Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = polarimetric interferometric synthetic aperture radar (PolInSAR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 48327 KiB  
Article
Joint-Pixel Inversion for Ground Phase and Forest Height Estimation Using Spaceborne Polarimetric SAR Interferometry
by Zenghui Huang, Jingyu Gao, Xiaolei Lv and Xiaoshuai Li
Remote Sens. 2025, 17(10), 1726; https://doi.org/10.3390/rs17101726 - 15 May 2025
Viewed by 532
Abstract
Existing forest height estimation methods based on polarimetric interferometric synthetic aperture radar (PolInSAR) typically process each pixel independently, potentially introducing inconsistent estimates and additional decorrelation in the covariance matrix estimation. To address these limitations and effectively exploit the spatial context information, this paper [...] Read more.
Existing forest height estimation methods based on polarimetric interferometric synthetic aperture radar (PolInSAR) typically process each pixel independently, potentially introducing inconsistent estimates and additional decorrelation in the covariance matrix estimation. To address these limitations and effectively exploit the spatial context information, this paper proposes the first patch-based inversion method named joint pixel optimization inversion (JPO). By leveraging the smoothness and regularity of homogeneous pixels, a joint-pixel optimization problem is constructed, incorporating a first-order regularization on the ground phase. To solve the non-parallelizable problem of the alternating direction method of multipliers (ADMM), we devise a new parallelizable ADMM algorithm and prove its sublinear convergence. With the contextual information of neighboring pixels, JPO can provide more reliable forest height estimation and reduce the overestimation caused by additional decorrelation. The effectiveness of the proposed method is verified using spaceborne L-band repeat-pass SAOCOM acquisitions and LiDAR heights obtained from ICESat-2. Quantitative evaluations in forest height estimation show that the proposed method achieves a lower mean error (1.23 m) and RMSE (3.67 m) than the existing method (mean error: 3.09 m; RMSE: 4.70 m), demonstrating its improved reliability. Full article
Show Figures

Figure 1

20 pages, 5648 KiB  
Article
Innovative Polarimetric Interferometric Synthetic Aperture Radar Land Cover Classification: Integrating Power, Polarimetric, and Interferometric Information for Higher Accuracy
by Yifan Xu, Aifang Liu, Youquan Lin, Moqian Wang, Long Huang and Zuzhen Huang
Sensors 2025, 25(7), 1996; https://doi.org/10.3390/s25071996 - 22 Mar 2025
Viewed by 324
Abstract
The Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) system is a combination of polarimetric SAR and interferometric SAR, which can simultaneously obtain the power information, polarimetric information, and interferometric information of land cover. Traditional land cover classification methods fail to fully utilize these information [...] Read more.
The Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) system is a combination of polarimetric SAR and interferometric SAR, which can simultaneously obtain the power information, polarimetric information, and interferometric information of land cover. Traditional land cover classification methods fail to fully utilize these information types, resulting in limited classification types and low accuracy. This paper proposes a PolInSAR land cover classification method that fuses power information, polarimetric information, and interferometric information, aiming to enrich the classification types and improve the classification accuracy. Firstly, the land cover is divided into strong scattering areas and weak scattering areas by using the power information to avoid the influence of weak scattering areas on the classification results. Then, the weak scattering areas are distinguished into shadows and water bodies by combining the interferometric information and image corners. For the strong scattering areas, the polarimetric information is utilized to distinguish vegetation, buildings, and bare soil. For the vegetation area, the concept of vegetation ground elevation is put forward. By combining with the anisotropy parameter, the vegetation is further subdivided into tall coniferous vegetation, short coniferous vegetation, tall broad-leaved vegetation, and short broad-leaved vegetation. The effectiveness of the method has been verified by the PolInSAR data obtained from the N-SAR system developed by Nanjing Research Institute of Electronics Technology. The overall classification accuracy reaches 90.2%, and the Kappa coefficient is 0.876. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

