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Abstract: Synthetic Aperture Radar (SAR) imagery is a vital tool for flood mapping due to its
capability to acquire images day and night in almost any weather and to penetrate through cloud
cover. In rural areas, SAR backscatter intensity can be used to detect flooded areas accurately;
however, the complexity of urban structures makes flood mapping in urban areas a challenging task.
In this study, we examine the synergistic use of SAR simulated reflectivity maps and Polarimetric and
Interferometric SAR (PolInSAR) features in the improvement of flood mapping in urban environments.
We propose a machine learning model employing simulated and PolInSAR features derived from
TerraSAR-X images along with five auxiliary features, namely elevation, slope, aspect, distance
from the river, and land-use/land-cover that are well-known to contribute to flood mapping. A
total of 2450 data points have been used to build and evaluate the model over four different areas
with different vegetation and urban density. The results indicated that by using PolInSAR and SAR
simulated reflectivity maps together with five auxiliary features, a classification overall accuracy of
93.1% in urban areas was obtained, representing a 9.6% improvement over using the five auxiliary
features alone.

Keywords: urban flood mapping; machine learning; Random Forest; TerraSAR-X; SAR simulation;
interferometric SAR; polarimetric SAR

1. Introduction
1.1. General

Flooding is among the most devastating natural disasters on earth and is the most
frequent hazard in Canada, mainly due to heavy rainfall or rapid snow melt [1]. With
climate change, flooding is expected to increase worldwide, particularly in high latitude
regions like Canada [2–4]. Thus, the level of destruction caused by floods is high, especially
in urban areas where damage to infrastructure leads to irreversible losses.

Remote sensing has shown a great potential to detect flooded areas thanks to optical
and Synthetic Aperture Radar (SAR) satellite images [2,5–10]. However, flood situations
are very likely to be cloudy, a condition in which passive optical remote sensing cannot
be used. On the other hand, SAR remote sensing can penetrate cloud cover in nearly
all-weather conditions, regardless of the time of day or night, which makes them useful in
flood situations.

In recent years, SAR data has been recognized as a powerful tool for flood map-
ping [1,6,11–13]. SAR satellite images such as Sentinel-1A [5,6,14], TerraSAR-X [7,11,12,15],
COSMO-SkyMed [13,16], RADARSAT-2 [17], Radarsat Constellation Mission [1], and
ALOS-2/PALSAR-2 [18] have been employed to improve flood detection. Furthermore,
sensors with a higher spatial resolution (3 m or more) such as TerraSAR-X, RADARSAT-2,
and COSMO-Sky Med are well suited for urban areas [7,13,17,19].

Several studies have indicated that SAR imagery can perform better than optical
imagery in flood mapping [20,21]. In rural flood mapping, the SAR backscatter intensity is
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a key factor in distinguishing flooded and non-flooded areas. Thus, SAR-based flood detec-
tion in rural areas has been extensively explored [12,15,22,23]. On the contrary, SAR-based
flood detection in urban areas is challenging due to various complex urban backscatter
patterns, including double bounce, shadow, and layover, which cause misclassification and
increase false alarms [5,7,11,13,16–18]. Because of this issue, the majority of SAR-based
studies in the literature have focused on rural flood detection and left urban flood detection
largely unexplored.

A limited number of studies in the literature have focused on using SAR images
for urban flood detection. These studies demonstrated that the use of multi-temporal
Interferometric SAR (InSAR) coherence together with SAR intensity works efficiently
in urban flood mapping [6,7,14,16,24–26]. Multi-temporal InSAR coherences have been
found to be effective for flood detection even when using medium-resolution SAR images
like Sentinel-1A [27]. InSAR coherence is the normalized cross-correlation between two
interferometric SAR images, and it is sensitive to any variation in the geometric properties
of the objects and thus to flood-induced changes. InSAR coherence is however sensitive
to variations of the geometric properties of the scatterers, and it has been suggested to be
considered as complementary information along with other data for flood detection [7].
Additionally, the authors of this paper showed that incorporating the multi-temporal InSAR
phase improves flood detection in urban areas [28]. InSAR phase is assumed to remain
unchanged as long as no changes are made to the spatial arrangement of objects [29]. We,
therefore, believe that the InSAR phase can be used as a feature in flood detection.

Polarimetric SAR (PolSAR) decompositions are also a powerful tool to detect compli-
cated urban backscatter patterns as they present the average scattering mechanism which
is associated with the physical properties of an object [30]. However, it is not feasible to
construct polarimetric decompositions for single polarized images as polarimetric decompo-
sitions require fully polarized or at least dual polarized data. Additionally, PolSAR filtering
techniques can preserve the polarimetric properties, which have been demonstrated to be
affected by any changes to the geophysical properties of the objects (e.g., surface rough-
ness) [31]. Thus, specific scattering mechanisms caused by complex urban structures such
as double bounce can be detected by single polarized PolSAR data [30,32,33].

SAR simulated reflectivity maps have been used for identifying complex backscatter
patterns in urban areas [34]. SAR simulation produces a reliable approximation of real
SAR data in the azimuth-range plane based on object geometry, surface characteristics, or
certain weather conditions. It has been proven that SAR simulators, in conjunction with
Light Detection and Ranging (LiDAR) data, can resolve layover and shadow, which are
sources of geometric distortion in SAR images [6]. Shadowed areas can be misclassified
as flooded due to their low backscatter, while layover results in the misclassification of
flooded areas as non-flooded due to the layover strong return. However, they have not
been thoroughly investigated in SAR-based flood detection [35].

