Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (335)

Search Parameters:
Keywords = plastic marine pollution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1080 KiB  
Article
Microplastic Bioaccumulation and Oxidative Stress in Key Species of the Bulgarian Black Sea: Ecosystem Risk Early Warning
by Albena Alexandrova, Svetlana Mihova, Elina Tsvetanova, Madlena Andreeva, Georgi Pramatarov, Georgi Petrov, Nesho Chipev, Valentina Doncheva, Kremena Stefanova, Maria Grandova, Hristiyana Stamatova, Elitsa Hineva, Dimitar Dimitrov, Violin Raykov and Petya Ivanova
Microplastics 2025, 4(3), 50; https://doi.org/10.3390/microplastics4030050 - 6 Aug 2025
Abstract
Plastic pollution in marine environments poses a new global threat. Microplastics (MPs) can bioaccumulate in marine organisms, leading to oxidative stress (OS). This study investigates MP accumulation and associated OS responses in six invertebrate species (Bivalvia, Gastropoda, and Malacostraca) and three key fish [...] Read more.
Plastic pollution in marine environments poses a new global threat. Microplastics (MPs) can bioaccumulate in marine organisms, leading to oxidative stress (OS). This study investigates MP accumulation and associated OS responses in six invertebrate species (Bivalvia, Gastropoda, and Malacostraca) and three key fish species of the Bulgarian Black Sea ecosystems. The target hydrobionts were collected from nine representative coastal habitats of the northern and southern aquatory. MPs were quantified microscopically, and OS biomarkers (lipid peroxidation, glutathione, and antioxidant enzymes) were analyzed spectrometrically in fish liver and gills and invertebrate soft tissues (STs). The specific OS (SOS) index was calculated as a composite indicator of the ecological impact, incl. MP effects. The results revealed species-specific MP bioaccumulation, with the highest concentrations in Palaemon adspersus, Rathke (1837) (0.99 ± 1.09 particles/g ST) and the least abundance in Bittium reticulatum (da Costa, 1778) (0.0033 ± 0.0025 particles/g ST). In Sprattus sprattus (Linnaeus, 1758), the highest accumulation of MPs was present (2.01 ± 2.56 particles/g muscle). The correlation analyses demonstrated a significant association between MP counts and catalase activity in all examined species. The SOS index varied among species, reflecting different stress responses, and this indicated that OS levels were linked to ecological conditions of the habitat and the species-specific antioxidant defense potential to overcome multiple stressors. These findings confirmed the importance of environmental conditions, including MP pollution and the evolutionarily developed capacity of marine organisms to tolerate and adapt to environmental stress. This study emphasizes the need for novel approaches in monitoring MPs and OS to better assess potential ecological risks. Full article
Show Figures

Figure 1

28 pages, 1806 KiB  
Systematic Review
Systemic Review and Meta-Analysis: The Application of AI-Powered Drone Technology with Computer Vision and Deep Learning Networks in Waste Management
by Tyrone Bright, Sarp Adali and Cristina Trois
Drones 2025, 9(8), 550; https://doi.org/10.3390/drones9080550 - 5 Aug 2025
Viewed by 158
Abstract
As the generation of Municipal Solid Waste (MSW) has exponentially increased, this poses a challenge for waste managers, such as municipalities, to effectively control waste streams. If waste streams are not managed correctly, they negatively contribute to climate change, marine plastic pollution and [...] Read more.
As the generation of Municipal Solid Waste (MSW) has exponentially increased, this poses a challenge for waste managers, such as municipalities, to effectively control waste streams. If waste streams are not managed correctly, they negatively contribute to climate change, marine plastic pollution and human health effects. Therefore, waste streams need to be identified, categorised and valorised to ensure that the most effective waste management strategy is employed. Research suggests that a more efficient process of identifying and categorising waste at the source can achieve this. Therefore, the aim of the paper is to identify the state of research of AI-powered drones in identifying and categorising waste. This paper will conduct a systematic review and meta-analysis on the application of drone technology integrated with image sensing technology and deep learning methods for waste management. Different systems are explored, and a quantitative meta-analysis of their performance metrics (such as the F1 score) is conducted to determine the best integration of technology. Therefore, the research proposes designing and developing a hybrid deep learning model with integrated architecture (YOLO-Transformer model) that can capture Multispectral imagery data from drones for waste stream identification, categorisation and potential valorisation for waste managers in small-scale environments. Full article
Show Figures

