Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Sentinel-1A Data
2.2.2. Auxiliary Data
2.3. Methods
2.3.1. Differential Interferometry
2.3.2. Phase Coherence
2.3.3. Polarimetric Decomposition
3. Results
3.1. Coseismic Deformation Field
3.2. Building Damage Detection
3.2.1. Coherence-Based Analysis
3.2.2. Polarimetry-Based Analysis
3.2.3. Integrated Approaches
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Altan, O.; Toz, G.; Kulur, S.; Seker, D.; Volz, S.; Fritsch, D.; Sester, M. Photogrammetry and geographic information systems for quick assessment, documentation and analysis of earthquakes. ISPRS J. Photogramm. Remote Sens. 2001, 55, 359–372. [Google Scholar] [CrossRef]
- Anniballe, R.; Noto, F.; Scalia, T.; Bignami, C.; Stramondo, S.; Chini, M.; Pierdicca, N. Earthquake damage mapping: An overall assessment of ground surveys and VHR image change detection after L’Aquila 2009 earthquake. Remote Sens. Environ. 2018, 210, 0034–4257. [Google Scholar] [CrossRef]
- Metternicht, G.; Hurni, L.; Gogu, R. Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ. 2005, 98, 284–303. [Google Scholar] [CrossRef]
- Voigt, S.; Kemper, T.; Riedlinger, T.; Kiefl, R.; Scholte, K.; Mehl, H. Satellite image analysis for disaster and crisis-management support. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1520–1528. [Google Scholar] [CrossRef]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- ElGharbawi, T.; Tamura, M. Estimating deformation due to soil liquefaction in Urayasu city, Japan using permanent scatterers. ISPRS J. Photogramm. Remote Sens. 2015, 109, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Moya, L.; Marval Perez, L.R.; Mas, E.; Adriano, B.; Koshimura, S.; Yamazaki, F. Novel unsupervised classification of collapsed buildings using satellite imagery, ha-zard scenarios and fragility functions. Remote Sens. 2018, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Ge, P.; Gokon, H.; Meguro, K.; Koshimura, S. Study on the intensity and co-herence information of high-resolution ALOS-2 SAR images for rapid massive land-slide mapping at a pixel level. Remote Sens. 2019, 11, 2808. [Google Scholar] [CrossRef] [Green Version]
- Freire, S.; Santos, T.; Navarro, A.; Soares, F.; Silva, J.; Afonso, N.; Fonseca, A.; Tenedório, J. Introducing mapping standards in the quality assessment of buildings extracted from very high resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 2014, 90, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.G.; Zhang, L.; Balz, T.; Liao, M.S. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data. ISPRS J. Photogramm. Remote Sens. 2015, 105, 128–140. [Google Scholar] [CrossRef]
- Li, Y.; Martinis, S.; Wieland, M. Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence. ISPRS J. Photogramm. Remote Sens. 2019, 152, 178–191. [Google Scholar] [CrossRef]
- Monserrat, O.; Criosetto, M.; Luzi, G. A review of ground-based SAR interferometry for deformation measurement. ISPRS J. Photogramm. Remote Sens. 2014, 93, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Raucoules, D.; Ristori, B.; Michele, M.; Briole, P. Surface displacement of the Mw 7 Machaze earthquake (Mozambique): Complementary use of multiband InSAR and radar amplitude image correlation with elastic modelling. Remote Sens. Environ. 2010, 114, 2211–2218. [Google Scholar] [CrossRef] [Green Version]
- Arciniegas, G.A.; Bijker, W.; Kerle, N.; Tolpekin, V.A. Coherence- and amplitude-based analysis of seismogenic damage in Bam, Iran, using ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens. 2007, 5, 1571–1581. [Google Scholar] [CrossRef]
- Watanabe, M.; Thapa, R.B.; Ohsumi, T.; Fujiwara, H.; Yonezawa, C.; Tomii, N.; Suzuki, S. Detection of damaged urban areas using interferometric SAR coherence change with PALSAR-2. Earth Planets Space 2016, 68, 131. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applica-tions of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Sato, A.; Boerner, W.M.; Sato, R.; Yamada, H. Four component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 9, 2251–2258. [Google Scholar] [CrossRef]
- Li, N.; Wang, R.; Deng, Y.; Liu, Y.; Li, B.; Wang, C.; Balz, T. Unsupervised polarimetric synthetic aperture radar classification of large-scale landslides caused by Wenchuan earthquake in hue-saturation-intensity color space. J. Appl. Remote Sens. 2014, 8, 083595. [Google Scholar] [CrossRef]