21 pages, 5624 KiB  
Article
A Multi-Baseline Forest Height Estimation Method Combining Analytic and Geometric Expression of the RVoG Model
by Bing Zhang, Hongbo Zhu, Weidong Song, Jianjun Zhu, Jiguang Dai, Jichao Zhang and Chengjin Li
Forests 2024, 15(9), 1496; https://doi.org/10.3390/f15091496 - 27 Aug 2024
Cited by 16 | Viewed by 1287
Abstract
As an important parameter of forest biomass, forest height is of great significance for the calculation of forest carbon stock and the study of the carbon cycle in large-scale regions. The main idea of the current forest height inversion methods using multi-baseline P-band [...] Read more.
As an important parameter of forest biomass, forest height is of great significance for the calculation of forest carbon stock and the study of the carbon cycle in large-scale regions. The main idea of the current forest height inversion methods using multi-baseline P-band polarimetric interferometric synthetic aperture radar (PolInSAR) data is to select the best baseline for forest height inversion. However, the approach of selecting the optimal baseline for forest height inversion results in the process of forest height inversion being unable to fully utilize the abundant observation data. In this paper, to solve the problem, we propose a multi-baseline forest height inversion method combining analytic and geometric expression of the random volume over ground (RVoG) model, which takes into account the advantages of the selection of the optimal observation baseline and the utilization of multi-baseline information. In this approach, for any related pixel, an optimal baseline is selected according to the geometric structure of the coherence region shape and the functional model for forest height inversion is established by the RVoG model’s analytic expression. In this way, the other baseline observations are transformed into a constraint condition according to the RVoG model’s geometric expression and are also involved in the forest height inversion. PolInSAR data were used to validate the proposed multi-baseline forest height inversion method. The results show that the accuracy of the forest height inversion with the algorithm proposed in this paper in a coniferous forest area and tropical rainforest area was improved by 17% and 39%, respectively. The method proposed in this paper provides a multi-baseline PolInSAR forest height inversion scheme for exploring regional high-precision forest height distribution. The scheme is an applicable method for large-scale, high-precision forest height inversion tasks. Full article
Show Figures

Figure 1

22 pages, 7912 KiB  
Article
Underlying Topography Estimation over Forest Using Maximum a Posteriori Inversion with Spaceborne Polarimetric SAR Interferometry
by Xiaoshuai Li, Xiaolei Lv and Zenghui Huang
Remote Sens. 2024, 16(6), 948; https://doi.org/10.3390/rs16060948 - 8 Mar 2024
Cited by 1 | Viewed by 1377
Abstract
This paper presents a method for extracting the digital elevation model (DEM) of forested areas from polarimetric interferometric synthetic aperture radar (PolInSAR) data. The method models the ground phase as a Von Mises distribution, with a mean of the topographic phase computed from [...] Read more.
This paper presents a method for extracting the digital elevation model (DEM) of forested areas from polarimetric interferometric synthetic aperture radar (PolInSAR) data. The method models the ground phase as a Von Mises distribution, with a mean of the topographic phase computed from an external DEM. By combining the prior distribution of the ground phase with the complex Wishart distribution of the observation covariance matrix, we derive the maximum a posterior (MAP) inversion method based on the RVoG model and analyze its Cramer–Rao Lower Bound (CRLB). Furthermore, considering the characteristics of the objective function, this paper introduces a Four-Step Optimization (FSO) method based on gradient optimization, which solves the inefficiency problem caused by exhaustive search in solving ground phase using the MAP method. The method is validated using spaceborne L-band repeat-pass SAOCOM data from a test forest area. The test results for FSO indicate that it is approximately 5.6 times faster than traditional methods without compromising accuracy. Simultaneously, the experimental results demonstrate that the method effectively solves the problem of elevation jumps in DEM inversion when modeling the ground phase with the Gaussian distribution. ICESAT-2 data are used to evaluate the accuracy of the inverted DEM, revealing that our method improves the root mean square error (RMSE) by about 23.6% compared to the traditional methods. Full article
Show Figures

