Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = platinum-nickel electrocatalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Viewed by 113
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

20 pages, 15674 KiB  
Article
Binder-Free Fe-N-C-O Bifunctional Electrocatalyst in Nickel Foam for Aqueous Zinc–Air Batteries
by Jorge González-Morales, Jadra Mosa and Mario Aparicio
Batteries 2025, 11(4), 159; https://doi.org/10.3390/batteries11040159 - 17 Apr 2025
Viewed by 950
Abstract
The development of efficient, sustainable, and cost-effective catalysts is crucial for energy storage technologies, such as zinc–air batteries (ZABs). These batteries require bifunctional catalysts capable of efficiently and selectively catalyzing oxygen redox reactions. However, the high cost and low selectivity of conventional catalysts [...] Read more.
The development of efficient, sustainable, and cost-effective catalysts is crucial for energy storage technologies, such as zinc–air batteries (ZABs). These batteries require bifunctional catalysts capable of efficiently and selectively catalyzing oxygen redox reactions. However, the high cost and low selectivity of conventional catalysts hinder the large-scale integration of ZABs into the electric grid. This study presents binder-free Fe-based bifunctional electrocatalysts synthesized via a sol–gel method, followed by thermal treatment under ammonia flow. Supported on nickel foam, the catalyst exhibits enhanced activity for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), essential for ZAB operation. This work addresses two critical challenges in the development of ZABs: first, the replacement of costly cobalt or platinum-group-metal (PGM)-based catalysts with an efficient alternative; second, the achievement of prolonged battery performance under real conditions without passivation. Structural analysis confirms the integration of iron nitrides, oxides, and carbon, resulting in high conductivity and catalytic stability without relying on precious or cobalt-based metals. Electrochemical tests reveal that the catalyst calcined at 800 °C delivers superior performance, achieving a four-electron ORR mechanism and prolonged operational life compared to its 900 °C counterpart. Both catalysts outperform conventional Pt/C-RuO2 systems in stability and selective bifunctionality, offering a more sustainable and cost-effective alternative. The innovative combination of nitrogen, carbon, and iron compounds overcomes limitations associated with traditional materials, paving the way for scalable, high-performance applications in renewable energy storage. This work underscores the potential of transition metal-based catalysts in advancing the commercial viability of ZABs. Full article
Show Figures

Graphical abstract

16 pages, 4879 KiB  
Article
Sol–Gel-Synthesized Pt, Ni and Co-Based Electrocatalyst Effects of the Support Type, Characterization, and Possible Application in AEM-URFC
by Elitsa Stanislavova Petkucheva, Borislava Mladenova, Mohsin Muhyuddin, Mariela Dimitrova, Galin Rusev Borisov, Carlo Santoro and Evelina Slavcheva
Gels 2025, 11(4), 229; https://doi.org/10.3390/gels11040229 - 22 Mar 2025
Cited by 2 | Viewed by 781
Abstract
This study explores the synthesis and characterization of platinum (Pt), nickel (Ni), and cobalt (Co)-based electrocatalysts using the sol–gel method. The focus is on the effect of different support materials on the catalytic performance in alkaline media. The sol–gel technique enables the production [...] Read more.
This study explores the synthesis and characterization of platinum (Pt), nickel (Ni), and cobalt (Co)-based electrocatalysts using the sol–gel method. The focus is on the effect of different support materials on the catalytic performance in alkaline media. The sol–gel technique enables the production of highly uniform electrocatalysts, supported on carbon-based substrates, metal oxides, and conductive polymers. Various characterization techniques, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), were used to analyze the structure of the synthesized materials, while their electrochemical properties, which are relevant to their application in unitized regenerative fuel cells (URFCs), were investigated using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). This hydrogen energy-converting device integrates water electrolyzers and fuel cells into a single system, reducing weight, volume, and cost. However, their performance is constrained by the electrocatalyst’s oxygen bifunctional activity. To improve URFC efficiency, an ideal electrocatalyst should exhibit high oxygen evolution (OER) and oxygen reduction (ORR) activity with a low bifunctionality index (BI). The present study evaluated the prepared electrocatalysts in an alkaline medium, finding that Pt25-Co75/XC72R and Pt75-Co25/N82 demonstrated promising bifunctional activity. The results suggest that these electrocatalysts are well-suited for both electrolysis and fuel cell operation in anion exchange membrane-unitized regenerative fuel cells (AEM-URFCs), contributing to improved round-trip efficiency. Full article
(This article belongs to the Special Issue Gels for Flexible Electronics and Energy Devices (2nd Edition))
Show Figures

