Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = polar cell elongation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 930 KiB  
Article
The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells
by Paweł Szubert and Stanisław A. Różański
Crystals 2025, 15(8), 705; https://doi.org/10.3390/cryst15080705 (registering DOI) - 31 Jul 2025
Abstract
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect [...] Read more.
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect of modifying the iodide electrolyte with liquid crystals (LCs) known for the self-organization of molecules into specific mesophases. The current–voltage (I-V) and power–voltage (P-V) characteristics were determined for the ruthenium-based dyes N3, Z907, and N719 to investigate the influence of their structure and concentration on the efficiency of DSSCs. The addition of a nematic LC of 4-n-pentyl-4-cyanobiphenyl (5CB) to the iodide electrolyte influences the I-V and P-V characteristics. A modification of the I-V characteristics was found, especially a change in the values of short circuit current (ISC) and open circuit voltage (VOC). The conversion efficiency for cells with modified electrolyte shows a complex dependence that first increases and then decreases with increasing LC concentration. It may be caused by the orientational interaction of LC molecules with the titanium dioxide (TiO2) layer on the photoanode. A too high concentration of LC may lead to a reduction in total ionic conductivity due to the insulating effect of the elongated polar molecules. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
27 pages, 7011 KiB  
Review
Conceptus Elongation, Implantation, and Early Placental Development in Species with Central Implantation: Pigs, Sheep, and Cows
by Gregory A. Johnson, Thainá Minela, Heewon Seo, Fuller W. Bazer, Robert C. Burghardt, Guoyao Wu, Ky G. Pohler, Claire Stenhouse, Joe W. Cain, Zachary K. Seekford and Dallas R. Soffa
Biomolecules 2025, 15(7), 1037; https://doi.org/10.3390/biom15071037 - 17 Jul 2025
Viewed by 502
Abstract
Species have different strategies for implantation and placentation. Much can be learned about general molecular and cellular biology through the examination and comparison of these differences. To varying degrees, implantation in all species includes alterations in epithelial polarity, the transformation of the endometrial [...] Read more.
Species have different strategies for implantation and placentation. Much can be learned about general molecular and cellular biology through the examination and comparison of these differences. To varying degrees, implantation in all species includes alterations in epithelial polarity, the transformation of the endometrial stroma, the differentiation of the trophoblast, cell-to-cell and tissue-to-tissue signaling through hormones, cytokines, and extracellular vesicles, and the alteration of the maternal immune system. This review focuses on implantation in pigs, sheep, and cows. These species share with mice/rats and humans/primates the key events of early embryonic development, pregnancy recognition, and the establishment of functional placentation. However, there are differences between the pregnancies of livestock and other species that make livestock unique biomedical models for the study of pregnancy and cell biology in general. Pig, sheep, and cow conceptuses (embryo/fetus and associated placental membranes) elongate prior to implantation, displaying central implantation, extended periods of conceptus attachment to the uterus, and epitheliochorial (pigs) and synepitheliochorial (sheep and cows) placentation. This review will discuss what is understood about how the trophoblast and extraembryonic endoderm of pig, sheep, and cow conceptuses elongate, and how a major goal of current in vitro models is to achieve conceptus elongation. It will then examine the adhesion cascade for conceptus implantation that initiates early placental development in pigs, sheep, and cows. Finally, it will conclude with a brief overview of early placental development in pigs, sheep, and cows, with a listing of some important “omics” studies that have been published. Full article
Show Figures