The purpose behind using reflectivity maps is to help reducing the effect of geometric
distortions such as shadows and layovers in the SAR image that can be confused with the
backscatter patterns in flooded areas. Therefore, we believe that incorporating simulated
reflectivity maps can reduce the false alarms in a predictive model for flood mapping.
RaySAR simulator is used along with LiDAR data to extract simulated SAR reflectivity
maps including all-reflections, double bounce, shadow, and layover. Considering this,
urban flood mapping using SAR images is challenging mainly due to: (1) the existence
of complex infra-structure, which causes different backscatter patterns, such as double-
bounce and triple-bounce; and (2) the presence of large shadow and layover areas in the
SAR images, especially in urban areas with steep terrain, which makes double-bounce
detection more challenging and may also affect the flooded area’s classification accuracy.

The contribution of this study is to examine the synergistic use of multi-temporal
Polarimetric and Interferometric SAR (PolInSAR) and SAR simulated reflectivity maps for
flood detection in urban areas. High-resolution TerraSAR-X images are used to generate
multi-temporal PolInSAR features for detecting floods in urban areas, including SAR
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intensity, InSAR coherence, InSAR phase, and PolSAR Boxcar filter images. Moreover, the
RaySAR simulator is used along with LiDAR data to extract SAR simulated reflectivity
maps, including all-reflections, double bounce, shadow, and layover. A set of auxiliary
features namely elevation, slope, aspect, distance from the river, and land use/land cover
(LULC) are used in the flood detection model. These features have been shown to effectively
contribute to flood mapping [36,37]. We used a Random Forest (RF) algorithm to distinguish
the flooded and non-flooded areas. The proposed method is tested on the 2017 Ottawa
River flood in four different areas consisting of urban and sub-urban textures.

One of the main limitations of this study is the number of control points for model
training. Based on the available medium-resolution optical and drone images, a limited
number of labeled flooded data points (i.e., Ground Control Points (GCPs)) have been
produced. Accordingly, an equal number of labeled non-flooded data points were generated
to ensure a balanced data set, resulting in limited data points for model training. Moreover,
GCP distribution is not uniform which may affect the universality of the results; thus, a
data point shuffling is used in this study. Esfandiari et al. (2020) showed that the Random
Sample Consensus (RANSAC) method can be used in conjunction with a RF classifier to
use pseudo training data points and address the data point limitation [33]. Since this issue
was already addressed in the literature, we did not incorporate it in this paper.

1.2. Study Area

This study uses the 2017 Ottawa River flood across Ottawa city, the capital city of
Canada, and Gatineau, Quebec, as shown in Figure 1A, as a case study. The Area of Interests
(AOIs) include four different areas with different LULC, namely Area1, Area2, Area3, and
Area4 as shown in Figure 1B. The 2017 spring flood of Ottawa was primarily caused by
exceptionally heavy precipitation and melting snow [38].
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Figure 1. (A) an overview map of AOIs (B) GCP distribution over four selected AOIs, including (a)
Area1, (b) Area2, (c) Area3, and (d) Area4. Green circles show non-flooded areas, while red ones
indicate flooded areas.

1.3. Datasets

This study uses five single polarized SSC StripMap TerraSAR-X images, covering the
pre-flood to post-flood periods together with a high-resolution Digital Terrain Model (DTM)
for SAR simulation and PolInSAR processing. Historical National Aerial Surveillance
Program (NASP) images, captured by a non-metric camera mounted on a drone, are then
used to generate the GCPs and evaluate the results. The dataset is shown in Table 1.

PolInSAR data used in this study include multi-temporal phase, multi-temporal
coherence, and multi-temporal Boxcar filter images as complementary information to
multi-temporal intensities. For SAR simulation, we utilized all-reflections, double bounce,
shadow, and layover features that we anticipate are effective for flood mapping in urban
areas; and the five auxiliary features include elevation, slope, aspect, distance from the river,
and LULC. To prepare the elevation layer, we used a high resolution 1 m LiDAR DTM and
resampled it to 3 m to correspond with the TerraSAR-X images. The resampled elevation
layer was then used to produce the slope and aspect features in ArcGIS Pro. The river
network map was employed to generate the distance from river layer using the Euclidean
distance tool within the ArcGIS Pro.
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Table 1. Dataset.

Data
Ground Sampling

Distance
Date

Pre-Flood Co-Flood Post-Flood

TerraSAR-X (The data was granted based on the
proposal approval from the European Space

Agency. Accessed on 7 August 2020)
3 m

31 March 2017
22 April 2017

(nearest)
3 May 2017

25 May 2017
(nearest)

27 June 2017

DEM (https://open.canada.ca/data/en/dataset/
0fe65119-e96e-4a57-8bfe-9d9245fba06b) 1 m - - 2020

NASP UAV images (https://pscanada.maps.arcgis.
com/apps/MapSeries/index.html?appid=fd5c6a7

e5e5f4fb7909f67e40e781e06)
- - - 12 May 2017

River Network (The data was downloaded from
https://open.ottawa.ca/) - - - -

Water level (https://wateroffice.ec.gc.ca/report/
historical_e.html?stn=02KF005&dataType=Daily&
parameterType=Level&year=2017&mode=Graph)

- - - -

LULC (https:
//www.openstreetmap.org/#map=2/71.3/-96.8) - - - -

GCPs were generated by comparing historical NASP images with 2017 historical
Google images. A total number of 2450 GCPs were generated and dispersed as follows:
750 points in Area1, 700 points in Area2, 300 points in Area3, and 700 points in Area4. The
number of flooded and non-flooded points is even in all areas. Area3 has fewer points
compared to other areas due to the limited number of flooded points that are visible from
comparing NASP and historical Google images. The flood peak occurred on 7 May 2017, for
which no TerraSAR-X images were available. The closest date to the flood peak on which
we have a TerraSAR-X image was 3 May 2017. The amount of water level on 3 May 2017
is the closest to that of 7 May 2017. Thus, the closest water level in the TerraSAR-X image
captured on 3 May 2017 makes it the best available candidate for the co-flood image.
Moreover, NASP images were not available on 3 May 2017, so images taken on 12 May
2017 were chosen since the water level on 12 May 2017 was similar to that of 3 May 2017 as
shown in Figure 2.
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2. Methodology