- Guo, H.; Liu, L.; Fan, X.; Li, X.; Zhang, L. Earth Observation for Earthquake Disaster Monitoring and Assessment. In Earthquake Research and Analysis-Statistical Studies, Observations and Planning; Intech: Houston, TX, USA, 2012; pp. 293–312. [Google Scholar]
- Matsuoka, M.; Nojima, N. Building damage estimation by integration of seismic intensity information and satellite l-band Sar imagery. Remote Sens. 2010, 2, 2111–2126. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yamazaki, F.; Gokon, H.; Koshimura, S. Extraction of tsunami-flooded areas and damaged buildings in the 2011 Tohoku-Oki earthquake from terrasar-x intensity images. Earthq. Spectra 2013, 29 (Suppl. S1), S183–S200. [Google Scholar] [CrossRef] [Green Version]
- Gokon, H.; Koshimura, S.; Matsuoka, M. Object-based method for estimating tsunami-induced damage using TerraSAR-X data. J. Disaster Res. 2016, 11, 225–235. [Google Scholar] [CrossRef]
- Miura, H.; Midorikawa, S.; Matsuoka, M. Building damage assessment using high-resolution satellite Sar images of the 2010 Haiti earthquake. Earthq. Spectra 2016, 32, 591–610. [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F. Extraction of collapsed buildings in the 2016 Kumamoto earthquake using multi-temporal palsar-2 data. J. Disaster Res. 2017, 12, 241–250. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, C.; Singh, S.; Koch, M.; Adriano, B.; Mas, E.; Koshimura, S. A framework of rapid regional tsunami damage recognition from post-event TerraSAR-X imagery using deep neural networks. IEEE Trans. Geosci. Remote Sens. 2018, 15, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Zhao, L.L.; Yang, J.; Li, P.X.; Zhang, L.P.; Shi, L.; Lang, F.K. Damage assessment in urban areas using post-earthquake airborne PolSAR imagery. Int. J. Remote Sens. 2013, 34, 8952–8966. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Matsuoka, M.; Miyajima, M.; Adriano, B.; Fallahi, A.; Karashi, J. Sequential SAR Coherence Method for the Monitoring of Buildings in Sarpole-Zahab, Iran. Remote Sens. 2018, 10, 1255. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Wen, S.; Yang, L.; Wu, C.; Sun, X.; Wang, L.; Zhang, Z. A Shallow and left-lateral rupture event of the 2021 Mw 5.3 Baicheng earthquake: Implications for the diffuse deformation of Southern Tianshan. Earth Space Sci. 2022, 9, e2021EA001995. [Google Scholar] [CrossRef]
- Jiang, H.J.; Feng, G.C.; Wang, T.; Bürgmann, R. Toward Full Exploitation of Coherent and Incoherent Information in Sentinel-1 TOPS Data for Retrieving Surface Displacement: Application to the 2016 Kumamoto (Japan) Earthquake. Geophys. Res. Lett. 2017, 44, 1758–1767. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Liu, X.W.; Zhang, Y.J.; Zhao, J.; Xu, Q.; Yang, Y.; Liu, G.X. A nonlinear inversion of InSAR-observed coseismic surface deformation for estimating variable fault dips in the 2008 Wenchuan earthquake. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 179–192. [Google Scholar] [CrossRef]
- Fielding, E.J.; Liu, Z.; Stephenson, O.L.; Zhong, M.; Liang, C.; Moore, A. Surface Deformation Related to the 2019 Mw 7.1 and 6.4 Ridgecrest Earthquakes in California from GPS, SAR Interferometry, and SAR Pixel Offsets. Seismol. Res. Lett. 2020, 91, 2035–2046. [Google Scholar] [CrossRef]
- He, Z.; Chen, T.; Wang, M.; Li, Y. Multi-Segment Rupture Model of the 2016 Kumamoto Earthquake Revealed by InSAR and GPS Data. Remote Sens. 2020, 12, 3721. [Google Scholar] [CrossRef]
- Matsuoka, M.; Yamazaki, F. Use of SAR imagery for monitoring areas damaged due to the 2006 Mid Java, Indonesia earthquake. In Proceedings of the 4th International Workshop on Remote Sensing for Post-Disaster Response 2006, Cambridge, UK, 25–26 September 2006. [Google Scholar]
- Zhang, X.; Liu, W.; He, S. Urban change detection in TerraSAR image using the difference method and SAR coherence coefficient. J. Eng. Sci. Technol. Rev. 2018, 11, 18–23. [Google Scholar]
- Matsuoka, M.; Estrada, M. Development of earthquake-induced building damage estimation model based on ALOS/PALSAR observing the 2007 Peru earthquake. J. Disaster Res. 2013, 8, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Karimzadeh, S.; Mastuoka, M. Building damage assessment using multisensor dual-polarized synthetic aperture radar data for the 2016 M6.2 Amatrice earthquake, Italy. Remote Sens. 2017, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 10 October 2021).