Figure 1

29 pages, 3303 KiB  
Review
Nanoplastics (NPs): Environmental Presence, Ecological Implications, and Mitigation Approaches
by Vyoma Jani and Shenghua Wu
Microplastics 2025, 4(3), 48; https://doi.org/10.3390/microplastics4030048 - 4 Aug 2025
Viewed by 223
Abstract
Nanoplastics (NPs), the tiniest and one of the most problematic fractions of plastic pollution, present dangers because of their size, reactivity, and ecosystem interactions. This review highlights the distinct characteristics, sources, routes, and ecological effects of NPs, a substantial subgroup of plastic pollution. [...] Read more.
Nanoplastics (NPs), the tiniest and one of the most problematic fractions of plastic pollution, present dangers because of their size, reactivity, and ecosystem interactions. This review highlights the distinct characteristics, sources, routes, and ecological effects of NPs, a substantial subgroup of plastic pollution. With a focus on their ecological and toxicological implications, this review highlights the unique qualities of NPs and their functions in wastewater and urban runoff systems. The analysis of NPs’ entry points into terrestrial, aquatic, and atmospheric ecosystems reveals difficulties with detection and quantification that make monitoring more difficult. Filtration technologies, adsorption-based techniques, and membrane bioreactors are examples of advanced technical solutions emphasized as efficient NP mitigation measures that can integrated into current infrastructure. Environmental effects are examined, including toxicological hazards to organisms in freshwater, terrestrial, and marine environments, bioaccumulation, and biomagnification. This analysis emphasizes the serious ecological problems that NPs present and the necessity of using civil and environmental engineering techniques to improve detection techniques, enact stronger laws, and encourage public participation. Full article
Show Figures

Figure 1

28 pages, 2266 KiB  
Review
Uncovering Plastic Pollution: A Scoping Review of Urban Waterways, Technologies, and Interdisciplinary Approaches
by Peter Cleveland, Donna Cleveland, Ann Morrison, Khoi Hoang Dinh, An Nguyen Pham Hai, Luca Freitas Ribeiro and Khanh Tran Duy
Sustainability 2025, 17(15), 7009; https://doi.org/10.3390/su17157009 - 1 Aug 2025
Viewed by 264
Abstract
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, [...] Read more.
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, addressed, and reconceptualized. Drawing from the literature across environmental science, technology, and social studies, we identify four interconnected areas of focus: urban pollution pathways, innovations in monitoring and methods, community-based interventions, and interdisciplinary perspectives. Our analysis combines qualitative synthesis with visual mapping techniques, including keyword co-occurrence networks, to explore how real-time tools, such as IoT sensors, multi-sensor systems, and geospatial technologies, are transforming the ways plastic waste is tracked and analyzed. The review also considers the growing use of novel theoretical frameworks, such as post-phenomenology and ecological materialism, to better understand the role of plastics as both pollutants and ecological agents. Despite progress, the literature reveals persistent gaps in longitudinal studies, regional representation, and policy translation, particularly across the Global South. We emphasize the value of participatory models and community-led research in bridging these gaps and advancing more inclusive and responsive solutions. These insights inform the development of plastic tracker technologies currently being piloted in Vietnam and contribute to broader sustainability goals, including SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production), and SDG 14 (Life Below Water). Full article
Show Figures