The whole flowchart of the work is shown in Figure 3. To simplify the explanation
of the methodology, we divide the work into the following sections: InSAR, PolSAR, SAR
simulation, and Random Forest Model, as highlighted in the flowchart. We tested different
scenarios combining features from multi-temporal InSAR, PolSAR and SAR Simulation
along with auxiliary flood mapping features to find the optimum set that can result in
maximum accuracy for flood mapping.
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2.1. Interferometric SAR

SAR interferometry utilizes the phase difference between two complex SAR images
obtained from slightly different positions and/or at different times. Figure 4 shows the
geometry of an along-track satellite InSAR system, where Sp and Ss indicate the primary
and secondary locations of SAR satellites; H is the altitude of satellite while h is the
elevation of an arbitrary point. The distance between the two satellites in the plane
perpendicular to the orbit is called the interferometer baseline (B); its projection to the slant
range is the parallel baseline (B‖) and its projection perpendicular to the slant range is the
perpendicular baseline (B⊥). The incidence angle (θ) is the angle between the SAR beam
and the perpendicular axis to the local topography. Tilt angle (α) refers to the angle between
the horizontal plane and interferometer baseline.
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SAR interferograms are generated by cross-multiplying the primary SAR image with
the complex conjugate of the secondary images [13]. As a result, the interferometric phase
is the phase difference between the two images, while the interferometric amplitude is the
multiplication of the amplitude of the primary image and the secondary image. Assuming
Rp and Rs are range distances from the primary image and the secondary image, the
primary (ϕp), secondary (ϕs), and interferogram phase (∆ϕ = ϕint) are as follows, where λ
is the wavelength:

ϕp =
4π

λ
Rp (1)

ϕs =
4π

λ
RS (2)

∆ϕ = ϕp − ϕs =
4π

λ
∆R (3)

The residual interferogram phase then can be written as follows, where ϕde f , defor-
mation phase, is the phase change due to the displacement in line-of-sight direction, ϕtopo
is the phase change due to topography, ϕatm is the phase change due to the atmospheric
retardation, ∆ϕorb is the residual phase due to orbit errors, and ϕnoise is the remaining phase
noise due to other variables such as thermal noise and coregistration errors [39]:

∆ϕ = ϕint = ϕde f + ϕtopo + ϕatm + ∆ϕorb + ϕnoise (4)

In order to remove the topography phase, interferograms are terrain corrected using a
DEM [39]. As a result, Equation (4) can be written as follows, where ∆ϕtopo is the residual
phase due to DEM errors.

∆ϕ = ϕint = ϕde f + ϕatm + ∆ϕtopo + ∆ϕorb + ϕnoise (5)

This absolute interferogram phase change is ambiguous and needs to be unwrapped [40].
Unwrapping is the process of removing ambiguity from the wrapped phase. After phase
unwrapping, there are still four terms to be corrected in Equation (5) to get the deformation
phase. These four terms, i.e., ϕatm, ∆ϕtopo, ∆ϕorb, and ϕnoise, include spatially correlated
and spatially uncorrelated error terms. The spatially correlated parts are assumed to be
temporally uncorrelated; therefore, they can be estimated and removed by first using
high-pass filtering in time and then low-pass filtering in space [41]. This results in the
deformation phase based on which InSAR phase features were generated, and spatially
uncorrelated error can be modeled as noise [39]. InSAR coherence represents the similarity
of radar reflection between two SAR images on a pixel-by-pixel basis and provides a
quantitative measure of the interferogram noise. Using N independent images, an estimate
of coherence can be calculated as shown in Equation (6), where u represents the amplitude
of SAR images, and u* indicates its complex conjugate; this equation was used to generate
InSAR coherence (γ̂) features used in this study:

γ̂ =
∑N

i=1 u1iu∗2i√
∑N

i=1|u1i|2
√

∑N
i=1|u2i|2

(6)

2.2. Polarimetric SAR

The SAR Polarimetry concept involves analyzing the polarization state of an electro-
magnetic (EM) wave. Different SAR systems transmit and receive EM waves in different
polarizations, including horizontal and vertical polarization. Different objects generate
different combinations of coherent speckle noise and random scattering effects. As a result,
for the classification of SAR data, it is important to calculate the average or dominant
scattering mechanism. Consequently, speckle filtering is an indispensable initial step. The
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speckle noise model of a SAR image can be expressed as follows, where x is the pixel
without noise, and s represents the speckle:

y(i, j) = x(i, j) s(i, j) (7)

Assuming an infinite homogeneous sample, the speckle-free pixels can be extracted
from Equation (7) as below, where y is the mean of the sample:

x(i, j) = y(i, j) (8)

Although the number of homogenous pixels is not infinite in reality, the optimal
scenario in classical speckle filters is to average the N finite pixels. PolSAR boxcar filtering
is an effective way that preserves the phase information while reducing speckle [42]. The
Boxcar filter reduces the speckle inherent to SAR images through local averaging, similar to
Equation (8). The reason Boxcar filtering was chosen over coherent decompositions is that
coherent decompositions cannot be calculated with the single polarized TerraSAR-X data
in this study, as such decompositions need fully polarized data [31]. Therefore, Equation (8)
was used to produce Boxcar PolSAR features used in this study.