Graphical abstract

23 pages, 2792 KiB  
Article
Enhanced Electrocatalytic Performance of Nickel-Cobalt-Titanium Dioxide-Embedded Carbon Nanofibers for Direct Alcohol Fuel Cells
by Wael M. Mohammed, Mahmoud A. Mohamed, Mohamed O. Abdel-Hamed and Esam E. Abdel-Hady
J. Compos. Sci. 2025, 9(3), 125; https://doi.org/10.3390/jcs9030125 - 10 Mar 2025
Cited by 1 | Viewed by 1498
Abstract
This study focuses on making non-precious electrocatalysts for improving the performance of Direct Alcohol Fuel Cells (DAFCs). Specifically, it examines the oxidation of ethanol and methanol. Conventional platinum-based catalysts are expensive and suffer from problems such as degradation and poisoning. To overcome these [...] Read more.
This study focuses on making non-precious electrocatalysts for improving the performance of Direct Alcohol Fuel Cells (DAFCs). Specifically, it examines the oxidation of ethanol and methanol. Conventional platinum-based catalysts are expensive and suffer from problems such as degradation and poisoning. To overcome these challenges, we fabricated tri-metallic catalysts composed of nickel, cobalt, and titanium dioxide (TiO2) embedded in carbon nanofibers (CNFs). The synthesis included electrospinning and subsequent carbonization as well as optimization of parameters to achieve uniform nanofiber morphology and high surface area. Electrochemical characterization revealed that the incorporation of TiO2 significantly improved electrocatalytic activity for ethanol and methanol oxidation, with current densities increasing from 57.8 mA/cm2 to 74.2 mA/cm2 for ethanol and from 38.69 mA/cm2 to 60.39 mA/cm2 for methanol as the TiO2 content increased. The catalysts showed excellent stability, with the TiO2-enriched sample (T2) showing superior performance during longer cycling tests. Chronoamperometry and electrochemical impedance spectroscopy are used to examine the stability of the catalysts and the dynamics of the charge carriers. Impedance spectroscopy indicated reduced charge transfer resistance, confirming enhanced activities. These findings suggest that the synthesized non-precious electrocatalysts can serve as effective alternatives to platinum-based materials, offering a promising pathway for the development of cost-efficient and durable fuel cells. Research highlights non-precious metal catalysts for sustainable fuel cell technologies. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

15 pages, 7166 KiB  
Article
XPS Depth Profiling of Surface Restructuring Responsible for Hydrogen Evolution Reaction Activity of Nickel Sulfides in Alkaline Electrolyte
by Jiangtian Li, Deryn Chu, Connor Poland, Cooper Smith, Enoch A. Nagelli and Victor Jaffett
Materials 2025, 18(3), 549; https://doi.org/10.3390/ma18030549 - 25 Jan 2025
Cited by 1 | Viewed by 1683
Abstract
Electrochemical water splitting provides a sustainable method for hydrogen production. However, the primary challenge for electrochemical hydrogen generation is the high cost and limited availability of platinum-based noble-metal catalysts. Transition-metal chalcogenides have been identified as low-cost and efficient electrocatalysts to promote the hydrogen [...] Read more.
Electrochemical water splitting provides a sustainable method for hydrogen production. However, the primary challenge for electrochemical hydrogen generation is the high cost and limited availability of platinum-based noble-metal catalysts. Transition-metal chalcogenides have been identified as low-cost and efficient electrocatalysts to promote the hydrogen evolution reaction (HER) in alkaline electrolytes. Nonetheless, the identification of active sites and the underlying catalytic mechanism remain elusive. In this study, phosphorus-doped nickel sulfide has been successfully synthesized, demonstrating enhanced activity for alkaline HER. Investigating surface chemistry through X-ray photoelectron spectroscopy (XPS), depth profiling revealed that surface restructuring occurs during the HER process. The presence of phosphorus significantly influences this transformation, promoting the formation of a novel active Ni-O layer. This Ni-O layer is responsible for enhanced catalytic activity by upshifting the d-band center and increasing the density of states near the Fermi level, along with expanding the electrochemical surface area. This study reveals that the surface restructuring of transition-metal sulfides is highly tied to the electronic structure of the parent catalysts. Gaining a comprehensive understanding of this surface restructuring is essential for predicting and exploring more efficient non-precious transition-metal sulfide electrocatalysts. Full article
Show Figures

