Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = plasmon damping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1789 KB  
Communication
Near-Field Imaging of Hybrid Surface Plasmon-Phonon Polaritons on n-GaN Semiconductor
by Vytautas Janonis, Adrian Cernescu, Pawel Prystawko, Regimantas Januškevičius, Simonas Indrišiūnas and Irmantas Kašalynas
Materials 2025, 18(12), 2849; https://doi.org/10.3390/ma18122849 - 17 Jun 2025
Viewed by 1030
Abstract
Near-field imaging of the hybrid surface plasmon-phonon polaritons on the n-GaN semiconductor was performed using a scattering scanning near-field optical microscope at the selected frequencies of 920 cm−1 and 570 cm−1. The experimental measurements and numerical modeling data were in [...] Read more.
Near-field imaging of the hybrid surface plasmon-phonon polaritons on the n-GaN semiconductor was performed using a scattering scanning near-field optical microscope at the selected frequencies of 920 cm−1 and 570 cm−1. The experimental measurements and numerical modeling data were in good agreement, revealing the large propagation distances on the n-GaN semiconductor and other insights which could be obtained by analyzing the dispersion characteristics of hybrid polaritons. In particular, the decay lengths of polaritons at the excitation frequency of 920 cm−1 were measured to be up to 25 and 30 µm in experiment and theory, respectively. In the case of excitation at the frequency of 570 cm−1, the surface plasmon-phonon polaritons’ decay distances were 25 µm and 105 µm, respectively, noting the limitations of the near-field optical microscope setups used. Dispersion characteristics of the resonant frequency and the damping rate of hybrid polaritons were numerically modeled and compared with the analytical calculations, validating the need for further experiment improvements. The launch conditions for the near-field observation of extraordinary coherence of the surface plasmon-phonon polaritons were also discussed. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

20 pages, 2735 KB  
Article
Functional Nano-Metallic Coatings for Solar Cells: Their Theoretical Background and Modeling
by Witold Aleksander Jacak
Coatings 2024, 14(11), 1410; https://doi.org/10.3390/coatings14111410 - 6 Nov 2024
Viewed by 1290
Abstract
We have collected theoretical arguments supporting the functional role of nano-metallic coatings of solar cells, which enhance solar cell efficiency via by plasmon-strengthening the absorption of sun-light photons and reducing the binding energy of photoexcitons. The quantum character of the plasmonic effect related [...] Read more.
We have collected theoretical arguments supporting the functional role of nano-metallic coatings of solar cells, which enhance solar cell efficiency via by plasmon-strengthening the absorption of sun-light photons and reducing the binding energy of photoexcitons. The quantum character of the plasmonic effect related to the absorption of photons (called the optical plasmonic effect) is described in terms of the Fermi golden rule for the quantum transitions of semiconductor-band electrons induced by plasmons from a nano-metallic coating. The plasmonic effect related to the lowering of the exciton binding energy (called the electrical plasmonic effect) is of particular significance for metalized perovskite solar cells and is also characterized in quantum mechanics terms. The coupling between plasmons in nanoparticles from a coating with band electrons in a semiconductor substrate significantly modifies material properties (dielectric functions) both of the particles and the semiconductor, beyond the ability of the classical electrodynamics to describe. Full article
(This article belongs to the Special Issue Perovskite Films as Functional Coatings: Synthesis and Applications)
Show Figures