Figure 1

15 pages, 14033 KiB  
Article
A Fourier–Legendre Polynomial Forest Height Inversion Model Based on a Single-Baseline Configuration
by Bing Zhang, Hongbo Zhu, Wenxuan Xu, Sairu Xu, Xinyue Chang, Weidong Song and Jianjun Zhu
Forests 2024, 15(1), 49; https://doi.org/10.3390/f15010049 - 26 Dec 2023
Cited by 10 | Viewed by 1841
Abstract
In this article, we propose a Fourier–Legendre (FL) polynomial forest height estimation algorithm based on low-frequency single-baseline polarimetric interferometric synthetic aperture radar (PolInSAR) data. The algorithm can obtain forest height with a single-baseline PolInSAR configuration while capturing a high-resolution vertical profile for the [...] Read more.
In this article, we propose a Fourier–Legendre (FL) polynomial forest height estimation algorithm based on low-frequency single-baseline polarimetric interferometric synthetic aperture radar (PolInSAR) data. The algorithm can obtain forest height with a single-baseline PolInSAR configuration while capturing a high-resolution vertical profile for the forest volume. This is based on the consideration that the forest height remains constant within neighboring pixels. Meanwhile, we also assume that the coefficients of the FL polynomials remain unchanged within neighboring pixels, except for the last polynomial coefficient. The idea of using neighboring pixels to increase the observations provides us with the possibility to obtain high-order FL polynomials. With this approach, it is possible to obtain a high-resolution vertical profile that is suitable for forest height estimation without losing too much spatial resolution. P-band PolInSAR data acquired in Mabounie in Gabon and Krycklan in Sweden were selected for testing the proposed algorithm. The results show that the algorithm outperforms the random volume over ground (RVoG) model by 18% and 16.7% in forest height estimation for the Mabounie and Krycklan study sites, respectively. Full article
Show Figures

Figure 1

19 pages, 2390 KiB  
Technical Note
Radiometric Terrain Flattening of Geocoded Stacks of SAR Imagery
by Piyush S. Agram, Michael S. Warren, Scott A. Arko and Matthew T. Calef
Remote Sens. 2023, 15(7), 1932; https://doi.org/10.3390/rs15071932 - 4 Apr 2023
Cited by 5 | Viewed by 3389
Abstract
We have described an efficient approach to radiometrically flatten geocoded stacks of calibrated synthetic aperture radar (SAR) data for terrain-related effects. We have used simulation to demonstrate that, for the Sentinel-1 mission, one static radiometric terrain-flattening factor derived from actual SAR imaging metadata [...] Read more.
We have described an efficient approach to radiometrically flatten geocoded stacks of calibrated synthetic aperture radar (SAR) data for terrain-related effects. We have used simulation to demonstrate that, for the Sentinel-1 mission, one static radiometric terrain-flattening factor derived from actual SAR imaging metadata per imaging geometry is sufficient for flattening interferometrically compliant stacks of SAR data. We have quantified the loss of precision due to the application of static flattening factors, and show that these are well below the stated requirements of change-detection algorithms. Finally, we have discussed the implications of applying radiometric terrain flattening to geocoded SAR data instead of the traditional approach of flattening data provided in the original SAR image geometry. The proposed approach allows for efficient and consistent generation of five different Committee of Earth-Observation Satellites (CEOS) Analysis-Ready Dataset (ARD) families—Geocoded Single-Look Complex (GSLC), Interferometric Radar (InSAR), Normalized Radar Backscatter (NRB), Polarimetric Radar (POL) and Ocean Radar Backscatter (ORB) from SAR missions in a common framework. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