Figure 1

13 pages, 3646 KiB  
Article
Electric-Field-Assisted Synthesis of Cu/MoS2 Nanostructures for Efficient Hydrogen Evolution Reaction
by Surra Yonas, Birhanu Bayissa Gicha, Samir Adhikari, Fedlu Kedir Sabir, Van Tan Tran, Njemuwa Nwaji, Bedasa Abdisa Gonfa and Lemma Teshome Tufa
Micromachines 2024, 15(4), 495; https://doi.org/10.3390/mi15040495 - 3 Apr 2024
Cited by 2 | Viewed by 2124
Abstract
Molybdenum sulfide–oxide (MoS2, MS) emerges as the prime electrocatalyst candidate demonstrating hydrogen evolution reaction (HER) activity comparable to platinum (Pt). This study presents a facile electrochemical approach for fabricating a hybrid copper (Cu)/MoS2 (CMS) nanostructure thin-film electrocatalyst directly onto nickel [...] Read more.
Molybdenum sulfide–oxide (MoS2, MS) emerges as the prime electrocatalyst candidate demonstrating hydrogen evolution reaction (HER) activity comparable to platinum (Pt). This study presents a facile electrochemical approach for fabricating a hybrid copper (Cu)/MoS2 (CMS) nanostructure thin-film electrocatalyst directly onto nickel foam (NF) without a binder or template. The synthesized CMS nanostructures were characterized utilizing energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical methods. The XRD result revealed that the Cu metal coating on MS results in the creation of an extremely crystalline CMS nanostructure with a well-defined interface. The hybrid nanostructures demonstrated higher hydrogen production, attributed to the synergistic interplay of morphology and electron distribution at the interface. The nanostructures displayed a significantly low overpotential of −149 mV at 10 mA cm−2 and a Tafel slope of 117 mV dec−1, indicating enhanced catalytic activity compared to pristine MoS2.This research underscores the significant enhancement of the HER performance and conductivity achieved by CMS, showcasing its potential applications in renewable energy. Full article
(This article belongs to the Special Issue Nanotechnology for Electrochemistry Applications)
Show Figures

Figure 1

14 pages, 2994 KiB  
Article
Supercapacitor Electrodes: Is Nickel Foam the Right Substrate for Active Materials?
by Milena P. Dojčinović, Ivana Stojković Simatović and Maria Vesna Nikolić
Materials 2024, 17(6), 1292; https://doi.org/10.3390/ma17061292 - 11 Mar 2024
Cited by 10 | Viewed by 5880
Abstract
Ni foam is an extensively used current collector and substrate in investigations of electrochemically active materials such as supercapacitors and electrocatalysts for oxygen and hydrogen evolution reactions. This material is relatively cheap, porous, and conductive and has a large specific surface area, all [...] Read more.
Ni foam is an extensively used current collector and substrate in investigations of electrochemically active materials such as supercapacitors and electrocatalysts for oxygen and hydrogen evolution reactions. This material is relatively cheap, porous, and conductive and has a large specific surface area, all of which make it a good substrate. We investigated Ni-Mg ferrites and NiMn2O4 as active materials for electrochemical energy storage. These materials, when loaded on Ni foam, gave promising capacitance values: 172 F/g (at 2 mV/s) for NiMn2O4 in 6 M KOH and 242 F/g (at 2 mV/s) for MgFe2O4 in 3 M KOH. Nevertheless, during the authors’ work, many experimental problems occurred. Inconsistencies in the results directed further investigation towards measuring the capacitance of the active materials using GCE and platinum electrodes as substrates to discover if Ni foam was the culprit of the inconsistencies. When non-nickel substrates were used, both NiMn2O4 and MgFe2O4 showed reduced capacitance. Experimental problems associated with the utilization of Ni foam as a substrate for active materials in supercapacitor electrodes are discussed here, combined with other problems already addressed in the scientific literature. Full article
Show Figures