Figure 1

21 pages, 2854 KiB  
Article
Unseen Threats at Sea: Awareness of Plastic Pellets Pollution Among Maritime Professionals and Students
by Špiro Grgurević, Zaloa Sanchez Varela, Merica Slišković and Helena Ukić Boljat
Sustainability 2025, 17(15), 6875; https://doi.org/10.3390/su17156875 - 29 Jul 2025
Viewed by 214
Abstract
Marine pollution from plastic pellets, small granules used as a raw material for plastic production, is a growing environmental problem with grave consequences for marine ecosystems, biodiversity, and human health. This form of primary microplastic is increasingly becoming the focus of environmental policies, [...] Read more.
Marine pollution from plastic pellets, small granules used as a raw material for plastic production, is a growing environmental problem with grave consequences for marine ecosystems, biodiversity, and human health. This form of primary microplastic is increasingly becoming the focus of environmental policies, owing to its frequent release into the marine environment during handling, storage, and marine transportation, all of which play a crucial role in global trade. The aim of this paper is to contribute to the ongoing discussions by highlighting the environmental risks associated with plastic pellets, which are recognized as a significant source of microplastics in the marine environment. It will also explore how targeted education and awareness-raising within the maritime sector can serve as key tools to address this environmental challenge. The study is based on a survey conducted among seafarers and maritime students to raise their awareness and assess their knowledge of the issue. Given their operational role in ensuring safe and responsible shipping, seafarers and maritime students are in a key position to prevent the release of plastic pellets into the marine environment through increased awareness and initiative-taking practices. The results show that awareness is moderate, but there is a significant lack of knowledge, particularly in relation to the environmental impact and regulatory aspects of plastic pellet pollution. These results underline the need for improved education and training in this area, especially among future and active maritime professionals. Full article
Show Figures

Figure 1

25 pages, 13635 KiB  
Article
Microplastics in Nearshore and Subtidal Sediments in the Salish Sea: Implications for Marine Habitats and Exposure
by Frances K. Eshom-Arzadon, Kaitlyn Conway, Julie Masura and Matthew R. Baker
J. Mar. Sci. Eng. 2025, 13(8), 1441; https://doi.org/10.3390/jmse13081441 - 28 Jul 2025
Viewed by 382
Abstract
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems [...] Read more.
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems and the extent to which this pollutant is accessible to marine taxa. We examined subtidal benthic sediments and beach sediments in critical nearshore habitats for forage fish species—Pacific sand lance (Ammodytes personatus), Pacific herring (Clupea pallasi), and surf smelt (Hypomesus pretiosus)—to quantify microplastic concentrations in the spawning and deep-water habitats of these fish and better understand how microplastics accumulate and distribute in nearshore systems. In the San Juan Islands, we examined an offshore subtidal bedform in a high-flow channel and beach sites of protected and exposed shorelines. We also examined 12 beach sites proximate to urban areas in Puget Sound. Microplastics were found in all samples and at all sample sites. Microfibers were the most abundant, and flakes were present proximate to major shipyards and marinas. Microplastics were significantly elevated in Puget Sound compared to the San Juan Archipelago. Protected beaches had elevated concentrations relative to exposed beaches and subtidal sediments. Microplastics were in higher concentrations in sand and fine-grain sediments, poorly sorted sediments, and artificial sediments. Microplastics were also elevated at sites confirmed as spawning habitats for forage fish. The model results indicate that both current speed and proximate urban populations influence nearshore microplastic concentrations. Our research provides new insights into how microplastics are distributed, deposited, and retained in marine sediments and shorelines, as well as insight into potential exposure in benthic, demersal, and shoreline habitats. Further analyses are required to examine the relative influence of urban populations and shipping lanes and the effects of physical processes such as wave exposure, tidal currents, and shoreline geometry. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Figure 1