17 pages, 13404 KiB  
Article
A Dual-Baseline PolInSAR Method for Forest Height and Vertical Profile Function Inversion Based on the Polarization Coherence Tomography Technique
by Rong Zhao, Shicheng Cao, Jianjun Zhu, Longchong Fu, Yanzhou Xie, Tao Zhang and Haiqiang Fu
Forests 2023, 14(3), 626; https://doi.org/10.3390/f14030626 - 20 Mar 2023
Cited by 3 | Viewed by 2614
Abstract
Forest height and vertical structure profile functions can be estimated using polarimetric interferometric synthetic aperture radar (PolInSAR) data based on the random volume over ground (RVoG) model and polarization coherence tomography (PCT) theory, respectively. For each resolution cell, considering different forest vertical scattering [...] Read more.
Forest height and vertical structure profile functions can be estimated using polarimetric interferometric synthetic aperture radar (PolInSAR) data based on the random volume over ground (RVoG) model and polarization coherence tomography (PCT) theory, respectively. For each resolution cell, considering different forest vertical scattering structure functions to solve the corresponding forest height, the accuracy of PolInSAR forest height inversion will be improved. In this study, a forest vertical structure profile function and forest height inversion algorithm based on PCT technology was developed by using dual-baseline PolInSAR data. Then the deviation of forest height was corrected according to the inverted forest vertical structure. Finally, the LiDAR and PolInSAR data were employed to verify the proposed method. The experimental results show that the accuracy of the proposed method (tropical forest: RMSE = 5.96 m, boreal forest: RMSE = 3.11 m) is 25.5% and 30.43% higher than that of the dual-baseline RVoG model algorithm (tropical forest: RMSE = 8 m, boreal forest: RMSE = 4.47 m). Full article
Show Figures

Figure 1

48 pages, 26374 KiB  
Review
On the Interpretation of Synthetic Aperture Radar Images of Oceanic Phenomena: Past and Present
by Kazuo Ouchi and Takero Yoshida
Remote Sens. 2023, 15(5), 1329; https://doi.org/10.3390/rs15051329 - 27 Feb 2023
Cited by 11 | Viewed by 5252
Abstract
In 1978, the SEASAT satellite was launched, carrying the first civilian synthetic aperture radar (SAR). The mission was the monitoring of ocean: application to land was also studied. Despite its short operational time of 105 days, SEASAT-SAR provided a wealth of information on [...] Read more.
In 1978, the SEASAT satellite was launched, carrying the first civilian synthetic aperture radar (SAR). The mission was the monitoring of ocean: application to land was also studied. Despite its short operational time of 105 days, SEASAT-SAR provided a wealth of information on land and sea, and initiated many spaceborne SAR programs using not only the image intensity data, but also new technologies of interferometric SAR (InSAR) and polarimetric SAR (PolSAR). In recent years, artificial intelligence (AI), such as deep learning, has also attracted much attention. In the present article, a review is given on the imaging processes and analyses of oceanic data using SAR, InSAR, PolSAR data and AI. The selected oceanic phenomena described here include ocean waves, internal waves, oil slicks, currents, bathymetry, ship detection and classification, wind, aquaculture, and sea ice. Full article
(This article belongs to the Special Issue SAR, Interferometry and Polarimetry Applications in Geoscience)
Show Figures

Figure 1

21 pages, 6108 KiB  
Article
Urban Flood Detection Using TerraSAR-X and SAR Simulated Reflectivity Maps
by Shadi Sadat Baghermanesh, Shabnam Jabari and Heather McGrath
Remote Sens. 2022, 14(23), 6154; https://doi.org/10.3390/rs14236154 - 5 Dec 2022
Cited by 11 | Viewed by 4212
Abstract
Synthetic Aperture Radar (SAR) imagery is a vital tool for flood mapping due to its capability to acquire images day and night in almost any weather and to penetrate through cloud cover. In rural areas, SAR backscatter intensity can be used to detect [...] Read more.
Synthetic Aperture Radar (SAR) imagery is a vital tool for flood mapping due to its capability to acquire images day and night in almost any weather and to penetrate through cloud cover. In rural areas, SAR backscatter intensity can be used to detect flooded areas accurately; however, the complexity of urban structures makes flood mapping in urban areas a challenging task. In this study, we examine the synergistic use of SAR simulated reflectivity maps and Polarimetric and Interferometric SAR (PolInSAR) features in the improvement of flood mapping in urban environments. We propose a machine learning model employing simulated and PolInSAR features derived from TerraSAR-X images along with five auxiliary features, namely elevation, slope, aspect, distance from the river, and land-use/land-cover that are well-known to contribute to flood mapping. A total of 2450 data points have been used to build and evaluate the model over four different areas with different vegetation and urban density. The results indicated that by using PolInSAR and SAR simulated reflectivity maps together with five auxiliary features, a classification overall accuracy of 93.1% in urban areas was obtained, representing a 9.6% improvement over using the five auxiliary features alone. Full article
Show Figures

