A Molecular Binuclear Nickel (II) Schiff Base Complex for Efficient HER Electrocatalysis
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis and Characterization
3.1.1. Synthesis of 4-(Octyloxy)phenol
3.1.2. Synthesis of 2-Hydroxy-5-(octyloxy)benzaldehyde
3.1.3. Synthesis of 2-Nitro-4-(octyloxy)phenol
3.1.4. Synthesis of 2-Amino-4-(octyloxy)phenol
3.1.5. Synthesis of (Z)-2-((2-Hydroxy-5-(octyloxy)-benzylidene)amino)-4-(octyloxy)phenol 1
3.1.6. Synthesis of [Ni]2[L]2 Complex 2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dresselhaus, M.S.; Thomas, I.L. Alternative Energy Technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef]
- Gu, S.; Xu, B.; Yan, Y. Electrochemical Energy Engineering: A New Frontier of Chemical Engineering Innovation. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 429–454. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Geng, B.; Yan, F.; Zhang, X.; He, Y.; Zhu, C.; Chou, S.; Zhang, X.; Chen, Y. Conductive CuCo-Based Bimetal Organic Framework for Efficient Hydrogen Evolution. Adv. Mater. 2021, 33, 2106781. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, S.; Zhao, K.; Muqsit, A.; Tang, H.; Chang, L.; Zhao, H.; Gao, Y.; Tang, Z. Ultrathin Platinum Nanowires Grown on Single-Layered Nickel Hydroxide with High Hydrogen Evolution Activity. Nat. Commun. 2015, 6, 6430. [Google Scholar] [CrossRef]
- Sun, Y.; Bigi, J.P.; Piro, N.A.; Tang, M.L.; Long, J.R.; Chang, C.J. Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water. J. Am. Chem. Soc. 2011, 133, 9212–9215. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, M.; Yang, Y.; Yao, T.; Sun, L. A Molecular Copper Catalyst for Electrochemical Water Reduction with a Large Hydrogen-Generation Rate Constant in Aqueous Solution. Angew. Chem. Int. Ed. 2014, 53, 13803–13807. [Google Scholar] [CrossRef]
- Karunadasa, H.I.; Chang, C.J.; Long, J.R. A Molecular Molybdenum-Oxo Catalyst for Generating Hydrogen from Water. Nature 2010, 464, 1329–1333. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, M.; Yang, Y.; Zheng, D.; Han, K.; Sun, L. Highly Efficient Molecular Nickel Catalysts for Electrochemical Hydrogen Production from Neutral Water. Chem. Commun. 2014, 50, 14153–14156. [Google Scholar] [CrossRef]
- Greeley, J.; Jaramillo, T.F.; Bonde, J.; Chorkendorff, I.; Nørskov, J.K. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. Mater. 2006, 5, 909–913. [Google Scholar] [CrossRef]
- Ding, J.; Ji, S.; Wang, H.; Linkov, V.; Gai, H.; Liu, F.; Liu, Q.; Wang, R. N-Doped 3D Porous Ni/C Bifunctional Electrocatalysts for Alkaline Water Electrolysis. ACS Sustain. Chem. Eng. 2019, 7, 3974–3981. [Google Scholar] [CrossRef]
- Karunadasa, H.I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J.R.; Chang, C.J. A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation. Science 2012, 335, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Abdel Aziz, A.A.; Salem, A.N.M.; Sayed, M.A.; Aboaly, M.M. Synthesis, Structural Characterization, Thermal Studies, Catalytic Efficiency and Antimicrobial Activity of Some M (II) Complexes with ONO Tridentate Schiff Base N-Salicylidene-o-Aminophenol (saphH2). J. Mol. Struct. 2012, 1010, 130–138. [Google Scholar] [CrossRef]