24 pages, 42622 KiB  
Article
Seasonal Comparative Monitoring of Plastic and Microplastic Pollution in Lake Garda (Italy) Using Seabin During Summer–Autumn 2024
by Marco Papparotto, Claudia Gavazza, Paolo Matteotti and Luca Fambri
Microplastics 2025, 4(3), 44; https://doi.org/10.3390/microplastics4030044 - 28 Jul 2025
Viewed by 371
Abstract
Plastic (P) and microplastic (MP) pollution in marine and freshwater environments is an increasingly urgent issue that needs to be addressed at many levels. The Seabin (an easily operated and cost-effective floating debris collection device) can help clean up buoyant plastic debris in [...] Read more.
Plastic (P) and microplastic (MP) pollution in marine and freshwater environments is an increasingly urgent issue that needs to be addressed at many levels. The Seabin (an easily operated and cost-effective floating debris collection device) can help clean up buoyant plastic debris in calm waters while monitoring water pollution. A Seabin was used to conduct a comparative analysis of plastic and microplastic concentrations in northern Lake Garda (Italy) during peak and low tourist seasons. The composition of the litter was further investigated using Fourier-Transform Infrared (FTIR) spectroscopy. The analysis showed a decreased mean amount of plastic from summer (32.5 mg/m3) to autumn (17.6 mg/m3), with an average number of collected microplastics per day of 45 ± 15 and 15 ± 3, respectively. Packaging and foam accounted for 92.2% of the recognized plastic waste products. The material composition of the plastic mass (442 pieces, 103.0 g) was mainly identified as polypropylene (PP, 47.1%) and polyethylene (PE, 21.8%). Moreover, 313 microplastics (approximately 2.0 g) were counted with average weight in the range of 1–16 mg. A case study of selected plastic debris was also conducted. Spectroscopic, microscopic, and thermal analysis of specimens provided insights into how aging affects plastics in this specific environment. The purpose of this study was to establish a baseline for further research on the topic, to provide guidelines for similar analyses from a multidisciplinary perspective, to monitor plastic pollution in Lake Garda, and to inform policy makers, scientists, and the public. Full article
(This article belongs to the Collection Feature Paper in Microplastics)
Show Figures

Figure 1

8 pages, 1058 KiB  
Proceeding Paper
A Review of Global Microplastic (MP) Databases: A Study on the Challenges and Opportunities for Data Integration in the Context of MP Pollution
by Hussain Ahamed, Marwa Al-Ani, Ala Al-Ardah and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 6; https://doi.org/10.3390/materproc2025022006 - 21 Jul 2025
Viewed by 187
Abstract
Microplastic (MP) pollution is an escalating global environmental concern, with a growing body of research addressing diverse dimensions of this issue. Despite this progress, the field remains hindered by generating large, heterogeneous datasets that follow inconsistent reporting standards, resulting in fragmented and often [...] Read more.
Microplastic (MP) pollution is an escalating global environmental concern, with a growing body of research addressing diverse dimensions of this issue. Despite this progress, the field remains hindered by generating large, heterogeneous datasets that follow inconsistent reporting standards, resulting in fragmented and often incompatible databases. While various databases on MPs have been developed, they primarily operate in isolation, limiting the accessibility and cross-comparison of data. This study presents a foundational approach to aggregating and accessing existing MP pollution datasets. A comprehensive review of the currently available databases was conducted to evaluate their integration potential. It revealed key challenges such as non-standardized data formats, limited accessibility, and difficulty performing comparative analyses across sources. To address these barriers, a prototype web-based platform was developed that enables unified access to MP datasets. The architecture includes a smart standardization layer that harmonizes inputs from disparate sources. The integration of Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) techniques was proposed to facilitate natural language querying. This enables researchers to interact with the platform intuitively and extract meaningful insights more efficiently. The proposed system aims to enhance data discoverability, promote interoperability, and support robust, data-driven environmental research, paving the way toward more informed policy-making and scientific collaboration in the fight against MP pollution. With this platform, there is a potential for new discoveries and a future in which the tools to effectively combat this global issue are available, making the audience realize the potential for new discoveries. Full article
Show Figures