Graphical abstract

21 pages, 7673 KiB  
Article
Rice Crop Height Inversion from TanDEM-X PolInSAR Data Using the RVoG Model Combined with the Logistic Growth Equation
by Nan Li, Juan M. Lopez-Sanchez, Haiqiang Fu, Jianjun Zhu, Wentao Han, Qinghua Xie, Jun Hu and Yanzhou Xie
Remote Sens. 2022, 14(20), 5109; https://doi.org/10.3390/rs14205109 - 13 Oct 2022
Cited by 10 | Viewed by 2632
Abstract
The random volume over ground (RVoG) model has been widely used in the field of vegetation height retrieval based on polarimetric interferometric synthetic aperture radar (PolInSAR) data. However, to date, its application in a time-series framework has not been considered. In this study, [...] Read more.
The random volume over ground (RVoG) model has been widely used in the field of vegetation height retrieval based on polarimetric interferometric synthetic aperture radar (PolInSAR) data. However, to date, its application in a time-series framework has not been considered. In this study, the logistic growth equation was introduced into the PolInSAR method for the first time to assist in estimating crop height, and an improved inversion scheme for the corresponding RVoG model parameters combined with the logistic growth equation was proposed. This retrieval scheme was tested using a time series of single-pass HH-VV bistatic TanDEM-X data and reference data obtained over rice fields. The effectiveness of the time-series RVoG model based on the logistic growth equation and the convenience of using equation parameters to evaluate vegetation growth status were analyzed at three test plots. The results show that the improved method can effectively monitor the height variation of crops throughout the whole growth cycle and the rice height estimation achieved an accuracy better than when single dates were considered. This proved that the proposed method can reduce the dependence on interferometric sensitivity and can achieve the goal of monitoring the whole process of rice height evolution with only a few PolInSAR observations. Full article
Show Figures

Figure 1

19 pages, 6600 KiB  
Article
A New Strategy for Forest Height Estimation Using Airborne X-Band PolInSAR Data
by Jinwei Xie, Lei Li, Long Zhuang and Yu Zheng
Remote Sens. 2022, 14(19), 4743; https://doi.org/10.3390/rs14194743 - 22 Sep 2022
Cited by 3 | Viewed by 2020
Abstract
Because the penetration depth of electromagnetic waves in forests is large in the longer wavelength band, most traditional forest height estimation methods are carried out using polarimetric interferometry synthetic aperture radar (PolInSAR) data of the L or P band, and the estimation method [...] Read more.
Because the penetration depth of electromagnetic waves in forests is large in the longer wavelength band, most traditional forest height estimation methods are carried out using polarimetric interferometry synthetic aperture radar (PolInSAR) data of the L or P band, and the estimation method is a three-stage method based on the random volume over ground (RVoG) model. For X-band electromagnetic waves, the penetration depth of radar waves in forests is limited, so the traditional forest height estimation method is no longer applicable. In view of the above problems, in this paper we propose a new forest height estimation strategy for airborne X-band PolInSAR data. Firstly, the sub-view interferometric SAR pairs obtained via frequency segmentation (FS) in the Doppler domain are used to extend the polarimetric interferometry coherence coefficient (PolInCC) range of the original SAR image under different polarization states, so as to obtain the accurate ground phase. For the determination of the effective volume coherence coefficient (VCC), part of the fitting line of the extended-range PolInCC distribution that is intercepted by the fixed extinction coherence coefficient curve (FECCC) of the fixed range is averaged to obtain the accurate effective VCC. Finally, the high-precision forest canopy height in the X-band is estimated using the effective VCC with the ground phase removed in the look-up table (LUT). The effectiveness of the proposed method was verified using airborne-measured data obtained in Shaanxi Province, China. The comparison was carried out using different strategies, in which we substituted one step of the process with the conventional method. The results indicated that our new strategy could reduce the root mean square error (RMSE) of the predicted canopy height vastly to 1.02 m, with a lower estimation height error of 12.86%. Full article
Show Figures