Figure 1

19 pages, 3634 KB  
Article
Polarized and Evanescent Guided Wave Surface-Enhanced Raman Spectroscopy of Ligand Interactions on a Plasmonic Nanoparticle Optical Chemical Bench
by Xining Chen and Mark P. Andrews
Biosensors 2024, 14(9), 409; https://doi.org/10.3390/bios14090409 - 23 Aug 2024
Cited by 1 | Viewed by 2570
Abstract
This study examined applications of polarized evanescent guided wave surface-enhanced Raman spectroscopy to determine the binding and orientation of small molecules and ligand-modified nanoparticles, and the relevance of this technique to lab-on-a-chip, surface plasmon polariton and other types of field enhancement techniques relevant [...] Read more.
This study examined applications of polarized evanescent guided wave surface-enhanced Raman spectroscopy to determine the binding and orientation of small molecules and ligand-modified nanoparticles, and the relevance of this technique to lab-on-a-chip, surface plasmon polariton and other types of field enhancement techniques relevant to Raman biosensing. A simplified tutorial on guided-wave Raman spectroscopy is provided that introduces the notion of plasmonic nanoparticle field enhancements to magnify the otherwise weak TE- and TM-polarized evanescent fields for Raman scattering on a simple plasmonic nanoparticle slab waveguide substrate. The waveguide construct is called an optical chemical bench (OCB) to emphasize its adaptability to different kinds of surface chemistries that can be envisaged to prepare optical biosensors. The OCB forms a complete spectroscopy platform when integrated into a custom-built Raman spectrograph. Plasmonic enhancement of the evanescent field is achieved by attaching porous carpets of Au@Ag core shell nanoparticles to the surface of a multi-mode glass waveguide substrate. We calibrated the OCB by establishing the dependence of SER spectra of adsorbed 4-mercaptopyridine and 4-aminobenzoic acid on the TE/TM polarization state of the evanescent field. We contrasted the OCB construct with more elaborate photonic chip devices that also benefit from enhanced evanescent fields, but without the use of plasmonics. We assemble hierarchies of matter to show that the OCB can resolve the binding of Fe2+ ions from water at the nanoscale interface of the OCB by following the changes in the SER spectra of 4MPy as it coordinates the cation. A brief introduction to magnetoplasmonics sets the stage for a study that resolves the 4ABA ligand interface between guest magnetite nanoparticles adsorbed onto host plasmonic Au@Ag nanoparticles bound to the OCB. In some cases, the evanescent wave TM polarization was strongly attenuated, most likely due to damping by inertial charge carriers that favor optical loss for this polarization state in the presence of dense assemblies of plasmonic nanoparticles. The OCB offers an approach that provides vibrational and orientational information for (bio)sensing at interfaces that may supplement the information content of evanescent wave methods that rely on perturbations in the refractive index in the region of the evanescent wave. Full article
(This article belongs to the Special Issue SERS-Based Biosensors: Design and Biomedical Applications)
Show Figures

Figure 1

13 pages, 6118 KB  
Article
Periodical Ultra-Modulation of Broadened Laser Spectra in Dielectrics at Variable Ultrashort Laser Pulsewidths: Ultrafast Plasma, Plasmonic and Nanoscale Structural Effects
by Sergey Kudryashov, Pavel Danilov, Alexey Gorevoy, Volodymyr Kovalov, Mikhail Kosobokov, Andrey Akhmatkhanov, Boris Lisjikh, Anton Turygin, Evgeny Greshnyakov and Vladimir Shur
Photonics 2023, 10(12), 1316; https://doi.org/10.3390/photonics10121316 - 29 Nov 2023
Viewed by 1775
Abstract
Self-phase modulation (SPM) broadening of prompt laser spectra was studied in a transmission mode in natural and synthetic diamonds at variable laser wavelengths (515 and 1030 nm), pulse energies and widths (0.3–12 ps, positively chirped pulses), providing their filamentary propagation. Besides the monotonous [...] Read more.
Self-phase modulation (SPM) broadening of prompt laser spectra was studied in a transmission mode in natural and synthetic diamonds at variable laser wavelengths (515 and 1030 nm), pulse energies and widths (0.3–12 ps, positively chirped pulses), providing their filamentary propagation. Besides the monotonous SPM broadening of the laser spectra versus pulse energy, which was more pronounced for the (sub)picosecond pulsewidths and more nitrogen-doped natural diamond with its intra-gap impurity states, periodical low-frequency modulation was observed in the spectra at the shorter laser pulsewidths, indicating dynamic Bragg filtering of the supercontinuum due to ultrafast plasma and nanoplasmonic effects. Damping of broadening and ultra-modulation for the longer picosecond pulsewidths was related to the thermalized electron-hole plasma regime established for the laser pulsewidths longer, than 2 ps. Unexpectedly, at higher pulse energies and corresponding longer, well-developed microfilaments, the number of low-intensity, low-frequency sideband spectral modulation features counterintuitively increases, thus indicating dynamic variation of the periods in the longitudinal plasma Bragg gratings along the filaments due to prompt secondary laser–plasmon interactions. The underlying sub- and/or near-wavelength longitudinal nanoscale Bragg gratings produced by femtosecond laser pulses in this regime could be visualized in less hard lithium niobate by atomic force microscopy cross-sectional analysis in the correlation with the corresponding sideband spectral components, supporting the anticipated Bragg filtering mechanism and envisioning the corresponding grating periods. Full article
(This article belongs to the Special Issue Ultrashort Laser Pulses)
Show Figures