Figure 1

12 pages, 2784 KiB  
Article
Structural Distortion and Optoelectronic Signatures in Metal-Substituted Kaolinite: A First-Principles Investigation
by Qiuyu Zeng, Jun Xie, Jinbo Zhu, Jianqiang Yin and Wenliang Zhu
Minerals 2025, 15(5), 541; https://doi.org/10.3390/min15050541 - 20 May 2025
Viewed by 370
Abstract
This study employs density functional theory (DFT) simulations to systematically investigate the structural and optoelectronic modifications induced by the substitution of metal ions (Mg2+, Ca2+, Mn2+, Fe2+/3+, Co2+, and Ni2+ [...] Read more.
This study employs density functional theory (DFT) simulations to systematically investigate the structural and optoelectronic modifications induced by the substitution of metal ions (Mg2+, Ca2+, Mn2+, Fe2+/3+, Co2+, and Ni2+) in kaolinite. First-principles calculations reveal distinct substitution behaviors: Na-Ni (II)-1 exhibits the lowest cell energy, indicating superior structural stability, while Na-Mn (II)-1 demonstrates the most favorable substitution energy (−5.44 eV). XRD simulations of divalent substitutions show a positive correlation between atomic number and diffraction intensity at 8.778° and 9.774°, suggesting a spectral marker for substitution detection. Electronic structure analysis identifies significant bandgap reduction, with Na-Fe (II)-4 achieving an ultranarrow gap of 1.014 eV, attributed to spin-polarized d-orbital contributions. X-ray absorption fine-structure (XAFS) simulations further reveal metal-specific bond elongation, with Fe3+ substitutions preserving near-pristine coordination distances. These findings establish a comprehensive framework linking metal substitution to structural distortion and optoelectronic response, providing theoretical insights for optimizing kaolinite-based material properties through computational feature extraction. Full article
Show Figures

Figure 1

19 pages, 3426 KiB  
Article
PLA/PMMA Reactive Blending in the Presence of MgO as an Exchange Reaction Catalyst
by Masoud Komeijani, Naeimeh Bahri-Laleh, Zohreh Mirjafary, Massimo Christian D’Alterio, Morteza Rouhani, Hossein Sakhaeinia, Amin Hedayati Moghaddam, Seyed Amin Mirmohammadi and Albert Poater
Polymers 2025, 17(7), 845; https://doi.org/10.3390/polym17070845 - 21 Mar 2025
Viewed by 576
Abstract
To address the limitations of poly (lactic acid) (PLA), it was blended with poly (methyl methacrylate) (PMMA) as a toughening component, using MgO nanoparticles (NPs, 0.075–0.15 wt%) as a catalyst. SEM pictures confirmed the good miscibility of the blends. Mechanical tests showed a [...] Read more.
To address the limitations of poly (lactic acid) (PLA), it was blended with poly (methyl methacrylate) (PMMA) as a toughening component, using MgO nanoparticles (NPs, 0.075–0.15 wt%) as a catalyst. SEM pictures confirmed the good miscibility of the blends. Mechanical tests showed a slight decrease in elastic modulus and tensile strength for the PLA/PMMA125 sample containing 0.125% MgO. Yet, elongation at break rose by over 60% and impact strength increased by over 400% compared to pure PLA. Also, MgO facilitated the shifting of the glass transition temperature (Tg) of both polymers in DSC curves. Additionally, the absence of cold crystallization in PLA, coupled with reductions in its melting temperature (Tm) and crystallinity, were identified as critical factors contributing to improved miscibility within the reactive blend. Melt flow index (MFI) evaluation indicated a decrease in viscosity, while water contact angle measurements revealed an increase in polar groups on the surfaces of the MgO-containing samples. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses confirmed the effective distribution and dispersion of NPs throughout the blend, along with a significant decrease in crystallinity. Moreover, DFT calculations were performed to better understand the role of MgO in the reaction. The findings offered key insights into the reaction mechanism, confirming that MgO plays a crucial role in facilitating the transesterification between PLA and PMMA. These findings underscore the enhanced performance of exchange reactions between the active groups of both polymers in the presence of MgO, leading to the formation of PLA-PMMA copolymers with superior miscibility and mechanical properties. Finally, a cell culture assay confirmed the blend’s non-toxicity, showing its versatile potential. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

14 pages, 4345 KiB  
Article
Morphological and Transcriptome Analysis of the Near-Threatened Orchid Habenaria radiata with Petals Shaped Like a Flying White Bird
by Seiji Takeda, Yuki Nishikawa, Tsutomu Tachibana, Takumi Higaki, Tomoaki Sakamoto and Seisuke Kimura
Plants 2025, 14(3), 393; https://doi.org/10.3390/plants14030393 - 28 Jan 2025
Viewed by 1305
Abstract
Orchids have evolved flowers with unique morphologies through coevolution with pollinators, such as insects. Among the floral organs, the lip (labellum), one of the three petals, exhibits a distinctive shape and plays a crucial role in attracting pollinators and facilitating pollination in many [...] Read more.
Orchids have evolved flowers with unique morphologies through coevolution with pollinators, such as insects. Among the floral organs, the lip (labellum), one of the three petals, exhibits a distinctive shape and plays a crucial role in attracting pollinators and facilitating pollination in many orchids. The lip of the terrestrial orchid Habenaria radiata is shaped like a flying white bird and is believed to attract and provide a platform for nectar-feeding pollinators, such as hawk moths. To elucidate the mechanism of lip morphogenesis, we conducted time-lapse imaging of blooming flowers to observe the extension process of the lip and analyzed the cellular morphology during the generation of serrations. We found that the wing part of the lip folds inward in the bud and fully expands in two hours after blooming. The serrations of the lip were initially formed through cell division and later deepened through polar cell elongation. Transcriptome analysis of floral buds revealed the expression of genes involved in floral organ development, cell division, and meiosis. Additionally, genes involved in serration formation are also expressed in floral buds. This study provides insights into the mechanism underlying the formation of the unique lip morphology in Habenaria radiata. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