Figure 1

26 pages, 9214 KiB  
Article
Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives
by Corinne Corbau, Alexandre Lazarou and Umberto Simeoni
J. Mar. Sci. Eng. 2025, 13(7), 1351; https://doi.org/10.3390/jmse13071351 - 16 Jul 2025
Viewed by 359
Abstract
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. [...] Read more.
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. This study analyzed the distribution and temporal evolution of three fishing-related items (EPS fish boxes, fragments, and buoys) along the Bocassette spit in the northern Adriatic Sea, a region with high fishing and aquaculture activity. UAV monitoring (November 2019, June/October 2020) and structured interviews with Po Delta fishermen were conducted. The collected debris was mainly EPS, with boxes (54.8%) and fragments (39.6%). Fishermen showed strong awareness of degradation, identifying plastic as the primary litter type and reporting gear loss. Litter concentrated in active dunes and the southern sector indicates human and riverine influence. Persistent items (61%) at higher elevations suggest longer residence times. Mapped EPS boxes could generate billions of micro-particles (e.g., ~1013). The results reveal a complex interaction between natural processes and human activities in litter distribution. This highlights the need for integrated management strategies, like improved waste management, targeted cleanup, and community involvement, to reduce long-term impacts on vulnerable coastal ecosystems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

6 pages, 192 KiB  
Proceeding Paper
From Sea to Plate: The Plastic Pollution Problem in the Food Chain
by Carolyne Shealy, Gabriela Fernandez, Domenico Vito and Carol Maione
Med. Sci. Forum 2025, 33(1), 4; https://doi.org/10.3390/msf2025033004 - 15 Jul 2025
Viewed by 293
Abstract
The rising concern over plastic pollution is not only related to pollution in marine and terrestrial habitats but also effects humans. This study analyzes the trophic transfer of microplastics throughout the food chain, with an emphasis on the effects on human health. It [...] Read more.
The rising concern over plastic pollution is not only related to pollution in marine and terrestrial habitats but also effects humans. This study analyzes the trophic transfer of microplastics throughout the food chain, with an emphasis on the effects on human health. It provides a review of 12 articles analyzing the microplastic intake by humans via ingestion of fish and environmental exposure. In particular, the reviewed studies focused on microplastic ingestion by fish and animals intended for human consumption, the distribution of microplastics in human tissues, and human blood. The results of this analysis can extend our understanding of microplastic transfer in the human body, with implications for future research. Full article
19 pages, 863 KiB  
Review
Microplastic Pollution in China’s Aquatic Systems: Spatial Distribution, Transport Pathways, and Controlling Strategies
by Zhancheng Wu, Juzhuang Wang, Shengwang Yu, Qian Sun and Yulai Han
Microplastics 2025, 4(3), 41; https://doi.org/10.3390/microplastics4030041 - 3 Jul 2025
Viewed by 862
Abstract
Microplastics (MPs) have emerged as a critical environmental challenge in China’s aquatic ecosystems, driven by rapid industrialization and population growth. This review synthesizes recent findings on the abundance, morphology, and polymer types of MPs in China’s freshwater systems (rivers, lakes, reservoirs) and coastal [...] Read more.
Microplastics (MPs) have emerged as a critical environmental challenge in China’s aquatic ecosystems, driven by rapid industrialization and population growth. This review synthesizes recent findings on the abundance, morphology, and polymer types of MPs in China’s freshwater systems (rivers, lakes, reservoirs) and coastal marine environments. Spatial analysis reveals significant variability in MP abundance, ranging from 0.1 items/L in Tibet’s Lalu Wetland to 30.8 items/L in Beijing’s Qinghe River, with polypropylene (PP) and polyethylene (PE) dominating polymer profiles. Coastal regions exhibit distinct contamination patterns, with the Yellow Sea (5.3 ± 2.0 items/L) and the South China Sea (180 ± 80 items/m3) showing the highest MP loads, primarily as fibers and fragments. Fluvial transport, atmospheric deposition, and coastal anthropogenic activities (e.g., fisheries, tourism) are identified as major pathways for marine MP influx. Secondary MPs from degraded plastics and primary MPs from industrial/domestic effluents pose synergistic risks through the adsorption of heavy metals and organic pollutants. Human exposure routes—ingestion, inhalation, and dermal contact—are linked to inflammatory, metabolic, and carcinogenic health outcomes. Policy interventions, including bans on microbeads and non-degradable plastics, demonstrate progress in pollution mitigation. This work underscores the urgency of integrated source control, advanced wastewater treatment, and transboundary monitoring to address MP contamination in aquatic ecosystems. Full article
Show Figures