2.3. SAR Simulation

There are three steps to SAR simulation: (1) modeling, (2) sampling by a simulator,
and (3) scatterer analysis (S. J. Auer 2011). Modeling provides relevant input information
about the objects being simulated. After modeling, each detected signal in the scene is
sampled using a ray tracer, which involves deriving its 3D position and amplitude, bounce
level information, flags to indicate its specular direction, and intersection points to identify
the reflecting surface [43–46]. In the end, a scatterer analysis is performed to provide SAR
simulated reflectivity maps representing multiple bounce returns including single bounce,
double bounce, and all-reflections.

One of the main problems in SAR simulation, especially in dense urban areas, is how
to address the multipath effect due to the summation of signal rays overlaid in one single
pixel as the received radar signal. A common solution to resolve multipath is to recover the
signal propagation path. For the simulation of radar signal propagation, information such
as sensor parameters, the geometry of the objects, and physical scene characteristics need
to be specified [45,46]. The scene geometry parameters are used to define the position of
the virtual SAR sensor in the modeled scene.

RaySAR simulator which is used in this study is developed for analyzing local ur-
ban scenes under the assumption that the local incidence angle of the radar signal is
constant [13]. Therefore, a parallel light source and a virtual orthographic camera are
considered to represent a radar transmitter and receiver, respectively. Thus, the far-field co-
ordinates of signals can be directly simulated based on the position of the scene center, light
source, and virtual orthographic camera as well as the size of the simulated image [34,44].
The scene center corresponds to the center of the 3D object model. The light source and the
virtual orthographic camera (i.e., virtual SAR sensor) are therefore the same.

In this study, we used simplified diffuse and specular reflection models to simulate
the radiometry of SAR images with a focus on geometrical correctness. Consequently, we
followed [31] and developed a processing chain of simulation that uses digital elevation
models as input data. The processing chain is illustrated in Figure 5. High-resolution 1 m
Digital Terrain Model (DTM) was downloaded from the Natural Resources Canada (NRCan)
website. The modified Digital Surface Model (DSM) and normalized Digital Surface Model
(nDSM) were generated using the input DTM. The modified DSM represents the geodetic
height with UTM horizontal coordinates, with only building height information embedded;
height information related to vegetation has been removed from it using a building footprint
provided by Open Street Map (OSM) (https://www.openstreetmap.org). The nDSM is
derived by subtracting DTM from the modified DSM.

https://www.openstreetmap.org
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Figure 5. Processing chain of SAR simulation over four selected areas. Part (a) shows how to generate
simulated reflectivity maps, and part (b) lists the geocoded results derived from part (a). The modified
DSM in each area results in two geocoded features, double bounce, and all-reflections as shown in
part (b); DTM and nDSM result in an all-reflections feature as shown in part (b). Part (c) represents
the final SAR simulation features after being post-processed.

In this context, three sets of 3D object models including DTM, modified DSM, and
nDSM were employed to produce reflectivity maps as indicated in Figure 5a. These
simulated reflectivity maps were then geocoded using the geoinformation of the DSM,
along with the orbit and projection parameters of the real SAR image. Geocoded simulated
reflectivity maps include all-reflections and double bounce features derived from the
modified DSM and one all-reflections layer from each DTM and nDSM, as shown in
Figure 5b. These simulated reflectivity maps are then post-processed as described in [31] to
produce four SAR simulation features representing all-reflections, double bounce, shadow,
and layover as shown in Figure 5c.

2.4. Random Forest Model

RF is a supervised machine learning model and a powerful tree-based classifier com-
monly used for general-purpose classification and regression, especially when the number
of variables is large relative to the number of observations [47]. Several studies have shown
that RF has outperformed other algorithms such as Maximum Likelihood, Artificial Neural
Networks, and Support Vector Machines for flood detection and other applications [48,49].
Thus, we used RF to identify flooded areas from non-flooded ones in this study.

The RF classifier was trained and evaluated with different combinations of features,
including the SAR simulation and PolInSAR features, along with other auxiliary features
that were found to be significant for flood mapping in [36], including elevation, slope,
aspect, distance from the river, and LULC. Bayesian Optimization was used to tune RF
hyperparameters. The importance of features is computed in the feature selection process
based on their weighted mean square error in the node splitting that is based on a random
subset of features for each tree [47]. Moreover, to prepare the data points, an equal num-
ber of flooded and non-flooded GCPs are distributed across the floodplain to minimize
data imbalance.

3. Results

In this section, PolInSAR and SAR simulation analyses are explained. For each com-
bination of features derived from these analyses, a single model is trained using the data
points from all four AOIs, i.e., Area1–4. These RF models were then evaluated separately
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using the dataset sample from each specific area. Consequently, 75% of the data points
(2450 ground truth points) were used to train the model over the whole AOIs, and then 25%
of data in each specific area was used for validation. The training dataset was randomly
selected to avoid autocorrelation.

For PolInSAR analysis, a consecutive set of SSC single polarized TerraSAR-X images
spanning the pre-flood, co-flood, and post-flood periods are used, as listed in Table 1, to
create both PolSAR and InSAR features. PolSAR and InSAR analyses were conducted
separately using Geomatica Banff. For PolSAR analysis, we first radiometrically calibrated
the TerraSAR-X images using sigma naught. Sigma naught or backscatter coefficient refers
to the normalized return of radar signal from an object, which is measured as per unit
area on the ground. Next, the calibrated complex images were converted into detected
data. Then, a 5*5 Boxcar filter was applied to reduce speckle noise by local averaging
while preserving polarimetric information. Therefore, we produced five locally averaged
TerraSAR-X images for each predefined area as PolSAR features, as listed in Table 2. The
PolSAR Boxcar filter images derived from co-flood TerraSAR-X in all four areas are shown
in Figure 6.