16 pages, 2811 KiB  
Article
Electro-Enhanced Gas Fermentation for Bioproduction of Volatile Fatty Acids and Alcohols
by Clemens Hiebl and Werner Fuchs
Microorganisms 2025, 13(2), 249; https://doi.org/10.3390/microorganisms13020249 - 23 Jan 2025
Cited by 2 | Viewed by 961
Abstract
This study investigates sub-stoichiometric electron supply, also termed electro-fermentation, to influence product formation in gas fermentation. Two species, Clostridium carboxidivorans and Alkalibaculum bacchi, as well as a co-culture of A. bacchi and Clostridium kluyveri, were tested in batch cultures with and [...] Read more.
This study investigates sub-stoichiometric electron supply, also termed electro-fermentation, to influence product formation in gas fermentation. Two species, Clostridium carboxidivorans and Alkalibaculum bacchi, as well as a co-culture of A. bacchi and Clostridium kluyveri, were tested in batch cultures with and without an external cell potential of 800 mV. The supplied gas mixture was 50:40:10 N2:H2:CO2. The test unit was a single-chamber reactor with a cathode made from an electrically conducting composite of PP and black carbon. The observed current densities were generally very low, around 0.22 mA/m2. Despite that, a significant and reproducible change in product patterns and formation rates occurred. C. carboxidivorans increased the formation of acetate (+32%), butyrate (+300% relative to the control), and caproate (+600% relative to the control). In a similar manner, A. bacchi produced more acetate (+38%), butyrate (13 times more than the control), and caproate (only observed in the electrified setup). Additional trials using a modified gas phase composition, 80:20 H2:CO2, confirmed the finding that the application of an electric potential enhances chain elongation as well as alcohol formation. Moreover, an experiment with reversed electric polarity showed that a high cathode surface area is essential for inducing metabolic modifications. The results demonstrate that electro-fermentation holds significant potential for improving bioconversion processes aimed at producing green chemicals. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 6503 KiB  
Article
HDC1 Promotes Primary Root Elongation by Regulating Auxin and K+ Homeostasis in Response to Low-K+ Stress
by Xiaofang Kuang, Hao Chen, Jing Xiang, Juan Zeng, Qing Liu, Yi Su, Chao Huang, Ruozhong Wang, Wanhuang Lin and Zhigang Huang
Biology 2025, 14(1), 57; https://doi.org/10.3390/biology14010057 - 12 Jan 2025
Viewed by 1056
Abstract
Plants frequently encounter relatively low and fluctuating potassium (K+) concentrations in soil, with roots serving as primary responders to this stress. Histone modifications, such as de-/acetylation, can function as epigenetic markers of stress-inducible genes. However, the signaling network between histone modifications [...] Read more.
Plants frequently encounter relatively low and fluctuating potassium (K+) concentrations in soil, with roots serving as primary responders to this stress. Histone modifications, such as de-/acetylation, can function as epigenetic markers of stress-inducible genes. However, the signaling network between histone modifications and low-K+ (LK) response pathways remains unclear. This study investigated the regulatory role of Histone Deacetylase Complex 1 (HDC1) in primary root growth of Arabidopsis thaliana under K+ deficiency stress. Using a hdc1-2 mutant line, we observed that HDC1 positively regulated root growth under LK conditions. Compared to wild-type (WT) plants, the hdc1-2 mutant exhibited significantly inhibited primary root growth under LK conditions, whereas HDC1-overexpression lines displayed opposite phenotypes. No significant differences were observed under HK conditions. Further analysis revealed that the inhibition of hdc1-2 on root growth was due to reduced apical meristem cell proliferation rather than cell elongation. Notably, the root growth of hdc1-2 showed reduced sensitivity compared to WT after auxin treatment under LK conditions. HDC1 may regulate root growth by affecting auxin polar transport and subsequent auxin signaling, as evidenced by the altered expression of auxin transport genes. Moreover, the organ-specific RT-qPCR analyses unraveled that HDC1 negatively regulates the expression of CBL-CIPK-K+ channel-related genes such as CBL1, CBL2, CBL3, AKT1, and TPK1, thereby establishing a molecular link between histone deacetylation, auxin signaling, and CBLs-CIPKs pathway in response to K+ deficiency. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