- Kasumov, V.T. Oxovanadium (IV), Nickel (II) and Palladium (II) Complexes of Tridentate Salicylaldiminates Derived from 2,4-Di-Ter-Butyl-6-Aminophenol. Z. Für Naturforschung B 2001, 56, 263–270. [Google Scholar] [CrossRef]
- Setia, S.; Pal, S.K. Unsymmetrically Substituted Room Temperature Discotic Liquid Crystals Based on Hexa–Peri–Hexabenzocoronene Core. ChemistrySelect 2016, 1, 880–885. [Google Scholar] [CrossRef]
- Kong, L.; Wang, L.; Sun, D.; Meng, S.; Xu, D.; He, Z.; Dong, X.; Li, Y.; Jin, Y. Aggregation-Morphology-Dependent Electrochemical Performance of Co3O4 Anode Materials for Lithium-Ion Batteries. Molecules 2019, 24, 3149. [Google Scholar] [CrossRef] [PubMed]
- Nestke, S.; Stubbe, J.; Koehler, R.; Ronge, E.; Albold, U.; Vioel, W.; Jooss, C.; Sarkar, B.; Siewert, I. A Binuclear Cobalt Complex in the Electrochemical Water Oxidation Reaction. Z. Für Anorg. Allg. Chem. 2022, 648, e202200119. [Google Scholar] [CrossRef]
- Patrício, S.; Cruz, A.I.; Biernacki, K.; Ventura, J.; Eaton, P.; Magalhães, A.L.; Moura, C.; Hillman, A.R.; Freire, C. Novel Layer-by-Layer Interfacial [Ni(Salen)]−Polyelectrolyte Hybrid Films. Langmuir 2010, 26, 10842–10853. [Google Scholar] [CrossRef]
- Chen, C.; Li, X.; Deng, F.; Li, J. Electropolymerization and Electrochemical Behavior of Nickel Schiff Base Complexes with Different Groups between Imine Linkages. RSC Adv. 2016, 6, 79894–79899. [Google Scholar] [CrossRef]
- Lin, D.; Lasia, A. Electrochemical Impedance Study of the Kinetics of Hydrogen Evolution at a Rough Palladium Electrode in Acidic Solution. J. Electroanal. Chem. 2017, 785, 190–195. [Google Scholar] [CrossRef]
- Mohamed, I.M.A.; Kanagaraj, P.; Yasin, A.S.; Iqbal, W.; Liu, C. Electrochemical Impedance Investigation of Urea Oxidation in Alkaline Media Based on Electrospun Nanofibers towards the Technology of Direct-Urea Fuel Cells. J. Alloys Compd. 2020, 816, 152513. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, X.; Zhang, R.; Yu, S.; Levell, Z.H.; Wang, C.; Ma, S.; Zou, P.; Han, L.; Qin, J.; et al. Highly Selective Oxygen Reduction to Hydrogen Peroxide on a Carbon-Supported Single-Atom Pd Electrocatalyst. ACS Catal. 2022, 12, 4156–4164. [Google Scholar] [CrossRef]
- Li, W.; Hu, Z.-Y.; Zhang, Z.; Wei, P.; Zhang, J.; Pu, Z.; Zhu, J.; He, D.; Mu, S.; Van Tendeloo, G. Nano-Single Crystal Coalesced PtCu Nanospheres as Robust Bifunctional Catalyst for Hydrogen Evolution and Oxygen Reduction Reactions. J. Catal. 2019, 375, 164–170. [Google Scholar] [CrossRef]
- Helm, M.L.; Stewart, M.P.; Bullock, R.M.; DuBois, M.R.; DuBois, D.L. A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 S−1 for H2 Production. Science 2011, 333, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Koshiba, K.; Yamauchi, K.; Sakai, K. A Nickel Dithiolate Water Reduction Catalyst Providing Ligand-Based Proton-Coupled Electron-Transfer Pathways. Angew. Chem. Int. Ed. 2017, 56, 4247–4251. [Google Scholar] [CrossRef]
- Jacques, P.A.; Artero, V.; Pécaut, J.; Fontecave, M. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. Proc. Natl. Acad. Sci. USA 2009, 106, 20627–20632. [Google Scholar] [CrossRef]