Figure 1

15 pages, 7769 KB  
Article
Study of Field Enhancement in the Subnanometer Gap of Plasmonic Dimers Accounting for the Surface Quantum Effect
by Yuri Eremin and Vladimir Lopushenko
Photonics 2023, 10(9), 990; https://doi.org/10.3390/photonics10090990 - 30 Aug 2023
Cited by 1 | Viewed by 2147
Abstract
We investigate the influence of the surface quantum effect on the optical characteristics of a plasmonic dimer consisting of two identical gold nanoparticles with a tiny gap. To account for the corresponding surface quantum effect, an electromagnetic theory based on mesoscopic boundary conditions [...] Read more.
We investigate the influence of the surface quantum effect on the optical characteristics of a plasmonic dimer consisting of two identical gold nanoparticles with a tiny gap. To account for the corresponding surface quantum effect, an electromagnetic theory based on mesoscopic boundary conditions and surface response functions is used. It is shown that the quantum surface effect leads to a blue shift and damping of the corresponding plasmon resonance. This effect becomes more substantial when the constituent particles are elongated, and the gap size shrinks to subnanometer values. In this case, the difference in the results obtained using the surface response functions and the local response approximation can be up to four times and is accompanied by a spectral blue shift of 10 nm. Full article
Show Figures

Figure 1

23 pages, 16196 KB  
Article
Nonlocal Hydrodynamic Model with Viscosive Damping and Generalized Drude–Lorentz Term
by Milan Burda and Ivan Richter
Photonics 2023, 10(8), 913; https://doi.org/10.3390/photonics10080913 - 9 Aug 2023
Cited by 1 | Viewed by 2118
Abstract
The response of plasmonic metal particles to an electromagnetic wave produces significant features at the nanoscale level. Different properties of the internal composition of a metal, such as its ionic background and the free electron gas, begin to manifest more prominently. As the [...] Read more.
The response of plasmonic metal particles to an electromagnetic wave produces significant features at the nanoscale level. Different properties of the internal composition of a metal, such as its ionic background and the free electron gas, begin to manifest more prominently. As the dimensions of the nanostructures decrease, the classical local theory gradually becomes inadequate. Therefore, Maxwell’s equations need to be supplemented with a relationship determining the dynamics of current density which is the essence of nonlocal plasmonic models. In this field of physics, the standard (linearized) hydrodynamic model (HDM) has been widely adopted with great success, serving as the basis for a variety of simulation methods. However, ongoing efforts are also being made to expand and refine it. Recently, the GNOR (general nonlocal optical response) modification of the HDM has been used, with the intention of incorporating the influence of electron gas diffusion. Clearly, from the classical description of fluid dynamics, a close relationship between viscosive damping and diffusion arises. This offers a relevant motivation for introducing the GNOR modification in an alternative manner. The standard HDM and its existing GNOR modification also do not include the influence of interband electron transitions in the conduction band and other phenomena that are part of many refining modifications of the Drude–Lorentz and other models of metal permittivity. In this article, we present a modified version of GNOR-HDM that incorporates the viscosive damping of the electron gas and a generalized Drude–Lorentz term. In the selected simulations, we also introduce Landau damping, which corrects the magnitude of the standard damping constant of the electron gas based on the size of the nanoparticle. We have chosen a spherical particle as a suitable object for testing and comparing HD models and their modifications because it allows the calculation of precise analytical solutions for the interactions and, simultaneously, it is a relatively easily fabricated nanostructure in practice. Our contribution also includes our own analytical method for solving the HDM interaction of a plane wave with a spherical particle. This method forms the core of calculations of the characteristic quantities, such as the extinction cross-sections and the corresponding components of electric fields and current densities. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