14 pages, 1487 KiB  
Brief Report
The Role of Reactive Oxygen Species in the In Vivo Germination and Growth of Petunia (Petunia hybrida E. Vilm.) Male Gametophyte in the Progamic Phase of Fertilization
by Ekaterina V. Zakharova, Yaroslav Yurievich Golivanov, Tatiana P. Molchanova, Alexei I. Ulianov, Irina I. Gazieva and Oksana A. Muratova
Horticulturae 2024, 10(12), 1374; https://doi.org/10.3390/horticulturae10121374 - 20 Dec 2024
Cited by 1 | Viewed by 729
Abstract
The potential role of reactive oxygen species (ROS) is studied in the male gametophytes of petunia (Petunia hybrida E. Vilm.) grown in vivo with a focus on its germination, growth support in the progamic stage of fertilization, and the function of the [...] Read more.
The potential role of reactive oxygen species (ROS) is studied in the male gametophytes of petunia (Petunia hybrida E. Vilm.) grown in vivo with a focus on its germination, growth support in the progamic stage of fertilization, and the function of the mechanism underlying S-RNase-based self-incompatibility. Exogenous treatment with H2O2 influences the in vivo germination and polar growth of pollen tubes (PTs), which manifests as the acceleration or inhibition of these processes depending on its concentration, time interval after pollination, and pollination variant. The H2O2 treatment of the stigma somewhat stimulates the PT elongation in the late stages of self-incompatible pollination (4–8 h) versus the strong PT inhibition observed during the first hour of germination. A different pattern is observable in cross-compatible pollination: the H2O2 treatment of pistils inhibits PT growth during the overall pollination at all tested concentrations. Treatment of pistils with the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) strongly inhibited the growth of PTs in both pollination variants. In addition, DCF-DA staining confirms that ROS are formed in pollen, PTs, stigma of nonpollinated pistil, and the pistil itself in all pollination variants. The PT growth during the function of the self-incompatibility mechanism is arrested at high ROS concentrations, which is presumably associated with the SI-induced programmed cell death. Our results demonstrate that ROS are a necessary component of pollen, PTs, exudate, and stigma cells and contribute to successful reproduction. This study provides a deeper insight into the ROS functions during the PT growth in an in vivo system. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

28 pages, 7483 KiB  
Article
From Division to Death: Metabolomic Analysis of Nicotiana tabacum BY-2 Cells Reveals the Complexity of Life in Batch Culture
by Roman K. Puzanskiy, Anastasia A. Kirpichnikova, Ekaterina M. Bogdanova, Ilya A. Prokopiev, Alexey L. Shavarda, Daria A. Romanyuk, Sergey A. Vanisov, Vladislav V. Yemelyanov and Maria F. Shishova
Plants 2024, 13(23), 3426; https://doi.org/10.3390/plants13233426 - 6 Dec 2024
Viewed by 1425
Abstract
Tobacco BY-2 cell culture is one of the most widely used models in plant biology. The main advantage of BY-2 suspension cultures is the synchronization of cell development and the appearance of polar elongation. In batch culture, BY-2 cells passed through the lag, [...] Read more.
Tobacco BY-2 cell culture is one of the most widely used models in plant biology. The main advantage of BY-2 suspension cultures is the synchronization of cell development and the appearance of polar elongation. In batch culture, BY-2 cells passed through the lag, proliferation, elongation, and stationary phases. During this process, the composition of the growth medium changed dramatically. Sucrose was rapidly eliminated; hexose first accumulated and then depleted. The medium’s pH initially decreased and then rose with aging. As a result of the crosstalk between the internal and external stimuli, cells pass through complicated systemic rearrangements, which cause metabolomic alterations. The early stages were characterized by high levels of amino acids and sterols, which could be interpreted as the result of synthetic activity. The most intense rearrangements occurred between the proliferation and active elongation stages, including repression of amino acid accumulation and up-regulation of sugar metabolism. Later stages were distinguished by higher levels of secondary metabolites, which may be a non-specific response to deteriorating conditions. Senescence was followed by some increase in fatty acids and sterols as well as amino acids, and probably led to self-destructive processes. A correlation analysis revealed relationships between metabolites’ covariation, their biochemical ratio, and the growth phase. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