Figure 1

21 pages, 3770 KiB  
Article
A Novel Topography Retrieval Algorithm Based on Single-Pass Polarimetric SAR Data and Terrain Dependent Error Analysis
by Congrui Yang, Fengjun Zhao, Chunle Wang, Mengmeng Wang, Xiuqing Liu and Robert Wang
Remote Sens. 2022, 14(13), 3176; https://doi.org/10.3390/rs14133176 - 1 Jul 2022
Viewed by 2137
Abstract
Polarimetric synthetic aperture radar (PolSAR) data provide an alternative way for topography retrieval, especially when limited PolSAR data are available. This article proposes a novel topography retrieval algorithm based on the Lambertian backscatter model that further improves the vertical precision of digital elevation [...] Read more.
Polarimetric synthetic aperture radar (PolSAR) data provide an alternative way for topography retrieval, especially when limited PolSAR data are available. This article proposes a novel topography retrieval algorithm based on the Lambertian backscatter model that further improves the vertical precision of digital elevation model (DEM) generation and requires only one flight. The key idea of the proposed algorithm is to avoid data fluctuations caused by the ratio of the azimuth slope angle to the polarimetric orientation angle (POA). The previous research has confirmed the feasibility of generating a DEM based on single-pass PolSAR data, but its effect on the quality of reference DEM has not been well-explained. To analyze this effect, a large number of experiments on DEM with different resolutions are conducted. In addition, an in-depth analysis of non-linear and terrain-dependent errors is performed. The L-band PolSAR data of NASA/JPL TOPSAR and ALOS-2 PALSAR-2 and interferometric SAR (InSAR) DEM data are used to verify the proposed algorithm. The experimental results show that PolSAR data can be used as an additional reliable information source for DEM fusion under certain conditions to improve the quality of public DEM. Full article
(This article belongs to the Special Issue SAR-Based Signal Processing and Target Recognition)
Show Figures

Figure 1

19 pages, 4650 KiB  
Article
Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake
by Xiaolin Sun, Xi Chen, Liao Yang, Weisheng Wang, Xixuan Zhou, Lili Wang and Yuan Yao
Remote Sens. 2022, 14(13), 3009; https://doi.org/10.3390/rs14133009 - 23 Jun 2022
Cited by 14 | Viewed by 3599
Abstract
During unexpected earthquake catastrophes, timely identification of damaged areas is critical for disaster management. On the 24 March 2021, Baicheng county was afflicted by a Mw 5.3 earthquake. The disaster resulted in three deaths and many human injuries. As an active remote sensing [...] Read more.
During unexpected earthquake catastrophes, timely identification of damaged areas is critical for disaster management. On the 24 March 2021, Baicheng county was afflicted by a Mw 5.3 earthquake. The disaster resulted in three deaths and many human injuries. As an active remote sensing technology independent of light and weather, the increasingly accessible Synthetic Aperture Radar (SAR) is an attractive data for assessing building damage. This paper aims to use Sentinel-1A radar images to rapidly assess seismic damage in the early phases after the disaster. A simple and robust method is used to complete the task of surface displacement analysis and building disaster monitoring. In order to obtain the coseismic deformation field, differential interferometry, filtering and phase unwrapping are performed on images before and after the earthquake. In order to detect the damage area of buildings, the Interferometric Synthetic Aperture Radar (InSAR) and Polarimetric Synthetic Aperture Radar (PolSAR) techniques are used. A simple and fast method combining coherent change detection and polarimetric decomposition is proposed, and the complete workflow is introduced in detail. In our experiment, we compare the detection results with the ground survey data using an unmanned aerial vehicle (UAV) after the earthquake to verify the performance of the proposed method. The results indicate that the experiment can accurately obtain the coseismic deformation field and identify the damaged and undamaged areas of the buildings. The correct identification accuracy of collapsed and severely damaged areas is 86%, and that of slightly damaged and undamaged areas is 84%. Therefore, the proposed method is extremely effective in monitoring seismic-affected areas and immediately assessing post-earthquake building damage. It provides a considerable prospect for the application of SAR technology. Full article
Show Figures