Table 2. Generated features from PolInSAR processing over each area.

Analysis (Total Number of Features) Features Number of Features

InSAR (8) InSAR coherence
InSAR phase

4
4

PolSAR (5) Boxcar filter 5

PolInSAR (18)

InSAR coherence
InSAR phase
Boxcar filter

SAR intensities

4
4
5
5
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For InSAR analysis, we used the TerraSAR-X image captured on 3 May 2017 as the
primary image, and the other four images as secondary, which resulted in four interfer-
ometry pairs. The minimum and maximum temporal baseline of the interferometry pairs
used in this study are 12 days and 56 days, respectively. During InSAR processing, the
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topography-related phase is estimated and removed from the interferograms using a DEM.
InSAR coherence and InSAR phase associated with each interferogram are then extracted.
As a result, we had four InSAR coherence and four InSAR phase features for each study
area as listed in Table 2. Figure 7 illustrates sample InSAR coherence images over four areas.
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For SAR simulation analysis, we used the open-source ray tracer RaySAR which is
a modified version of POV-Ray implemented in MATLAB [50]. We used a TerraSAR-X
StripMap SSC image captured on 3 May 2017 (flood peak), presented in a geographic
coordinate system with ellipsoidal correction, as our real SAR image. Ellipsoidal correction
is a process in which the SAR image is being resampled and projected from radar coordinate
to map coordinate [44,50]. Next, the following parameters were derived from the metadata
of the TerraSAR-X image to define the geometry of the scene being simulated: (1) the
azimuth angle; (2) the frame mean height; (3) incidence angles of the scene center and its
four corners: used for interpolating the incidence angle at the scene center, assumed to be
locally constant over the entire scene; (4) East and North pixel spacing which is equal to
the azimuth and range pixel spacing in SAR coordinate system.

As the second input data, three sets of 3D object models including DTMs, modified
DSMs, and nDSMs based on LiDAR data were used. Using DTMs, modified DSMs that
only represent terrain and constructed objects, not vegetation, were generated by using a
DTM, buildings footprints, and buildings elevation. nDSM is derived then by subtracting
DTM from the modified DSM. The sampling of these object models should be the same
as SAR image sampling. Therefore, DEM object models were resampled to 3 m using a
bilinear interpolation method. We used the same coordinate system for both data sources,
i.e., WGS 84 of UTM, and ellipsoidal heights. To perform ray tracing, object models were
converted to the POV-Ray format using AccuTrans. Consequently, the discrete position
of the simulated signals, as well as their strength and reflection levels are generated as
explained in [43]. These features are then used to create the SAR simulated reflectivity
maps. These simulated images that are in the Radar coordinate system, i.e., azimuth-range
geometry, are then geocoded to create SAR simulation features as listed in Table 3. Details
of the geocoding process can be found in [34].
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Table 3. SAR simulation outputs.

Input Object Models SAR Simulated Reflectivity Maps from
RaySAR

Geocoded Simulation Features Based on
Reflectivity Maps

DTM All-reflections
All-reflections, Double Bounce, Layover, ShadowModified DSM All-reflections + Double Bounce

nDSM All-reflections

The geocoded simulation outputs are post-processed to generate four features, namely
all-reflections, double bounce, layover, and shadow, as described in [34] for each AOIs.
Figure 8 illustrates these four features generated over AOIs. Moreover, the generated flood
maps over Area1–4 are shown in Figure 9.

For each AOI, 1731 scenarios were examined as listed in Tables 4 and 5 and each
scenario had a different number of features. To identify the most important features for
flood mapping, different combinations of features were tested as different scenarios in a
two-step procedure: A category scenarios, and B category scenarios. In A category, features
are divided into: (A1) SAR intensity, (A2) InSAR, (A3) PolSAR, (A4) SAR simulation, and
(A5) five auxiliary features as the baseline, shown in Table 4. In B categories, selected
features from A category were integrated to build up the B category: (B1) PolInSAR, (B2)
All SAR, (B3) without SAR simulation, and (B4) All categories. Table 5 shows included
features in each B category.
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Table 4. Features used in different scenarios of A Categories.

A Categories
(Number of Features) Feature Types Name of Features All Possible

K-Combinations

A1- SAR Intensity
(5) SAR intensities Pre-, Nearest pre-, co-, nearest post-, and

post-flood intensities
5
∑

k=1

(
5
k

)
= 31

A2- InSAR
(8)

InSAR phases,
InSAR coherences

Pre-, nearest pre-, nearest post-, and post-flood
InSAR coherences/phases

8
∑

k=1

(
8
k

)
= 255

A3- PolSAR
(5) Boxcar filtered images Pre-, Nearest pre-, co-, nearest post-, and

post-flood Boxcar filtering
5
∑

k=1

(
5
k

)
= 31

A4- Simulation
(4) Reflectivity maps All-reflections, double bounce, layover, shadow 4

∑
k=1

(
4
k

)
= 15

A5- Baseline
(5) Auxiliary features Elevation, slope, aspect,

distance from the river, LULC
5
∑

k=1

(
5
k

)
= 31

Total of 363 scenarios

Table 5. Features used in different scenarios of B Categories.