34 pages, 6053 KiB  
Article
Insights into the Identification of iPSC- and Monocyte-Derived Macrophage-Polarizing Compounds by AI-Fueled Cell Painting Analysis Tools
by Johanna B. Brüggenthies, Jakob Dittmer, Eva Martin, Igor Zingman, Ibrahim Tabet, Helga Bronner, Sarah Groetzner, Julia Sauer, Mozhgan Dehghan Harati, Rebekka Scharnowski, Julia Bakker, Katharina Riegger, Caroline Heinzelmann, Birgit Ast, Robert Ries, Sophie A. Fillon, Anna Bachmayr-Heyda, Kerstin Kitt, Marc A. Grundl, Ralf Heilker, Lina Humbeck, Michael Schuler and Bernd Weigleadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2024, 25(22), 12330; https://doi.org/10.3390/ijms252212330 - 17 Nov 2024
Viewed by 2771
Abstract
Macrophage polarization critically contributes to a multitude of human pathologies. Hence, modulating macrophage polarization is a promising approach with enormous therapeutic potential. Macrophages are characterized by a remarkable functional and phenotypic plasticity, with pro-inflammatory (M1) and anti-inflammatory (M2) states at the extremes of [...] Read more.
Macrophage polarization critically contributes to a multitude of human pathologies. Hence, modulating macrophage polarization is a promising approach with enormous therapeutic potential. Macrophages are characterized by a remarkable functional and phenotypic plasticity, with pro-inflammatory (M1) and anti-inflammatory (M2) states at the extremes of a multidimensional polarization spectrum. Cell morphology is a major indicator for macrophage activation, describing M1(-like) (rounded) and M2(-like) (elongated) states by different cell shapes. Here, we introduced cell painting of macrophages to better reflect their multifaceted plasticity and associated phenotypes beyond the rigid dichotomous M1/M2 classification. Using high-content imaging, we established deep learning- and feature-based cell painting image analysis tools to elucidate cellular fingerprints that inform about subtle phenotypes of human blood monocyte-derived and iPSC-derived macrophages that are characterized as screening surrogate. Moreover, we show that cell painting feature profiling is suitable for identifying inter-donor variance to describe the relevance of the morphology feature ‘cell roundness’ and dissect distinct macrophage polarization signatures after stimulation with known biological or small-molecule modulators of macrophage (re-)polarization. Our novel established AI-fueled cell painting analysis tools provide a resource for high-content-based drug screening and candidate profiling, which set the stage for identifying novel modulators for macrophage (re-)polarization in health and disease. Full article
(This article belongs to the Special Issue Advanced Research on Macrophages in Human Health and Disease)
Show Figures