- Yonezawa, C.; Takeuchi, S. Decorrelation of SAR data by urban damages caused by the 1995 Hyogoken-Nanbu earthquake. Int. J. Remote Sens. 2001, 22, 1585–1600. [Google Scholar] [CrossRef]
- Zebker, H.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Zebker, H.; Chen, K. Accurate estimation of correlation in InSAR observations. IEEE Trans. Geosci. Remote Sens. 2005, 2, 124–127. [Google Scholar] [CrossRef]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Nguyen, H.T.; Gharechelou, S.; Nguyen, L.V. Earthquake damage visualization (EDV) technique for the rapid detection of earthquake-induced damages using SAR data. Sensors 2017, 17, 235. [Google Scholar] [CrossRef]
- Sinclair, G. The transmission and reception of elliptically polarized waves. Proc. IRE 1950, 38, 148–151. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; Pottier, E. Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2343–2351. [Google Scholar]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Tamkuan, N.; Nagai, M. Sentinel-1A Analysis for Damage Assessment: A Case Study of Kumamoto Earthquake in 2016. MATTER Int. J. Sci. Technol. 2019, 5, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.; Zhang, H.; Liu, W.; Li, R.; Hu, T. Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide. ISPRS J. Photogramm. Remote Sens. 2021, 174, 0924–2716. [Google Scholar] [CrossRef]
- Pinglan, G.; Hideomi, G.; Kimiro, M. A review on synthetic aperture radar-based building damage assessment in disasters. Remote Sens. Environ. 2020, 240, 0034–4257. [Google Scholar]
- Xu, X.; Sandwell, D.T.; Smith, K.B. Coseismic Displacements and Surface Fractures from Sentinel-1 InSAR: 2019 Ridgecrest Earthquakes. Seismol. Res. Lett. 2020, 91, 1979–1985. [Google Scholar] [CrossRef]
- Stilla, U.; Soergel, U.; Thoennessen, U. Potential and limits of InSAR data for building reconstruction in built-up areas. ISPRS J. Photogramm. Remote Sens. 2003, 58, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Talledo, D.A.; Miano, A.; Bonano, M.; Carlo, F.D.; Lanari, R.; Manunta, M.; Meda, A.; Mele, A.; Prota, A.; Saetta, A.; et al. Satellite radar interferometry: Potential and limitations for structural assessment and monitoring. J. Build. Eng. 2022, 46, 103756. [Google Scholar] [CrossRef]
Acquisition Date | Product Type | Polarization Mode | Band | Space Baseline/m | Time Baseline/d |
---|---|---|---|---|---|
1 March 2021 | SLC | VV + VH | C | 27.27 30.36 | 12 12 |
13 March 2021 | SLC | VV + VH | C | ||
25 March 2021 | SLC | VV + VH | C |
Categories | Coherent Change Detection | |||
---|---|---|---|---|
Damaged/m2 | Undamaged/m2 | Total/m2 | ||
Actual results | Damaged/m2 | 40,921 | 2515 | 43,436 |
Undamaged/m2 | 25,415 | 41,512 | 66,927 | |
Total/m2 | 66,336 | 44,027 | 110,363 |
Categories | Polarimetric Decomposition | |||
---|---|---|---|---|
Damaged/m2 | Undamaged/m2 | Total/m2 | ||
Actual results | Damaged/m2 | 28,998 | 14,438 | 43,436 |
Undamaged/m2 | 5025 | 61,902 | 66,927 | |
Total/m2 | 34,023 | 76,340 | 110,363 |
Categories | Building Damage Detection | |||
---|---|---|---|---|
Damaged/m2 | Undamaged/m2 | Total/m2 | ||
Actual results | Damaged/m2 | 37,434 | 6002 | 43,436 |
Undamaged/m2 | 10,455 | 56,472 | 66,927 | |
Total/m2 | 47,889 | 62,474 | 110,363 |
Categories | Damaged | Undamaged | Overall Accuracy | Kappa Coefficient |
---|---|---|---|---|
Coherent change detection | 94% | 62% | 75% | 0.51 |
Polarimetric decomposition | 67% | 92% | 82% | 0.62 |
Integration method | 86% | 84% | 85% | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Chen, X.; Yang, L.; Wang, W.; Zhou, X.; Wang, L.; Yao, Y. Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake. Remote Sens. 2022, 14, 3009. https://doi.org/10.3390/rs14133009
Sun X, Chen X, Yang L, Wang W, Zhou X, Wang L, Yao Y. Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake. Remote Sensing. 2022; 14(13):3009. https://doi.org/10.3390/rs14133009
Chicago/Turabian StyleSun, Xiaolin, Xi Chen, Liao Yang, Weisheng Wang, Xixuan Zhou, Lili Wang, and Yuan Yao. 2022. "Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake" Remote Sensing 14, no. 13: 3009. https://doi.org/10.3390/rs14133009
APA StyleSun, X., Chen, X., Yang, L., Wang, W., Zhou, X., Wang, L., & Yao, Y. (2022). Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake. Remote Sensing, 14(13), 3009. https://doi.org/10.3390/rs14133009