Figure 1

22 pages, 4973 KiB  
Article
Optimizing Oxygen Electrode Bifunctionality with Platinum and Nickel Nanoparticle-Decorated Nitrogen-Doped Binary Metal Oxides
by Dušan Mladenović, Yasemin Aykut, Ayşe B. Yurtcan, Gulin S. P. Soylu, Diogo M. F. Santos, Šćepan Miljanić and Biljana Šljukić
Processes 2024, 12(3), 453; https://doi.org/10.3390/pr12030453 - 23 Feb 2024
Cited by 2 | Viewed by 1937
Abstract
Developing bifunctional oxygen electrode materials with superior activity for oxygen reduction (ORR) and oxygen evolution (OER) reactions is essential for advancing regenerative fuel cell and rechargeable metal–air battery technologies. This present work deals with the synthesis and characterization of electrocatalysts containing Pt and [...] Read more.
Developing bifunctional oxygen electrode materials with superior activity for oxygen reduction (ORR) and oxygen evolution (OER) reactions is essential for advancing regenerative fuel cell and rechargeable metal–air battery technologies. This present work deals with the synthesis and characterization of electrocatalysts containing Pt and Ni nanoparticles supported on nitrogen-doped mixed metal oxides (Mn2O3-NiO) and the systematic evaluation of their bifunctional ORR/OER performance in an alkaline medium. These electrocatalysts have been successfully synthesized by a simple and fast microwave method. PtNi/Mn2O3-NiO-N with a binary metal oxide-to-N ratio of 1:2 demonstrated the best performance among the studied materials regarding bifunctional electrocatalytic activity (∆E = 0.96 V) and robust stability. Full article
Show Figures

Figure 1

13 pages, 2444 KiB  
Communication
A Molecular Binuclear Nickel (II) Schiff Base Complex for Efficient HER Electrocatalysis
by Kian Shamskhou, Houssein Awada, Farzaneh Yari, Abdalaziz Aljabour and Wolfgang Schöfberger
Catalysts 2023, 13(10), 1348; https://doi.org/10.3390/catal13101348 - 6 Oct 2023
Cited by 5 | Viewed by 2282
Abstract
The hydrogen evolution reaction (HER) has emerged as a focal point in the realm of sustainable energy generation, offering the potential to produce clean hydrogen gas (H2) devoid of pollutants. The pursuit of stable HER electrocatalysts that can reduce our reliance [...] Read more.
The hydrogen evolution reaction (HER) has emerged as a focal point in the realm of sustainable energy generation, offering the potential to produce clean hydrogen gas (H2) devoid of pollutants. The pursuit of stable HER electrocatalysts that can reduce our reliance on precious platinum, while still maintaining a high level of catalytic efficiency, presents a significant and ongoing challenge. In this study, we introduce the utilization of a binuclear nickel (II) Schiff base complex known as [Ni]2[L]2 2 for the purpose of HER electrocatalysis. The rational design of this electrocatalyst has yielded optimal HER performance, wherein the strategic placement of electronegative heteroatoms in proximity to the metal centers serves to enhance proton affinity. Consequently, this catalyst manifests outstanding HER activity, characterized by a nearly 100% faradaic efficiency (FE) at an overpotential potential of −0.4 V versus the reverse hydrogen electrode (RHE), sustained catalytic activity over an extended 80 h electrolysis period, and a commendable turnover number (TON) of 0.0006 s−1. Full article
Show Figures