Figure 1

23 pages, 23060 KiB  
Article
The Iterative Extraction of the Boundary of Coherence Region and Iterative Look-Up Table for Forest Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar Data
by Zenghui Huang, Ye Yun, Huiming Chai and Xiaolei Lv
Remote Sens. 2022, 14(10), 2438; https://doi.org/10.3390/rs14102438 - 19 May 2022
Cited by 6 | Viewed by 2366
Abstract
In this paper, we introduce a refined three-stage inversion algorithm (TSIA) for forest height estimation using polarimetric interferometric synthetic aperture radar (PolInSAR). Specifically, the iterative extraction of the boundary of the coherence region (IEBCR) and iterative look-up table (ILUT) are proposed to improve [...] Read more.
In this paper, we introduce a refined three-stage inversion algorithm (TSIA) for forest height estimation using polarimetric interferometric synthetic aperture radar (PolInSAR). Specifically, the iterative extraction of the boundary of the coherence region (IEBCR) and iterative look-up table (ILUT) are proposed to improve the efficiency of traditional TSIA. A class of refined TSIA utilizes the boundary of the coherence region (BCR) to alleviate the underestimation phenomenon in forest height estimation. Given many eigendecompositions in the extraction of BCR (EBCR), we analyze the relationship of eigenvectors between the adjacent points on the BCR and propose the IEBCR utilizing the power methods. In the final inversion stage of TSIA, the look-up table (LUT) uses the exhaustive search method to minimize the loss function in the 2-D grid with defined step sizes and thus costs high computational complexity. To alleviate the deficiency, we define the random volume over ground (RVoG) function based on the RVoG model and prove its monotonicity and convergence from the analytical and numerical points of view. After analyzing the relationship between the RVoG function and the loss function, we propose the ILUT for the inversion stage. The simulation and experiments based on the BioSAR 2008 campaign data illustrate that the IEBCR and ILUT greatly improve the computational efficiency almost without compromising on accuracy. Full article
Show Figures

Figure 1

24 pages, 19269 KiB  
Article
Multi-Rotor UAV-Borne PolInSAR Data Processing and Preliminary Analysis of Height Inversion in Urban Area
by Zexin Lv, Xiaolan Qiu, Yao Cheng, Songtao Shangguan, Fangfang Li and Chibiao Ding
Remote Sens. 2022, 14(9), 2161; https://doi.org/10.3390/rs14092161 - 30 Apr 2022
Cited by 7 | Viewed by 2652
Abstract
Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) has many useful applications, especially in forest areas. With the development of SAR miniaturization technology, researchers can install PolInSAR on small unmanned aerial vehicles (UAV), which can reduce flight costs. Limited by size and power, UAV-borne SAR [...] Read more.
Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) has many useful applications, especially in forest areas. With the development of SAR miniaturization technology, researchers can install PolInSAR on small unmanned aerial vehicles (UAV), which can reduce flight costs. Limited by size and power, UAV-borne SAR usually works in a high-frequency band, which restricts its application to such things as vegetation height inversion. While on the other hand, the high resolution acquired under a short wavelength promises its application in urban areas. However, there are fewer studies on the application of PolInSAR in urban areas compared with that in forest areas. In this paper, we propose a processing method for a Ku-band multi-rotor-UAV-borne PolInSAR and provide a preliminary analysis of height inversion results on its data from the Fudan campus in Shanghai. We obtain the digital surface model (DSM) of different polarization modes and the DSM of polarimetric interferometry optimal decomposition in this area, whose RMSE is 2.88 m. On this basis, the elevation inversion results of targets such as buildings, lampposts, and trees are compared and analyzed. We preliminarily explore and analyze the reasons for the different results of different targets. To this end, we propose a mathematical derivation of the relationship between the interferometric phase between PolInSAR and InSAR of Pauli decomposition. We also perform a simulation to analyze the relationship between the phase center height of Pauli decomposition and PolInSAR under different cases. It provides a reference for the application of small UAV-borne PolInSAR in urban areas. Full article
(This article belongs to the Special Issue Recent Progress and Applications on Multi-Dimensional SAR)
Show Figures

Figure 1

Back to TopTop