12 pages, 8104 KB  
Article
Mode-Coupling Generation Using ITO Nanodisk Arrays with Au Substrate Enabling Narrow-Band Biosensing
by Shuwen Chu, Yuzhang Liang, Mengdi Lu, Huizhen Yuan, Yi Han, Jean-Francois Masson and Wei Peng
Biosensors 2023, 13(6), 649; https://doi.org/10.3390/bios13060649 - 14 Jun 2023
Cited by 3 | Viewed by 2590
Abstract
Plasmonic metal nanostructures have promising applications in biosensing due to their ability to facilitate light–matter interaction. However, the damping of noble metal leads to a wide full width at half maximum (FWHM) spectrum which restricts sensing capabilities. Herein, we present a novel non-full-metal [...] Read more.
Plasmonic metal nanostructures have promising applications in biosensing due to their ability to facilitate light–matter interaction. However, the damping of noble metal leads to a wide full width at half maximum (FWHM) spectrum which restricts sensing capabilities. Herein, we present a novel non-full-metal nanostructure sensor, namely indium tin oxide (ITO)–Au nanodisk arrays consisting of periodic arrays of ITO nanodisk arrays and a continuous gold substrate. A narrow-band spectral feature under normal incidence emerges in the visible region, corresponding to the mode-coupling of surface plasmon modes, which are excited by lattice resonance at metal interfaces with magnetic resonance mode. The FWHM of our proposed nanostructure is barely 14 nm, which is one fifth of that of full-metal nanodisk arrays, and effectively improves the sensing performance. Furthermore, the thickness variation of nanodisks hardly affects the sensing performance of this ITO-based nanostructure, ensuring excellent tolerance during preparation. We fabricate the sensor ship using template transfer and vacuum deposition techniques to achieve large-area and low-cost nanostructure preparation. The sensing performance is used to detect immunoglobulin G (IgG) protein molecules, promoting the widespread application of plasmonic nanostructures in label-free biomedical studies and point-of-care diagnostics. The introduction of dielectric materials effectively reduces FWHM, but sacrifices sensitivity. Therefore, utilizing structural configurations or introducing other materials to generate mode-coupling and hybridization is an effective way to provide local field enhancement and effective regulation. Full article
(This article belongs to the Special Issue Recent Advances in Optical Fiber Biosensor)
Show Figures

Figure 1

14 pages, 491 KB  
Article
Anharmonicity of Plasmons in Metallic Nanostructures Useful for Metallization of Solar Cells
by Zofia Krzemińska and Witold A. Jacak
Materials 2023, 16(10), 3762; https://doi.org/10.3390/ma16103762 - 16 May 2023
Cited by 1 | Viewed by 1810
Abstract
Metallic nanoparticles are frequently applied to enhance the efficiency of photovoltaic cells via the plasmonic effect, and they play this role due to the unusual ability of plasmons to transmit energy. The absorption and emission of plasmons, dual in the sense of quantum [...] Read more.
Metallic nanoparticles are frequently applied to enhance the efficiency of photovoltaic cells via the plasmonic effect, and they play this role due to the unusual ability of plasmons to transmit energy. The absorption and emission of plasmons, dual in the sense of quantum transitions, in metallic nanoparticles are especially high at the nanoscale of metal confinement, so these particles are almost perfect transmitters of incident photon energy. We show that these unusual properties of plasmons at the nanoscale are linked to the extreme deviation of plasmon oscillations from the conventional harmonic oscillations. In particular, the large damping of plasmons does not terminate their oscillations, even if, for a harmonic oscillator, they result in an overdamped regime. Full article
(This article belongs to the Special Issue Design, Performance, and Application of Lithium-Ion Batteries)
Show Figures

Figure 1

16 pages, 552 KB  
Review
Two-Dimensional Plasmons in Laterally Confined 2D Electron Systems
by Igor V. Zagorodnev, Andrey A. Zabolotnykh, Danil A. Rodionov and Vladimir A. Volkov
Nanomaterials 2023, 13(6), 975; https://doi.org/10.3390/nano13060975 - 8 Mar 2023
Cited by 13 | Viewed by 3453
Abstract
The collective oscillations of charge density (plasmons) in conductive solids are basic excitations that determine the dynamic response of the system. In infinite two-dimensional (2D) electron systems, plasmons have gapless dispersion covering a broad spectral range from subterahertz to infrared, which is promising [...] Read more.
The collective oscillations of charge density (plasmons) in conductive solids are basic excitations that determine the dynamic response of the system. In infinite two-dimensional (2D) electron systems, plasmons have gapless dispersion covering a broad spectral range from subterahertz to infrared, which is promising in light-matter applications. We discuss the state-of-the-art physics of 2D plasmons, especially in confined 2D electron systems in stripe and disk geometry, using the simplest approach for conductivity. When the metal gate is placed in the vicinity of the 2D electron system, an analytical description of the plasmon frequency and damping can be easily obtained. We also analyze gated plasmons in the disk when it was situated at various distances from the gate, and discuss in detail the nontrivial behavior of the damping. We predict that it is not a simple sum of the radiative and collisional dampings, but has a nonmonotonic dependence on the system parameters. For high-mobility 2D systems, this opens the way to achieve the maximal quality factor of plasma resonances. Lastly, we discuss the recently discovered near-gate 2D plasmons propagating along the laterally confined gate, even without applied bias voltage and having gapless dispersion when the gate has the form of a stripe, and discrete spectrum when the gate is in the form of disk. It allows for one to drive the frequency and spatial propagation of such plasmons. Full article
(This article belongs to the Special Issue Semiconductor Quantum Wells and Nanostructures)
Show Figures