Figure 1

15 pages, 2654 KiB  
Article
Presence and Potential Effect of Microplastics Associated with Anthropic Activity in Two Benthic Fishes Serranus scriba and Lithognathus mormyrus
by Amanda Cohen-Sánchez, Juan Alejandro Sanz, Montserrat Compa, Maria Magdalena Quetglas-Llabrés, Maria del Mar Ribas-Taberner, Lorenzo Gil, Silvia Tejada, Samuel Pinya and Antoni Sureda
Fishes 2025, 10(7), 323; https://doi.org/10.3390/fishes10070323 - 3 Jul 2025
Viewed by 374
Abstract
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species— [...] Read more.
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species—Serranus scriba (more related to rocky bottoms) and Lithognathus mormyrus (more related to sandy bottoms)—in two areas of Mallorca Island (Western Mediterranean) with varying anthropic pressures with similar mixed rocky/sandy bottoms. A total of eight fish samples per species and per area (total n = 32), as well as three water samples (500 mL each) and three sediment samples per area, were collected and analyzed. The results showed that despite plastic presence in both areas, the area with higher tourism affluence was also the most polluted. Fourier transform infrared spectroscopy analysis confirmed that the majority of recovered polymers were polyethylene and polypropylene. The pattern of MPs presence was reflected in the biomarker analysis, which showed higher values of antioxidants, namely catalase (CAT) and superoxide dismutase (SOD); detoxification, namely glutathione s-transferase (GST); and inflammation, namely myeloperoxidase (MPO)—enzymes in the gastrointestinal tract of fish from the more polluted area. However, no statistical differences were found for malondialdehyde (MDA) as a marker of lipid peroxidation. As for differences between species, S. scriba presented a higher presence of MPs and measured biomarkers than in L. Mormyrus, suggesting higher exposure. In conclusion, these results showed that increased anthropic activity is associated with a higher presence of MPs which, in turn, induces an adaptative response in exposed fish. Moreover, species living in the same area could be differentially affected by MPs, which is probably associated with different behavioural and feeding habits. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Figure 1

14 pages, 1187 KiB  
Review
Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review
by Evmorfia Athanasopoulou, Deborah M. Power, Emmanouil Flemetakis and Theofania Tsironi
J. Mar. Sci. Eng. 2025, 13(7), 1245; https://doi.org/10.3390/jmse13071245 - 28 Jun 2025
Viewed by 634
Abstract
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when [...] Read more.
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when synthetic polymers are fragmented and micronized to a size ≤ 5 mm. MPs are a global environmental problem, particularly within aquatic ecosystems, due to their persistence, accumulation, and uncertain long-term effects. This review examines the degradation pathways of polymers that result in MP formulation, their rate and distribution across ecosystems, and their potential entry into food systems. Key challenges include a lack of standardized detection methods, specifically for nanoparticles; limited evidence of long-term toxicity; and the inefficiency of current waste management frameworks. Emphasis is placed on the cradle-to-grave lifecycle of plastic materials, highlighting how poor design, excessive packaging, and inadequate post-consumer treatment contribute to MP release. The transition from Directive 94/62/EC to the new Regulation (EU) 2025/40 marks a significant policy shift towards stronger preventive measures. In line with the waste hierarchy and reduction in unnecessary packaging and plastic use, effective recycling must be supported by appropriate collection systems, improved separation processes, and citizen education to prevent waste and improve recycling rates to minimize the accumulation of MPs in the environment and reduce health impacts. This review identifies critical gaps in current knowledge and suggests crucial approaches in order to mitigate MP pollution and protect marine biodiversity and public health. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