Graphical abstract

15 pages, 3546 KiB  
Article
Platinum–Nickel Electrocatalysts for a Proton-Exchange Membrane Fuel Cell Cathode: Their Synthesis, Acid Treatment, Microstructure and Electrochemical Behavior
by Ekaterina Kozhokar, Angelina Pavlets, Ilya Pankov and Anastasia Alekseenko
Energies 2023, 16(16), 6078; https://doi.org/10.3390/en16166078 - 20 Aug 2023
Cited by 1 | Viewed by 2104
Abstract
Within this research, we studied the structural–morphological and electrochemical characteristics of the PtNi/C catalysts synthesized via the two-stage sequential reduction of precursors. We also carried out a comparative study of the obtained bimetallic catalysts and their commercial Pt/C analog. The use of triethylamine [...] Read more.
Within this research, we studied the structural–morphological and electrochemical characteristics of the PtNi/C catalysts synthesized via the two-stage sequential reduction of precursors. We also carried out a comparative study of the obtained bimetallic catalysts and their commercial Pt/C analog. The use of triethylamine as a surfactant as well as the acid treatment as an additional synthesis stage, were shown to have a positive effect on the functional parameters of the bimetallic electrocatalysts. The resulting PtNi/C electrocatalyst demonstrates a mass activity value of 389 A gPt−1, which is 1.6 times higher than this parameter for a commercial analog. Full article
(This article belongs to the Section D3: Nanoenergy)
Show Figures

Figure 1

14 pages, 5804 KiB  
Article
Iron-Doped Nickel Hydroxide Nanosheets as Efficient Electrocatalysts in Electrochemical Water Splitting
by Palani Krishnamurthy, Thandavarayan Maiyalagan, Gasidit Panomsuwan, Zhongqing Jiang and Mostafizur Rahaman
Catalysts 2023, 13(7), 1095; https://doi.org/10.3390/catal13071095 - 13 Jul 2023
Cited by 16 | Viewed by 3104
Abstract
The development of non-noble-metal-based electrocatalysts for water electrolysis is essential to produce sustainable green hydrogen. Highly active and stable non-noble-metal-based electrocatalysts are greatly needed for the replacement of the benchmark electrocatalysts of iridium, ruthenium, and platinum oxides. Herein, we synthesized non-noble-metal-based, Fe-doped, β-Ni(OH) [...] Read more.
The development of non-noble-metal-based electrocatalysts for water electrolysis is essential to produce sustainable green hydrogen. Highly active and stable non-noble-metal-based electrocatalysts are greatly needed for the replacement of the benchmark electrocatalysts of iridium, ruthenium, and platinum oxides. Herein, we synthesized non-noble-metal-based, Fe-doped, β-Ni(OH)2 interconnected hierarchical nanosheets on nickel foam via a conventional hydrothermal reaction. Iron doping significantly modified the electronic structure of β-Ni(OH)2 due to the electron transfer of iron to nickel hydroxide. Fe-doped β-Ni(OH)2 was investigated both as a cathode and anode electrode for hydrogen and oxygen evolution reactions (OERs and HERs). It facilitated significant improvements in electrochemical performance due to its huge intrinsic active sites and high electrical conductivity. As a result, the electrocatalytic activity of Fe-doped Ni(OH)2 exhibited a lesser overpotential of 189 and 112 mV at a current density of 10 mA cm−2 and a Tafel slope of 85 and 89 mV dec−1 for the OER and HER, respectively. The Fe-doped β-Ni(OH)2 displayed excellent durability for 48 h and a cell voltage of 1.61 V @ 10 mA cm−2. This work demonstrates that Fe-doped β-Ni(OH)2 is an efficient electrocatalyst with superior electrocatalytic performance towards overall water splitting that can be useful at the industrial scale. Full article
(This article belongs to the Special Issue Advances in High Electrocatalytic Performance Electrode Materials)
Show Figures