Graphical abstract

14 pages, 4109 KiB  
Article
Proteomic Analysis Reveals Physiological Activities of Aβ Peptide for Alzheimer’s Disease
by Xiaorui Ai, Zeyu Cao, Zhaoru Ma, Qinghuan Liu, Wei Huang, Taolei Sun, Jing Li and Chenxi Yang
Int. J. Mol. Sci. 2024, 25(15), 8336; https://doi.org/10.3390/ijms25158336 - 30 Jul 2024
Cited by 1 | Viewed by 1985
Abstract
With the rapid progress in deciphering the pathogenesis of Alzheimer’s disease (AD), it has been widely accepted that the accumulation of misfolded amyloid β (Aβ) in the brain could cause the neurodegeneration in AD. Although much evidence demonstrates the neurotoxicity of Aβ, the [...] Read more.
With the rapid progress in deciphering the pathogenesis of Alzheimer’s disease (AD), it has been widely accepted that the accumulation of misfolded amyloid β (Aβ) in the brain could cause the neurodegeneration in AD. Although much evidence demonstrates the neurotoxicity of Aβ, the role of Aβ in the nervous system are complex. However, more comprehensive studies are needed to understand the physiological effect of Aβ40 monomers in depth. To explore the physiological mechanism of Aβ, we employed mass spectrometry to investigate the altered proteomic events induced by a lower submicromolar concentration of Aβ. Human neuroblastoma SH-SY5Y cells were exposed to five different concentrations of Aβ1-40 monomers and collected at four time points. The proteomic analysis revealed the time–course behavior of proteins involved in biological processes, such as RNA splicing, nuclear transport and protein localization. Further biological studies indicated that Aβ40 monomers may activate PI3K/AKT signaling to regulate p-Tau, Ezrin and MAP2. These three proteins are associated with dendritic morphogenesis, neuronal polarity, synaptogenesis, axon establishment and axon elongation. Moreover, Aβ40 monomers may regulate their physiological forms by inhibiting the expression of BACE1 and APP via activation of the ERK1/2 pathway. A comprehensive exploration of pathological and physiological mechanisms of Aβ is beneficial for exploring novel treatment. Full article
(This article belongs to the Special Issue Mass Spectrometric Proteomics 3.0)
Show Figures

Figure 1

20 pages, 4661 KiB  
Article
Wnt5a Promotes Axon Elongation in Coordination with the Wnt–Planar Cell Polarity Pathway
by Samar Ahmad and Liliana Attisano
Cells 2024, 13(15), 1268; https://doi.org/10.3390/cells13151268 - 28 Jul 2024
Cited by 3 | Viewed by 1471
Abstract
The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a [...] Read more.
The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

16 pages, 3543 KiB  
Article
Multifunctional Cell Regulation Activities of the Mussel Lectin SeviL: Induction of Macrophage Polarization toward the M1 Functional Phenotype
by Yuki Fujii, Kenichi Kamata, Marco Gerdol, Imtiaj Hasan, Sultana Rajia, Sarkar M. A. Kawsar, Somrita Padma, Bishnu Pada Chatterjee, Mayuka Ohkawa, Ryuya Ishiwata, Suzuna Yoshimoto, Masao Yamada, Namiho Matsuzaki, Keita Yamamoto, Yuka Niimi, Nobumitsu Miyanishi, Masamitsu Konno, Alberto Pallavicini, Tatsuya Kawasaki, Yukiko Ogawa, Yasuhiro Ozeki and Hideaki Fujitaadd Show full author list remove Hide full author list
Mar. Drugs 2024, 22(6), 269; https://doi.org/10.3390/md22060269 - 11 Jun 2024
Cited by 2 | Viewed by 3156
Abstract
SeviL, a galactoside-binding lectin previously isolated from the mussel Mytilisepta virgata, was demonstrated to trigger apoptosis in HeLa ovarian cancer cells. Here, we show that this lectin can promote the polarization of macrophage cell lines toward an M1 functional phenotype at low [...] Read more.
SeviL, a galactoside-binding lectin previously isolated from the mussel Mytilisepta virgata, was demonstrated to trigger apoptosis in HeLa ovarian cancer cells. Here, we show that this lectin can promote the polarization of macrophage cell lines toward an M1 functional phenotype at low concentrations. The administration of SeviL to monocyte and basophil cell lines reduced their growth in a dose-dependent manner. However, low lectin concentrations induced proliferation in the RAW264.7 macrophage cell line, which was supported by the significant up-regulation of TOM22, a component of the mitochondrial outer membrane. Furthermore, the morphology of lectin-treated macrophage cells markedly changed, shifting from a spherical to an elongated shape. The ability of SeviL to induce the polarization of RAW264.7 cells to M1 macrophages at low concentrations is supported by the secretion of proinflammatory cytokines and chemokines, as well as by the enhancement in the expression of IL-6- and TNF-α-encoding mRNAs, both of which encode inflammatory molecular markers. Moreover, we also observed a number of accessory molecular alterations, such as the activation of MAP kinases and the JAK/STAT pathway and the phosphorylation of platelet-derived growth factor receptor-α, which altogether support the functional reprogramming of RAW264.7 following SeviL treatment. These results indicate that this mussel β-trefoil lectin has a concentration-dependent multifunctional role in regulating cell proliferation, phenotype, and death in macrophages, suggesting its possible involvement in regulating hemocyte activity in vivo. Full article
(This article belongs to the Special Issue Marine Glycomics 2nd Edition)
Show Figures