B Categories
(Number of Features (k))

Included Selected Features
from A Category

Total Examined
Combinations
= (2k − 1) × k

B1- PolInSAR (9) A1 + A2 + A3 (2 × 9 − 1 = 17) × 9 =153
B2- All SAR (12) A1 + A2 + A3 + A4 (2 × 12 − 1 = 23) × 12 = 276

B3- Without Simulation (14) A1 + A2 + A3 + A5 (2 × 14 − 1 = 27) × 14 = 378
B4- All Categories (17) A1 + A2 + A3 + A4 + A5 (2 × 17 − 1 = 33) × 17 = 561

Total of 1368 scenarios
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For A categories, we explored a total of 363 scenarios covering all possible k-combinations
of features in each category. First, an RF algorithm was trained using all possible k-
combinations of features within each category A1–5, as shown in Table 4. Then, the
feature importance was estimated by permuting out-of-bag observations among the trees;
Consequently, the resulting best features contributing to the top three highest overall
accuracies within each category A1–5 were marked as “selected features”, shown in Table 6.
These “selected features” in A1–5 categories are then combined to be tested as different
B1–4 categories, as listed in Table 5.

Table 6. Selected features from A Categories.

A Categories Selected Features (Number of Features)

A1- SAR Intensity Co-flood and nearest pre-flood and post-flood intensity (3)

A2- InSAR All four InSAR coherences,
nearest post-flood InSAR phase (5)

A3- PolSAR Co-flood PolSAR Boxcar filtered image (1)
A4- Simulation Double bounce, Shadow, All-reflections (3)
A5- Auxiliary Elevation, Slope, Aspect, Distance from the River, LULC (5)

For B categories, we combined the selected features from A categories that led to the
highest overall accuracies. Since including correlated features can affect the RF model
and reduce the overall accuracy, we started training RF with a single feature within each
B1–4 category and then added the rest of the features one by one until we used all features
within that certain category. The features were then removed one by one until the very first
feature we started with are left. Then, the feature importance was estimated by permuting
out-of-bag observations among the trees, similar to what we did in the A category. As a
result, features are prioritized based on their importance according to the RF algorithm.
The most important features associated with the top three highest accuracies achieved in B
categories are integrated and listed in Table 7 as selected features in B categories.

Table 7. Selected features in B category.

B Categories Selected Features in B Categories

Intensities InSAR PolSAR Simulation Auxiliary

B1-
PolInSAR

Co-,
nearest pre-,

and post-flood
intensities

All four InSAR coherences,
nearest post-flood InSAR phase

Co-flood Boxcar
filtered image - -

B2-
All SAR

Co-,
nearest pre-,

and post-flood
intensities

All four InSAR coherences,
nearest post-flood InSAR phase

Co-flood Boxcar
filtered image

Shadow,
Double Bounce,
All-reflections

-

B3-
All without
Simulation

Co-,
nearest pre-,

and post-flood
intensities

All four InSAR coherences,
nearest post-flood InSAR phase

Co-flood Boxcar
filtered image, - All Auxiliary

Features

B4-
All Categories

Co-,
nearest pre-,

and post-flood
intensities

All four InSAR coherences,
nearest post-flood InSAR phase

Co-flood Boxcar
filtered image,

Shadow,
Double bounce,
All-reflections

All Auxiliary
Features

4. Discussion

As stated in the previous section, feature selection was performed in a two-step proce-
dure where we tested different scenarios in two categories (i.e., A category and B category)
to find the most effective features. Since RF is a binary classifier, the accuracy is evaluated by
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comparing classification overall accuracy. Consequently, the highest classification overall
accuracies achieved in the A category and B category are reported in Tables 8 and 9. Overall
accuracies are computed by dividing the number of data points that were correctly labeled
as flooded and non-flooded points to the number of all labeled data points as follows:

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Comparing B category scenarios over different AOIs, as listed in Table 9, shows that
the results of Area1, Area2, and Area4 are exhibiting a similar trend, while Area3 has a
lower accuracy than the other areas, which is due to the lower data points available in
Area3, and its different and more vegetated LULC compared to other areas. Overall, among
various features, the most important ones for flood mapping, which produced the highest
accuracies in each area, were derived from the incorporation of all A categories, i.e., the
integration of SAR intensities, InSAR, PolSAR, SAR simulation, and auxiliary features, as
listed in B4 category in Table 9. The confusion matrix associated with the highest accuracy
achieved in A categories and B categories over all four AOIs is listed in Tables 10 and 11.
Investigating all scenarios in different categories reveals that the False Positive (FP) rate
stands above the False Negative (FN) as shown in Figure 10, which means the proposed
model overestimated the flood areas. Although the best practice is to remove all false
results, we believe that overestimating flooded areas is better than underestimating as a
high FN rate can result in missing damaged areas in post-disaster recovery efforts.

Table 8. Acquired classification accuracies of A Categories: “All” columns indicate the accuracies
where all features were included while “selected features” columns show the best accuracies achieved
in each category using the selected features.

A Categories

Classification Overall Accuracies

Area1 Area2 Area3 Area4

All
Features

Selected
Features

All
Features

Selected
Features

All
Features

Selected
Features

All
Features

Selected
Features

A1- Intensity 84.8 85.3 85.85 86.1 60.3 61 86.1 86.5

A2- InSAR 82.2 82.5 82.7 82.9 60.3 60.6 83.6 83.7

A3- PolSAR 86.9 86.9 86.2 86.2 63.2 63.2 87.1 87.1

A4- Simulation 53.4 53.4 53.8 53.8 52.4 52.4 54.5 54.5

A5- Baseline (auxiliary) 83.1 83.6 83.5 83.6 82.5 82.5 82.7 82.8

Table 9. Highest classification accuracies achieved in B category.

B Categories
Classification Overall Accuracies

Area1 Area2 Area3 Area4

B1- PolInSAR 88.4 89.1 61.7 90.1

B2- All SAR 88.6 89.3 61.7 90.3

B3- All without Simulation 91.3 92.2 82.1 92.8

B4- All Features 92.6 93.5 83.8 93.2
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Table 10. The performance measurements True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) associated with the highest accuracies achieved using selected features in A
category for all four AOIs as highlighted in Table 8.

