell death (PCD) and an organelle disorder phenotype during the tetrad stage. In HSP, anthers exhibited elevated levels of calcium deposition in anther wall tissues, tapetum layers, and microspores, and yet calcium accumulation was abnormal at the later stage. The contents of hydrogen peroxide and MDA in HSP anthers were higher, and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were lower than those of HS, which resulted in an excessive accumulation of reactive oxygen species (ROS). Real-time quantitative PCR confirmed that the transcription levels of CoPOD and CoCAT genes encoding key antioxidant enzymes in HSP were downregulated compared with HS in early pollen development; the gene CoCPK, which encodes a calcium-dependent protein kinase associated with antioxidase, was upregulated during the critical period. Thus, we suggest that excessive ROS as a signal breaks the balance of the antioxidant system, and along with an abnormal distribution of calcium ions, leads to the early initiation of PCD in the tapetum, and ultimately leads to pollen abortion for HSP. These results lay a cytological and physiological foundation for further studies on the CMS mechanism, and provide information for breeding male-sterile lines of C. oleifera. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

19 pages, 8816 KiB  
Article
Disruption of the Contents of Endogenous Hormones Cause Pollen Development Obstruction and Abortion in Male-Sterile Hybrid Lily Populations
by Wenjie Jia, Xiang Li, Rui Wang, Qing Duan, Junna He, Junping Gao and Jihua Wang
Plants 2023, 12(22), 3804; https://doi.org/10.3390/plants12223804 - 8 Nov 2023
Cited by 7 | Viewed by 2123
Abstract
Lilies are well−known flowers with large anthers and a high quantity of pollen that easily contaminates clothing and tepals. The anthers need to be artificially removed, leading to production problems. Cultivating male−sterile or pollen−free lilies could solve these problems. The key period of [...] Read more.
Lilies are well−known flowers with large anthers and a high quantity of pollen that easily contaminates clothing and tepals. The anthers need to be artificially removed, leading to production problems. Cultivating male−sterile or pollen−free lilies could solve these problems. The key period of male sterility in a specific male−sterile hybrid lily population was determined through cytological observation. The contents of hormones, soluble sugar, soluble protein, and proline were determined by high−performance liquid chromatography, tandem mass spectrometry and colorimetry. Transcriptome sequencing was used to identify the genes with altered expression. The key period of male sterility was determined to be the microspore mother and tetrad stages. The hormone contents were abnormal in the sterile line compared with the fertile line. The indole−3−acetic acid (IAA) content was higher in the sterile line than in the fertile line at all stages, while the gibberellic acid 4 (GA4) content showed the opposite result. Abscisic acid (ABA) accumulated in the sterile line in both the microspore mother and tetrad stages, and the zeatin riboside (ZR) content in the sterile line increased at the microspore mother stage but decreased at the tetrad stage. The contents of soluble sugar, soluble protein and proline were higher in the fertile line than in the sterile line. Genes involved in auxin and ABA synthesis and signalling pathways were highly expressed in the male−sterile line. Our data suggested that abnormal contents of hormones in the microspore mother and tetrad stages resulted in pollen abortion in a male−sterile hybrid lily population, which indicated that the hormone balance in specific stages plays critical functions in pollen development in lilies. Full article
(This article belongs to the Special Issue Flower Germplasm Resource and Genetic Breeding)
Show Figures

Figure 1

14 pages, 7421 KiB  
Article
Ontogeny of Different Tetrad Types in the Single Microsporangium of Mitrephora tomentosa (Annonaceae)
by Bingxin Li, Xiu Liu, Mei Cheng, Fengxia Xu and Haimin Liao
Diversity 2023, 15(8), 898; https://doi.org/10.3390/d15080898 - 29 Jul 2023
Cited by 2 | Viewed by 2617
Abstract
Annonaceae, comprising approximately 107 genera and 2400 species, is the largest family among early-divergent Magnoliales. Previous studies have concentrated on the binding mechanism that holds together the four members of tetrads in Annonaceae. However, the development mechanisms of different tetrad types remain largely [...] Read more.
Annonaceae, comprising approximately 107 genera and 2400 species, is the largest family among early-divergent Magnoliales. Previous studies have concentrated on the binding mechanism that holds together the four members of tetrads in Annonaceae. However, the development mechanisms of different tetrad types remain largely unknown. Mitrephora tomentosa was found to exhibit five permanent tetrad types, with two or three of them existing in the same microsporangium, which is ideal for studying the formation mechanisms of different permanent tetrad pollens in a single microsporangium and explaining the relationship between cytokinesis and pollen tetrad types. The ontogenetic development of the different tetrads in M. tomentosa was investigated using electron microscopy technologies, histochemical staining, and immunocytochemistry. During meiosis, pollen mother cells produce decussate and tetragonal tetrads by successive cytokinesis and produce tetrahedral and rhomboidal tetrads by simultaneous cytokinesis. Bidirectional callose deposition was observed in tetrahedral, tetragonal, rhomboidal, and decussate tetrads. The variations in the process of microsporogenesis randomly accumulate and manifest as different combinations of cytokinesis and callose deposition, leading to the formation of differently shaped tetrads. In mature permanent tetrad pollens, four microspores are connected by both simple cohesion and cytoplasmic channels, which also play an important role in maintaining the synchronization of the tetrad members. Full article
(This article belongs to the Special Issue The Morphological Diversity and Evolution of Pollen)
Show Figures

Figure 1

20 pages, 4101 KiB  
Article
Opposite Auxin Dynamics Determine the Gametophytic and Embryogenic Fates of the Microspore
by Yolanda Pérez-Pérez, María Teresa Solís, Alfonso Albacete and Pilar S. Testillano
Int. J. Mol. Sci. 2023, 24(13), 11177; https://doi.org/10.3390/ijms241311177 - 6 Jul 2023
Cited by 4 | Viewed by 2386
Abstract
The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed [...] Read more.
The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore. Full article
Show Figures

Figure 1

Back to TopTop