Figure 1

15 pages, 1421 KB  
Perspective
Optimization of Coherent Dynamics of Localized Surface Plasmons in Gold and Silver Nanospheres; Large Size Effects
by Krystyna Kolwas
Materials 2023, 16(5), 1801; https://doi.org/10.3390/ma16051801 - 22 Feb 2023
Cited by 5 | Viewed by 2016
Abstract
Noble metal nanoparticles have attracted attention in recent years due to a number of their exciting applications in plasmonic applications, e.g., in sensing, high-gain antennas, structural colour printing, solar energy management, nanoscale lasing, and biomedicines. The report embraces the electromagnetic description of inherent [...] Read more.
Noble metal nanoparticles have attracted attention in recent years due to a number of their exciting applications in plasmonic applications, e.g., in sensing, high-gain antennas, structural colour printing, solar energy management, nanoscale lasing, and biomedicines. The report embraces the electromagnetic description of inherent properties of spherical nanoparticles, which enable resonant excitation of Localized Surface Plasmons (defined as collective excitations of free electrons), and the complementary model in which plasmonic nanoparticles are treated as quantum quasi-particles with discrete electronic energy levels. A quantum picture including plasmon damping processes due to the irreversible coupling to the environment enables us to distinguish between the dephasing of coherent electron motion and the decay of populations of electronic states. Using the link between classical EM and the quantum picture, the explicit dependence of the population and coherence damping rates as a function of NP size is given. Contrary to the usual expectations, such dependence for Au and Ag NPs is not a monotonically growing function, which provides a new perspective for tailoring plasmonic properties in larger-sized nanoparticles, which are still hardly available experimentally. The practical tools for comparing the plasmonic performance of gold and silver nanoparticles of the same radii in an extensive range of sizes are also given. Full article
(This article belongs to the Special Issue Advances in Nanoscale and Low-Dimensional Functional Materials)
Show Figures

Figure 1

12 pages, 2297 KB  
Article
Light-Induced Clusterization of Gold Nanoparticles: A New Photo-Triggered Antibacterial against E. coli Proliferation
by Angela Candreva, Renata De Rose, Ida Daniela Perrotta, Alexa Guglielmelli and Massimo La Deda
Nanomaterials 2023, 13(4), 746; https://doi.org/10.3390/nano13040746 - 16 Feb 2023
Cited by 17 | Viewed by 3151
Abstract
Metallic nanoparticles show plasmon resonance phenomena when irradiated with electromagnetic radiation of a suitable wavelength, whose value depends on their composition, size, and shape. The damping of the surface electron oscillation causes a release of heat, which causes a large increase in local [...] Read more.
Metallic nanoparticles show plasmon resonance phenomena when irradiated with electromagnetic radiation of a suitable wavelength, whose value depends on their composition, size, and shape. The damping of the surface electron oscillation causes a release of heat, which causes a large increase in local temperature. Furthermore, this increase is enhanced when nanoparticle aggregation phenomena occur. Local temperature increase is extensively exploited in photothermal therapy, where light is used to induce cellular damage. To activate the plasmon in the visible range, we synthesized 50 nm diameter spherical gold nanoparticles (AuNP) coated with polyethylene glycol and administered them to an E. coli culture. The experiments were carried out, at different gold nanoparticle concentrations, in the dark and under irradiation. In both cases, the nanoparticles penetrated the bacterial wall, but a different toxic effect was observed; while in the dark we observed an inhibition of bacterial growth of 46%, at the same concentration, under irradiation, we observed a bactericidal effect (99% growth inhibition). Photothermal measurements and SEM observations allowed us to conclude that the extraordinary effect is due to the formation, at low concentrations, of a light-induced cluster of gold nanoparticles, which does not form in the absence of bacteria, leading us to the conclusion that the bacterium wall catalyzes the formation of these clusters which are ultimately responsible for the significant increase in the measured temperature and cause of the bactericidal effect. This photothermal effect is achieved by low-power irradiation and only in the presence of the pathogen: in its absence, the lack of gold nanoparticles clustering does not lead to any phototoxic effect. Therefore, it may represent a proof of concept of an innovative nanoscale pathogen responsive system against bacterial infections. Full article
(This article belongs to the Special Issue Functional Nanomaterials Based on Self-Assembly)
Show Figures