Category TP (%) TN FP FN TP TN FP FN

Area1 Area2

A1 92.4 78.2 21.8 7.6 92.8 79.4 20.6 7.2

A2 93.4 71.6 28.4 6.6 93.5 72.3 27.7 6.5

A3 97.8 76 24 2.2 99.4 73 27 0.6

A4 9.8 97 3 90.2 9.8 97.8 2.2 90.2

A5 92.8 74.4 25.6 7.2 87.9 79.3 20.7 12.1

Category Area3 Area4

A1 43.1 78.9 21.1 56.9 92.2 80.8 19.2 7.8

A2 61.6 59.6 40.4 38.4 93.9 73.5 26.5 6.1

A3 75.3 51.1 48.9 24.7 89.9 84.3 15.7 10.1

A4 4.8 100 0 95.2 10.8 98.2 1.8 89.2

A5 91.6 73.4 26.6 8.4 87.7 77.9 22.1 12.3

Table 11. The associated performance measurements True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) associated with the highest accuracies achieved using selected
features in B category for all four AOIs as listed in Table 9.

Category TP (%) TN FP FN TP TN FP FN

Area1 Area2

B1 95.4 81.4 18.6 4.6 96.9 81.3 18.7 3.1

B2 95 82.2 17.8 5 97.1 81.5 18.5 2.9

B3 93.9 88.7 11.3 6.1 92.9 91.5 8.5 7.1

B4 92.9 92.3 7.7 7.1 95.4 91.6 8.4 4.6

Category Area3 Area4

B1 64.8 58.5 41.5 35.2 97.1 83.1 16.9 2.9

B2 63.8 59.6 40.4 36.2 97.1 83.5 16.5 2.9

B3 92.6 71.6 28.4 7.4 94.7 90.9 9.1 5.3

B4 87.9 79.7 20.3 12.1 93.3 93.1 6.9 6.7

In the A5 category, we used five auxiliary features, i.e., elevation, slope, aspect, distance
from the river, and LULC, that are reported in the literature to be effective in flood mapping
as our baseline. A5 category reported accuracies ranging from 82.5% to 83.6% in different
AOIs. Comparing A5 to B1, where PolInSAR features were involved, showed that using
PolInSAR features improved the model by 4.8%, 5.5%, and 7.3% in Area1, Area2, and
Area4. Comparing B4 to B3, where PolInSAR features are considered together with five
auxiliary features, i.e., all features except for simulation ones, revealed that adding SAR
simulated features improved accuracy by 1.3%, 1.3%, and 0.4% in Area1, Area2, and Area4.
Table 12 provides a comparison of classification overall accuracy improvement of the
proposed models and four existing models commonly used for flood detection in rural
and urban areas. Comparing A5 to B2, where all SAR features are used, showed that
synergistic use of simulated images and PolInSAR features without including auxiliary
features outperformed the baseline by increasing the accuracy by 5%, 5.7%, and 7.5%
in Area1, Area2, and Area4, respectively; the average improvement over those areas are
shown in Table 12 as 6.1%. When we used PolInSAR and simulation features in combination
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with the auxiliary features as in the B4 category, we reached even higher accuracy with
an increase of 9%, 9.9%, and 10% compared to the baseline in Area1, Area2, and Area4,
respectively; the average improvement over those areas are shown in Table 12 as 9.7%.
Additionally, comparing B4 to A1, where we used multi-temporal SAR intensities alone,
revealed that the proposed method achieved an accuracy improvement of 7.3%, 7.4%,
and 6.7%, respectively in Area1, Area2, and Area4, which is a common practice for flood
mapping in the literature; the average improvement over those areas are shown in Table 12
as 7.1%.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

means the proposed model overestimated the flood areas. Although the best practice is to 
remove all false results, we believe that overestimating flooded areas is better than 
underestimating as a high FN rate can result in missing damaged areas in post-disaster 
recovery efforts. 

 
Figure 10. False positive rates and false negative rates over Area1–4: Triangle signs indicate false 
positives while rectangle signs indicate false negatives. 

Table 8. Acquired classification accuracies of A Categories: “All” columns indicate the accuracies 
where all features were included while “selected features” columns show the best accuracies 
achieved in each category using the selected features. 

A Categories 

Classification Overall Accuracies 
Area1 Area2 Area3 Area4 

All  
Features 

Selected 
Features 

All  
Features 

Selected 
Features 

All  
Features 

Selected 
Features 

All  
Features 

Selected 
Features 

A1- Intensity 84.8 85.3 85.85 86.1 60.3 61 86.1 86.5 
A2- InSAR 82.2 82.5 82.7 82.9 60.3 60.6 83.6 83.7 

A3- PolSAR 86.9 86.9 86.2 86.2 63.2 63.2 87.1 87.1 
A4- Simulation 53.4 53.4 53.8 53.8 52.4 52.4 54.5 54.5 

A5- Baseline 
(auxiliary) 83.1 83.6 83.5 83.6 82.5 82.5 82.7 82.8 

Table 9. Highest classification accuracies achieved in B category. 

B Categories 
Classification Overall Accuracies 

Area1 Area2 Area3 Area4 
B1- PolInSAR 88.4 89.1 61.7 90.1 
B2- All SAR 88.6 89.3 61.7 90.3 

B3- All without Simulation 91.3 92.2 82.1 92.8 
B4- All Features 92.6 93.5 83.8 93.2 

Table 10. The performance measurements True Positive (TP), True Negative (TN), False Positive 
(FP), and False Negative (FN) associated with the highest accuracies achieved using selected 
features in A category for all four AOIs as highlighted in Table 8. 