Graphical abstract

20 pages, 8283 KiB  
Article
Synthesis and Characterization of NiCoPt/CNFs Nanoparticles as an Effective Electrocatalyst for Energy Applications
by Esam E. Abdel-Hady, Mohamed Shaban, Mohamed O. Abdel-Hamed, Ahmed Gamal, Heba Yehia and Ashour M. Ahmed
Nanomaterials 2022, 12(3), 492; https://doi.org/10.3390/nano12030492 - 30 Jan 2022
Cited by 20 | Viewed by 3210
Abstract
In this work, three nanoparticle samples, Ni4Co2Pt/CNFs, Ni5CoPt/CNFs and Ni6Pt/CNFs, were designed according to the molar ratio during loading on carbon nanofibers (CNFs) using electrospinning and carbonization at 900 °C for 7 h in an [...] Read more.
In this work, three nanoparticle samples, Ni4Co2Pt/CNFs, Ni5CoPt/CNFs and Ni6Pt/CNFs, were designed according to the molar ratio during loading on carbon nanofibers (CNFs) using electrospinning and carbonization at 900 °C for 7 h in an argon atmosphere. The metal loading and carbon ratio were fixed at 20 and 80 wt%, respectively. Various analysis tools were used to investigate the chemical composition, structural, morphological, and electrochemical (EC) properties. For samples with varying Co%, the carbonization process reduces the fiber diameter of the obtained electrospun nanofibers from 200–580 nm to 150–200 nm. The EDX mapping revealed that nickel, platinum, and cobalt were evenly and uniformly incorporated into the carbonized PVANFs. The prepared Ni-Co-Pt/CNFs have a face-centered cubic (FCC) structure with slightly increased crystallite size as the Co% decreased. The electrocatalytic properties of the samples were investigated for ethanol, methanol and urea electrooxidation. Using cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance measurements, the catalytic performance and electrode stability were investigated as a function of electrolyte concentration, scan rate, and reaction time. When Co is added to Ni, the activation energy required for the electrooxidation reaction decreases and the electrode stability increases. In 1.5 M methanol, the Ni5CoPt/CNFs electrode showed the lowest onset potential and the highest current density (30.6 A/g). This current density is reduced to 28.2 and 21.2 A/g for 1.5 M ethanol and 0.33 M urea, respectively. The electrooxidation of ethanol, methanol, and urea using our electrocatalysts is a combination of kinetic/diffusion control limiting reactions. This research provided a unique approach to developing an efficient Ni-Co-Pt-based electrooxidation catalyst for ethanol, methanol and urea. Full article
(This article belongs to the Special Issue Nanomaterials for Electrochemical Applications)
Show Figures

Figure 1

13 pages, 2245 KiB  
Article
Ionic Liquid-Derived Carbon-Supported Metal Electrocatalysts as Anodes in Direct Borohydride-Peroxide Fuel Cells
by Jadranka Milikić, Raisa C. P. Oliveira, Andres Tapia, Diogo M. F. Santos, Nikola Zdolšek, Tatjana Trtić-Petrović, Milan Vraneš and Biljana Šljukić
Catalysts 2021, 11(5), 632; https://doi.org/10.3390/catal11050632 - 14 May 2021
Cited by 5 | Viewed by 3165
Abstract
Three different carbon-supported metal (gold, platinum, nickel) nanoparticle (M/c-IL) electrocatalysts are prepared by template-free carbonization of the corresponding ionic liquids, namely [Hmim][AuCl4], [Hmim]2[PtCl4], and [C16mim]2[NiCl4], as confirmed by X-ray diffraction analysis, [...] Read more.
Three different carbon-supported metal (gold, platinum, nickel) nanoparticle (M/c-IL) electrocatalysts are prepared by template-free carbonization of the corresponding ionic liquids, namely [Hmim][AuCl4], [Hmim]2[PtCl4], and [C16mim]2[NiCl4], as confirmed by X-ray diffraction analysis, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and Raman spectroscopy. The electrochemical investigation of borohydride oxidation reaction (BOR) at the three electrocatalysts by cyclic voltammetry reveals different behavior for each material. BOR is found to be a first-order reaction at the three electrocatalysts, with an apparent activation energy of 10.6 and 13.8 kJ mol−1 for Pt/c-IL and Au/c-IL electrocatalysts, respectively. A number of exchanged electrons of 5.0, 2.4, and 2.0 is obtained for BOR at Pt/c-IL, Au/c-IL, and Ni/c-IL electrodes, respectively. Direct borohydride-peroxide fuel cell (DBPFC) tests done at temperatures in the 25–65 °C range show ca. four times higher power density when using a Pt/c-IL anode than with an Au/c-IL anode. Peak power densities of 40.6 and 120.5 mW cm−2 are achieved at 25 and 65 °C, respectively, for DBPFC with a Pt/c-IL anode electrocatalyst. Full article
(This article belongs to the Special Issue Innovative Electrocatalysts for Fuel Cell and Battery Applications)
Show Figures