Figure 1

17 pages, 3638 KiB  
Article
Cell-Autonomous and Non-Cell-Autonomous Mechanisms Concomitantly Regulate the Early Developmental Pattern in the Kelp Saccharina latissima Embryo
by Samuel Boscq, Bernard Billoud and Bénédicte Charrier
Plants 2024, 13(10), 1341; https://doi.org/10.3390/plants13101341 - 13 May 2024
Cited by 4 | Viewed by 2827
Abstract
Brown algae are multicellular organisms that have evolved independently from plants and animals. Knowledge of the mechanisms involved in their embryogenesis is available only for the Fucus, Dictyota, and Ectocarpus, which are brown algae belonging to three different orders. Here, [...] Read more.
Brown algae are multicellular organisms that have evolved independently from plants and animals. Knowledge of the mechanisms involved in their embryogenesis is available only for the Fucus, Dictyota, and Ectocarpus, which are brown algae belonging to three different orders. Here, we address the control of cell growth and cell division orientation in the embryo of Saccharina latissima, a brown alga belonging to the order Laminariales, which grows as a stack of cells through transverse cell divisions until growth is initiated along the perpendicular axis. Using laser ablation, we show that apical and basal cells have different functions in the embryogenesis of this alga, with the apical cell being involved mainly in growth and basal cells controlling the orientation of cell division by inhibiting longitudinal cell division and thereby the widening of the embryo. These functions were observed in the very early development before the embryo reached the 8-cell stage. In addition, the growth of the apical and basal regions appears to be cell-autonomous, because there was no compensation for the loss of a significant part of the embryo upon laser ablation, resulting in smaller and less elongated embryos compared with intact embryos. In contrast, the orientation of cell division in the apical region of the embryo appears to be controlled by the basal cell only, which suggests a polarised, non-cell-autonomous mechanism. Altogether, our results shed light on the early mechanisms of growth rate and growth orientation at the onset of the embryogenesis of Saccharina, in which non-cell-specific cell-autonomous and cell-specific non-cell-autonomous processes are involved. This complex control differs from the mechanisms described in the other brown algal embryos, in which the establishment of embryo polarity depends on environmental cues. Full article
(This article belongs to the Special Issue Current Topics in Macroalgal Research)
Show Figures

Figure 1

12 pages, 8742 KiB  
Article
Quantum Applications of an Atomic Ensemble Inside a Laser Cavity
by Andrei Ben Amar Baranga, Gennady A. Koganov, David Levron, Gabriel Bialolenker and Reuben Shuker
Photonics 2024, 11(1), 46; https://doi.org/10.3390/photonics11010046 - 2 Jan 2024
Viewed by 1917
Abstract
Many quantum device signals are proportional to the number of the participating atoms that take part in the detection devices. Among these are optical magnetometers, atomic clocks, quantum communications and atom interferometers. One way to enhance the signal-to-noise ratio is to introduce atom [...] Read more.
Many quantum device signals are proportional to the number of the participating atoms that take part in the detection devices. Among these are optical magnetometers, atomic clocks, quantum communications and atom interferometers. One way to enhance the signal-to-noise ratio is to introduce atom entanglement that increases the signal in a super-radiant-like effect. A coherent em field inside a laser cavity is suggested to achieve atoms’ correlation/entanglement. This may also play an important role in the basic quantum arena of many-body physics. An initial novel experiment to test the realization of atoms’ correlation is described here. A Cs optical magnetometer is used as a tool to test the operation of a cell-in-cavity laser and its characteristics. A vapor cell is inserted into an elongated external cavity of the pump laser in Littrow configuration. Higher atom polarization and reduced laser linewidth are obtained leading to better magnetometer sensitivity and signal-to-noise ratio. The Larmor frequency changes of the Free Induction Decay of optically pumped Cs atomic polarization in the ambient earth magnetic field at room temperature is measured. Temporal changes in the magnetic field of less than 10 pT/√Hz are measured. The first-order dependence of the magnetic field on temperature and temperature gradients is eliminated, important in many practical applications. Single and gradiometric magnetometer configurations are presented. Full article
(This article belongs to the Special Issue Quantum Optics: Science and Applications)
Show Figures

Figure 1

Back to TopTop