- Barma, A.; Chakraborty, M.; Bhattacharya, S.K.; Ghosh, P.; Roy, P. Mononuclear nickel (ii) complexes as electrocatalysts in hydrogen evolution reactions: Effects of alkyl side chain lengths. Mater. Adv. 2022, 3, 7655–7666. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Y.; Bao, C.; Zhou, Y.; Wang, C.; Lin, Q.; Zhu, L. A Well-Defined Unimolecular Channel Facilitates Chloride Transport. Chem. Commun. 2018, 54, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Barrios Antúnez, D.-J.; Greenhalgh, M.D.; Fallan, C.; Slawin, A.M.Z.; Smith, A.D. Enantioselective Synthesis of 2,3-Disubstituted Trans-2,3-Dihydrobenzofurans Using a Brønsted Base/Thiourea Bifunctional Catalyst. Org. Biomol. Chem. 2016, 14, 7268–7274. [Google Scholar] [CrossRef]
- Kozlovskaya, L.I.; Volok, V.P.; Shtro, A.A.; Nikolaeva, Y.V.; Chistov, A.A.; Matyugina, E.S.; Belyaev, E.S.; Jegorov, A.V.; Snoeck, R.; Korshun, V.A.; et al. Phenoxazine Nucleoside Derivatives with a Multiple Activity against RNA and DNA Viruses. Eur. J. Med. Chem. 2021, 220, 113467. [Google Scholar] [CrossRef]
- Muñoz, B.K.; Viciano, M.; Godard, C.; Castillón, S.; García-Ruiz, M.; Blanco González, M.D.; Claver, C. Metal Complexes Bearing ONO Ligands as Highly Active Catalysts in Carbon Dioxide and Epoxide Coupling Reactions. Inorganica Chim. Acta 2021, 517, 120194. [Google Scholar] [CrossRef]
WE | CE | RSol/Ω | Rcarrier/Ω | R/[Ni]2[L] 2Ω | RMe/Ω | C/F | CPE-T | CPE-P |
---|---|---|---|---|---|---|---|---|
Pt | Pt | 3.91 | 3.840 × 104 | - | 1.40 × 10 | - | 1.511 × 10−4 | 9.433 × 10−1 |
Cp | Pt | 3.72 | 6.020 × 104 | - | 1.40 × 10 | - | 3.384 × 10−5 | 9.645 × 10−1 |
[Ni]2[L]2 2 | Pt | 3.83 | 5.922 × 104 | 1.257 × 102 | 1.40 × 10 | 4.386 × 10−6 | 7.727 × 10−5 | 8.151 × 10−1 |
Catalyst | Electrolyte | FE% | Overpotential V (vs. RHE) | Reference |
---|---|---|---|---|
PtCu Nanoparticles | H2SO4 | 95 ± 5 | −0.01 | Li et al. [23] |
Ni(dcpdt)2]2− | Acetate Buffer | 92 − 100 | −0.37 | Koshiba et al. [25] |
[Ni(PPh2NPh)2] (BF4)2 | [(DMF)H]OTf + H2O | 95 ± 5 | −0.63 | Helm et al. [24] |
[(Am1Py4)NiL](BF4)2 | H2O | 91 | −1.25 | Zhang et al. [9] |
[Ni]2[Li]2 | H2SO4 | 95 ± 5 | −0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamskhou, K.; Awada, H.; Yari, F.; Aljabour, A.; Schöfberger, W. A Molecular Binuclear Nickel (II) Schiff Base Complex for Efficient HER Electrocatalysis. Catalysts 2023, 13, 1348. https://doi.org/10.3390/catal13101348
Shamskhou K, Awada H, Yari F, Aljabour A, Schöfberger W. A Molecular Binuclear Nickel (II) Schiff Base Complex for Efficient HER Electrocatalysis. Catalysts. 2023; 13(10):1348. https://doi.org/10.3390/catal13101348
Chicago/Turabian StyleShamskhou, Kian, Houssein Awada, Farzaneh Yari, Abdalaziz Aljabour, and Wolfgang Schöfberger. 2023. "A Molecular Binuclear Nickel (II) Schiff Base Complex for Efficient HER Electrocatalysis" Catalysts 13, no. 10: 1348. https://doi.org/10.3390/catal13101348
APA StyleShamskhou, K., Awada, H., Yari, F., Aljabour, A., & Schöfberger, W. (2023). A Molecular Binuclear Nickel (II) Schiff Base Complex for Efficient HER Electrocatalysis. Catalysts, 13(10), 1348. https://doi.org/10.3390/catal13101348