Figure 1

38 pages, 2801 KiB  
Review
Recent Developments for the Application of 3D Structured Material Nickel Foam and Graphene Foam in Direct Liquid Fuel Cells and Electrolyzers
by Nabila A. Karim, Muhammad Syafiq Alias and Hsiharng Yang
Catalysts 2021, 11(2), 279; https://doi.org/10.3390/catal11020279 - 19 Feb 2021
Cited by 18 | Viewed by 5757
Abstract
Platinum and platinum-based catalysts are some of the most effective catalysts used in fuel cells. However, electrocatalysts used for direct liquid fuel cells (DLFCs) and electrolyzers are high cost and suffer from several other problems, thus hindering their commercialization as power sources to [...] Read more.
Platinum and platinum-based catalysts are some of the most effective catalysts used in fuel cells. However, electrocatalysts used for direct liquid fuel cells (DLFCs) and electrolyzers are high cost and suffer from several other problems, thus hindering their commercialization as power sources to produce clean energy. Common issues in electrocatalysts are low stability and durability, slow kinetics, catalyst poisoning, high catalyst loading, high cost of the catalytic materials, poisoning of the electrocatalysts, and formation of intermediate products during electrochemical reactions. The use of catalyst supports can enhance the catalytic activity and stability of the power sources. Thus, nickel foam and graphene foam with 3D structures have advantages over other catalyst supports. This paper presents the application of nickel foam and graphene foam as catalyst supports that enhance the activities, selectivity, efficiency, specific surface area, and exposure of the active sites of DLFCs. Selected recent studies on the use of foam in electrolyzers are also presented. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

12 pages, 1773 KiB  
Article
Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction
by Anna Dymerska, Wojciech Kukułka, Marcin Biegun and Ewa Mijowska
Materials 2020, 13(18), 3918; https://doi.org/10.3390/ma13183918 - 4 Sep 2020
Cited by 19 | Viewed by 4479
Abstract
The renewable energy technologies require electrocatalysts for reactions, such as the oxygen and/or hydrogen evolution reaction (OER/HER). They are complex electrochemical reactions that take place through the direct transfer of electrons. However, mostly they have high over-potentials and slow kinetics, that is why [...] Read more.
The renewable energy technologies require electrocatalysts for reactions, such as the oxygen and/or hydrogen evolution reaction (OER/HER). They are complex electrochemical reactions that take place through the direct transfer of electrons. However, mostly they have high over-potentials and slow kinetics, that is why they require electrocatalysts to lower the over-potential of the reactions and enhance the reaction rate. The commercially used catalysts (e.g., ruthenium nanoparticles—Ru, iridium nanoparticles—Ir, and their oxides: RuO2, IrO2, platinum—Pt) contain metals that have poor stability, and are not economically worthwhile for widespread application. Here, we propose the spinel structure of nickel-cobalt oxide (NiCo2O4) fabricated to serve as electrocatalyst for OER. These structures were obtained by a facile two-step method: (1) One-pot solvothermal reaction and subsequently (2) pyrolysis or carbonization, respectively. This material exhibits novel rod-like morphology formed by tiny spheres. The presence of transition metal particles such as Co and Ni due to their conductivity and electron configurations provides a great number of active sites, which brings superior electrochemical performance in oxygen evolution and good stability in long-term tests. Therefore, it is believed that we propose interesting low-cost material that can act as a super stable catalyst in OER. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

Back to TopTop