Figure 1

11 pages, 2162 KB  
Article
Enhancing the Catalytic Activity of Mo(110) Surface via Its Alloying with Submonolayer to Multilayer Boron Films and Oxidation of the Alloy: A Case of (CO + O2) to CO2 Conversion
by Yong Men, Tamerlan T. Magkoev, Reza Behjatmanesh-Ardakani, Vladislav B. Zaalishvili and Oleg G. Ashkhotov
Nanomaterials 2023, 13(4), 651; https://doi.org/10.3390/nano13040651 - 7 Feb 2023
Cited by 2 | Viewed by 2110
Abstract
In-situ formation of boron thin films on the Mo(110) surface, as well as the formation of the molybdenum boride and its oxide and the trends of carbon monoxide catalytic oxidation on the substrates formed, have been studied in an ultra-high vacuum (UHV) by [...] Read more.
In-situ formation of boron thin films on the Mo(110) surface, as well as the formation of the molybdenum boride and its oxide and the trends of carbon monoxide catalytic oxidation on the substrates formed, have been studied in an ultra-high vacuum (UHV) by a set of surface-sensitive characterization techniques: Auger and X-ray photoelectron spectroscopy (AES, XPS), low-energy ion scattering (LEIS), reflection-absorption infrared spectroscopy (RAIRS), temperature-programmed desorption (TPD), electron energy loss spectroscopy (EELS) and work function measurements using the Anderson method. The boron deposited at Mo(110) via electron-beam deposition at a substrate temperature of 300 K grows as a 2D layer, at least in submonolayer coverage. Such a film is bound to the Mo(110) via polarized chemisorption bonds, dramatically changing the charge density at the substrate surface manifested by the Mo(110) surface plasmon damping. Upon annealing of the B-Mo(110) system, the boron diffuses into the Mo(110) bulk following a two-mode regime: (1) quite easy dissolution, starting at a temperature of about 450 K with an activation energy of 0.4 eV; and (2) formation of molybdenum boride at a temperature higher than 700 K with M-B interatomic bonding energy of 3.8 eV. The feature of the formed molybdenum boride is that there is quite notable carbon monoxide oxidation activity on its surface. A further dramatic increase of such an activity is achieved when the molybdenum boride is oxidized. The latter is attributed to more activated states of molecular orbitals of coadsorbed carbon monoxide and oxygen due to their enhanced interaction with both boron and oxygen species for MoxByOz ternary compound, compared to only boron for the MoxBy double alloy. Full article
Show Figures