18 pages, 1096 KiB  
Review
Marine Plastic Waste in Construction: A Systematic Review of Applications in the Built Environment
by Lucas Lopes, Harish Dauari, Paulo Mendonça and Manuela Almeida
Polymers 2025, 17(13), 1729; https://doi.org/10.3390/polym17131729 - 21 Jun 2025
Viewed by 774
Abstract
Marine plastic pollution represents a critical environmental challenge, with millions of tons of plastic waste entering the oceans annually and threatening ecosystems, biodiversity, and human health. This systematic review evaluates the current state of the art in recycling and reusing marine plastic waste [...] Read more.
Marine plastic pollution represents a critical environmental challenge, with millions of tons of plastic waste entering the oceans annually and threatening ecosystems, biodiversity, and human health. This systematic review evaluates the current state of the art in recycling and reusing marine plastic waste within the architecture, engineering, and construction (AEC) sectors, following the PRISMA methodology. Sixty-six peer-reviewed articles published between 2015 and 2025 were analysed, focusing on the integration of plastic waste. The review identifies mechanical recycling as the predominant method, involving washing and shredding plastics into fibres or flakes for use in cementitious composites, asphalt modifiers, bricks, panels, and insulation. Results indicate that recycled plastics, such as PET, HDPE, and PP, can enhance thermal insulation, water resistance, and flexural strength in non-structural applications. However, challenges persist regarding compressive strength, fibre dispersion, and chemical compatibility with cementitious matrices. Although the reuse of marine plastics supports circular economy goals by diverting waste from oceans and landfills, significant gaps remain in long-term durability, microplastic release, end-of-life recyclability, and comprehensive environmental assessments. The findings underscore the need for further research on the broader adoption of life cycle analysis, as well as long-term durability and environmental contamination analyses. Full article
(This article belongs to the Special Issue Environmentally Responsive Polymer Materials)
Show Figures

Figure 1

22 pages, 21422 KiB  
Article
Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea
by Maria Emanuela Mihailov, Alecsandru Vladimir Chiroșca, Elena Daniela Pantea and Gianina Chiroșca
Sustainability 2025, 17(12), 5664; https://doi.org/10.3390/su17125664 - 19 Jun 2025
Viewed by 563
Abstract
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this [...] Read more.
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this form of contamination. Mytilus galloprovincialis, a well-established bioindicator, accumulates microplastics, providing a direct measure of environmental pollution and indicating potential economic consequences deriving from degraded ecosystem services. While previous studies have documented microplastic pollution in the Black Sea, our paper specifically quantified microplastic contamination in M. galloprovincialis collected from four sites along the western Black Sea coast, each characterised by distinct levels of anthropogenic influence: Midia Port, Constanta Port, Mangalia Port, and 2 Mai. We used statistical analysis to quantify site-specific microplastic contamination in M. galloprovincialis and employed machine learning to develop models predicting accumulation patterns based on environmental variables. Our findings demonstrate the efficacy of mussels as bioindicators of marine plastic pollution and highlight the utility of machine learning in developing effective predictive tools for monitoring and managing marine litter contamination in marine environments, thereby contributing to sustainable economic practices. Full article
(This article belongs to the Special Issue Environment and Sustainable Economic Growth, 2nd Edition)
Show Figures

Figure 1

Back to TopTop