Category 
TP (%) TN FP FN TP TN FP FN 

Area1 Area2 

Figure 10. False positive rates and false negative rates over Area1–4: Triangle signs indicate false
positives while rectangle signs indicate false negatives.

Table 12. Average classification overall accuracy improvement over Area1, Area2, and Area4. This
table compares the proposed models accuracy to the existing models accuracy: e.g., it shows that the
proposed B4 model improved flood detection by an average of 7.1%, 10%, and 6.3% compared to the
SAR based models used in existing studies, and by an average of 9.7% compared to the non-SAR
based model, i.e., by using auxiliary features.

Proposed\Existing
SAR-Based Methods Non-SAR-Based Method

A1: Intensity A2: InSAR A3: PolSAR A5: Auxiliary

B4: Incorporated PolInSAR, SAR
Simulation, and Auxiliary Features 7.1% 10% 6.3% 9.7%

B2: PolInSAR and SAR Simulation 3.4% 6.5% 2.7% 6.1%

Exploring all scenarios associated with simulation features, i.e., A4, B2, and B4 cat-
egories, we noticed that including shadow features always reduced false negatives and
helped the classifier to improve flood detection more effectively. In this regard, the B4
category showed a higher accuracy compared to B3, which demonstrates that simulation
features, especially shadow, layover, and double bounce features that were the most im-
portant, improved flood detection by 1.3%, 1.3%, and 0.4% in Area1, Area2, and Area4,
respectively; comparing B3 to B4 shows that the synergistic use of SAR simulation and PolIn-
SAR outperformed employing PolInSAR features alone by an average of 1% improvement.

The results of this study are consistent with the PolInSAR outcome of our previous
study [28] and support the assumption that investigating the trend in the time series of
PolInSAR features concerning their LULC class can improve identifying the complex urban
backscatter patterns.
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5. Conclusions

In this work, we investigated the effect of employing InSAR, PolSAR, and SAR-
simulated reflectivity maps in the improvement of urban flood detection using a RF classi-
fier. Examining the synergistic use of multi-temporal PolInSAR features and SAR-simulated
reflectivity maps for urban flood detection is the main contribution of this study. These
SAR features are employed along with a set of auxiliary features that have been reported in
the literature to contribute to flood mapping, including elevation, slope, aspect, distance
from the river, and LULC. Multi-temporal SAR intensity, InSAR coherence, and InSAR
phase features were generated using InSAR analysis. Additionally, PolSAR analysis was
employed to generate PolSAR Boxcar filter features. Simulated reflectivity maps features
used in this study included all-reflections maps, double-bounces, shadows, and layovers.
Different combinations of these features were examined to select the most effective features
in flood detection.

In general, the results showed that employing PolInSAR and SAR simulated features
along with auxiliary features in an RF model can improve flood detection in urban areas.
The highest accuracy was achieved from a subset of features derived from the performed
SAR analyses, i.e., InSAR, PolSAR, and SAR simulation. The results showed that the
incorporation of single polarized high-resolution TerraSAR-X images with auxiliary features
outperforms the models that merely use the auxiliary features.

The 2017 Ottawa River flood was explored using a set of high-resolution TerraSAR-X
images. Four study areas with different LULCs were examined, for which GCPs were
sampled by comparing historical NASP images with 2017 historical Google images. We
employed multi-temporal SAR intensities, multi-temporal PolInSAR features including
InSAR phase, InSAR coherence, and PolSAR Boxcar filter, as well as SAR simulated features
including all-reflections, double bounce, shadow, and layover.

Feature selection was performed in a two-step procedure where we tested different
scenarios in two categories to find the most effective features. Among all investigated
features, the best accuracy of 93.1% was achieved by considering Co-flood and nearest pre-
flood and post-flood intensity, all four InSAR coherence, nearest post-flood InSAR phase,
co-flood PolSAR Boxcar filtered image, double bounce, shadow, all-reflections, elevation,
slope, distance from the river, and LULC. The results revealed that the synergistic use of
SAR simulated reflectivity maps and PolInSAR features together with auxiliary features
can improve urban flood detection by an average of 9.6% when compared to the baseline.
Moreover, without considering any auxiliary features, the exclusive use of PolInSAR and
SAR simulated features outperformed the baseline by 7%, which indicates the effectiveness
of using SAR features in flood mapping. This study indicates that SAR simulated features
are effective in decreasing false positives, which helped the proposed method exceed
flood detection accuracy by merely use of PolInSAR features. Furthermore, the proposed
method outperformed the exclusive use of SAR intensity by an average of 7.1% accuracy
improvement, while SAR intensity is the basis for most existing SAR-based flood mapping
methods. Given the promising results of using TerraSAR-X in flood detection, our future
work with TerraSAR-X will focus on using fully polarized images as well as on examining
other study areas with different terrains and LULC.

It needs to be acknowledged that the proposed model uses a greater number of input
features compared to some other flood mapping techniques; however, this is compensated
for the improved accuracy. Since accurate flood mapping can contribute to saving lives,
reducing damage, and providing accurate damage estimates, the promisingly improved
proposed flood mapping method is a good candidate for flood detection in urban areas.
Especially knowing that the proposed model is independent of optical imagery and fully
operates based on SAR and some static features (e.g., elevation models and slope), the
proposed flood mapping method can be used in all weather conditions and at any time of
the day which speeds of the flood mapping and consequently reduces the response time.
However, it should be noted that although the proposed model worked well in urban and
semi-urban areas (i.e., Area1, Area2, and Area4 of the second study area over Ottawa), it
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did not work as well in a densely vegetated area (i.e., Area3 of the second study area); thus,
we recommend that the proposed model be extrapolated to areas with similar LULC.
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