Figure 1

10 pages, 4266 KB  
Article
Plasmonic Biosensors Based on Deformed Graphene
by Vahid Faramarzi, Mohsen Heidari, Nik Humaidi bin Nik Zulkarnine and Michael Taeyoung Hwang
Biophysica 2022, 2(4), 538-547; https://doi.org/10.3390/biophysica2040045 - 29 Nov 2022
Cited by 14 | Viewed by 3608
Abstract
Rapid, accurate, and label-free detection of biomolecules and chemical substances remains a challenge in healthcare. Optical biosensors have been considered as biomedical diagnostic tools required in numerous areas including the detection of viruses, food monitoring, diagnosing pollutants in the environment, global personalized medicine, [...] Read more.
Rapid, accurate, and label-free detection of biomolecules and chemical substances remains a challenge in healthcare. Optical biosensors have been considered as biomedical diagnostic tools required in numerous areas including the detection of viruses, food monitoring, diagnosing pollutants in the environment, global personalized medicine, and molecular diagnostics. In particular, the broadly emerging and promising technique of surface plasmon resonance has established to provide real-time and label-free detection when used in biosensing applications in a highly sensitive, specific, and cost-effective manner with small footprint platform. In this study we propose a novel plasmonic biosensor based on biaxially crumpled graphene structures, wherein plasmon resonances in graphene are utilized to detect variations in the refractive index of the sample medium. Shifts in the resonance wavelength of the plasmon modes for a given change in the RI of the surrounding analyte are calculated by investigating the optical response of crumpled graphene structures on different substrates using theoretical computations based on the finite element method combined with the semiclassical Drude model. The results reveal a high sensitivity of 4990 nm/RIU, corresponding to a large figure-of-merit of 20 for biaxially crumpled graphene structures on polystyrene substrates. We demonstrate that biaxially crumpled graphene exhibits superior sensing performance compared with a uniaxial structure. According to the results, crumpled graphene structures on a titanium oxide substrate can improve the sensor sensitivity by avoiding the damping effects of polydimethylsiloxane substrates. The enhanced sensitivity and broadband mechanical tunability of the biaxially crumpled graphene render it a promising platform for biosensing applications. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

13 pages, 2878 KB  
Article
Plasmon Damping Rates in Coulomb-Coupled 2D Layers in a Heterostructure
by Dipendra Dahal, Godfrey Gumbs, Andrii Iurov and Chin-Sen Ting
Materials 2022, 15(22), 7964; https://doi.org/10.3390/ma15227964 - 11 Nov 2022
Viewed by 2069
Abstract
The Coulomb excitations of charge density oscillation are calculated for a double-layer heterostructure. Specifically, we consider two-dimensional (2D) layers of silicene and graphene on a substrate. From the obtained surface response function, we calculated the plasmon dispersion relations, which demonstrate how the Coulomb [...] Read more.
The Coulomb excitations of charge density oscillation are calculated for a double-layer heterostructure. Specifically, we consider two-dimensional (2D) layers of silicene and graphene on a substrate. From the obtained surface response function, we calculated the plasmon dispersion relations, which demonstrate how the Coulomb interaction renormalizes the plasmon frequencies. Most importantly, we have conducted a thorough investigation of how the decay rates of the plasmons in these heterostructures are affected by the Coulomb coupling between different types of two-dimensional materials whose separations could be varied. A novel effect of nullification of the silicene band gap is noticed when graphene is introduced into the system. To utilize these effects for experimental and industrial purposes, graphical results for the different parameters are presented. Full article
(This article belongs to the Special Issue Advanced Graphene and Graphene Oxide Materials)
Show Figures

Figure 1

18 pages, 3807 KB  
Article
Plasmonic Circular Dichroism in Chiral Gold Nanowire Dimers
by Daniele Toffoli, Marco Medves, Giovanna Fronzoni, Emanuele Coccia, Mauro Stener, Luca Sementa and Alessandro Fortunelli
Molecules 2022, 27(1), 93; https://doi.org/10.3390/molecules27010093 - 24 Dec 2021
Cited by 6 | Viewed by 3426
Abstract
We report a computational study at the time-dependent density functional theory (TDDFT) level of the chiro-optical spectra of chiral gold nanowires coupled in dimers. Our goal is to explore whether it is possible to overcome destructive interference in single nanowires that damp chiral [...] Read more.
We report a computational study at the time-dependent density functional theory (TDDFT) level of the chiro-optical spectra of chiral gold nanowires coupled in dimers. Our goal is to explore whether it is possible to overcome destructive interference in single nanowires that damp chiral response in these systems and to achieve intense plasmonic circular dichroism (CD) through a coupling between the nanostructures. We predict a huge enhancement of circular dichroism at the plasmon resonance when two chiral nanowires are intimately coupled in an achiral relative arrangement. Such an effect is even more pronounced when two chiral nanowires are coupled in a chiral relative arrangement. Individual component maps of rotator strength, partial contributions according to the magnetic dipole component, and induced densities allow us to fully rationalize these findings, thus opening the way to the field of plasmonic CD and its rational design. Full article
(This article belongs to the Special Issue Synergy of Nanoparticles/Clusters Properties and Applications)
Show Figures

Figure 1

Back to TopTop