Mechanistic Insights and Real-World Evidence of Autologous Protein Solution (APS) in Clinical Use †
Abstract
1. Introduction
2. Results
2.1. M1 and M2 Macrophage Phenotype Assay
2.2. Calculation of MCII by Anchor-Based Method (PROGRESS II)
2.3. Clinical Effectiveness in a Registry Study (PROGESS III)
3. Discussion
4. Materials and Methods
4.1. Macrophase In Vitro Analysis
4.2. Calculation of Minimally Clinically Important Improvement (MCII)
4.3. Post-Market Registry Data Collection
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DMOAD | Disease modifying osteoarthritis drug |
IL-1 | Interleukin-1 |
IL-1ra | Interleukin-1 receptor antagonist |
IL-4 | Interleukin-4 |
IL-10 | Interleukin-10 |
LP-PRP | Leukocyte poor platelet-rich plasma |
LR-PRP | Leukocyte rich platelet-rich plasma |
KOOS | Knee Injury and Osteoarthritis Outcome Score |
MCII | Minimal Clinically Important Improvement |
NRS | Numeric rating scale |
OA | Osteoarthritis |
PGI-I | Patient Global Impression of Improvement Scale |
PPP | Platelet-poor plasma |
PRO | Patient reported outcomes |
TGFβ | Transforming growth factor-beta |
TNFα | Tissue necrosis factor-alpha |
sIL-1R | Soluble Interleukin-1 receptor |
sTNFR | Soluble Tissue necrosis factor receptor |
VAS | Visual Analog Scale |
WOMAC | The Western Ontario and McMaster Universities Osteoarthritis Index |
References
- Zhang, Y.; Ji, Q. Macrophage polarization in osteoarthritis progression: A promising therapeutic target. Front. Cell Dev. Biol. 2023, 11, 1269724. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, C.J.; Leibovich, S.J. Regulation of Macrophage Polarization and Wound Healing. Adv. Wound Care 2012, 1, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, M.; Zhao, J.; Zheng, M.; Yang, H. Imbalance of M1/M2 macrophages is linked to severity level of knee osteoarthritis. Exp. Ther. Med. 2018, 16, 5009–5014. [Google Scholar] [CrossRef]
- Kraus, V.B.; McDaniel, G.; Huebner, J.L.; Stabler, T.V.; Pieper, C.F.; Shipes, S.W.; Petry, N.A.; Low, P.S.; Shen, J.; McNearney, T.A.; et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthr. Cartil. 2016, 24, 1613–1621. [Google Scholar] [CrossRef]
- Martinez, F.O.; Sica, A.; Mantovani, A.; Locati, M. Macrophage activation and polarization. Front. Biosci. 2008, 13, 453–461. [Google Scholar] [CrossRef]
- Woodell-May, J.E.; Matuska, A.; Oyster, M.; Welch, Z.; O’Shaughnessey, K.M.; Hoeppner, J. Autologous protein solution inhibits MMP-13 production by IL-1beta and TNFalpha-stimulated human articular chondrocytes. J. Orthop. Res. 2011, 29, 1320–1326. [Google Scholar] [CrossRef]
- Martins, R.A.; Costa, F.R.; Pires, L.; Santos, M.; Santos, G.S.; Lana, J.V.; Costa, B.R.; Santos, N.; de Macedo, A.P.; Kruel, A.; et al. Regenerative Inflammation: The Mechanism Explained from the Perspective of Buffy-Coat Protagonism and Macrophage Polarization. Int. J. Mol. Sci. 2024, 25, 11329. [Google Scholar] [CrossRef]
- O’Shaughnessey, K.; Matuska, A.; Hoeppner, J.; Farr, J.; Klaassen, M.; Kaeding, C.; Lattermann, C.; King, W.; Woodell-May, J. Autologous protein solution prepared from the blood of osteoarthritic patients contains an enhanced profile of anti-inflammatory cytokines and anabolic growth factors. J. Orthop. Res. 2014, 32, 1349–1355. [Google Scholar] [CrossRef]
- Tubach, F.; Ravaud, P.; Baron, G.; Falissard, B.; Logeart, I.; Bellamy, N.; Bombardier, C.; Felson, D.; Hochberg, M.; van der, H.D.; et al. Evaluation of clinically relevant states in patient reported outcomes in knee and hip osteoarthritis: The patient acceptable symptom state. Ann. Rheum. Dis. 2005, 64, 34–37. [Google Scholar] [CrossRef]
- Kon, E.; Engebretsen, L.; Verdonk, P.; Nehrer, S.; Filardo, G. Clinical outcomes of knee osteoarthritis treated with an autologous protein solution injection: A 1-year pilot double-blinded randomized controlled trial. Am. J. Sports Med. 2018, 46, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Woodell-May, J.; Steckbeck, K.; King, W. Potential Mechanism of Action of Current Point-of-Care Autologous Therapy Treatments for Osteoarthritis of the Knee—A Narrative Review. Int. J. Mol. Sci. 2021, 22, 2726. [Google Scholar] [CrossRef] [PubMed]
- Wakayama, T.; Saita, Y.; Kobayashi, Y.; Nishio, H.; Uchino, S.; Fukusato, S.; Ikeda, H.; Kaneko, K. Quality comparison between two different types of platelet-rich plasma for knee osteoarthritis. Regen. Med. Res. 2020, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, R.; Toyoda, E.; Maehara, M.; Wasai, S.; Omura, H.; Watanabe, M.; Sato, M. Effect of Platelet-Rich Plasma on M1/M2 Macrophage Polarization. Int. J. Mol. Sci. 2021, 22, 2336. [Google Scholar] [CrossRef] [PubMed]
- Peña, A.N.; Sommerfeld, S.D.; Anderson, A.E.; Han, J.; Maestas, D.R., Jr.; Mejias, J.C.; Woodell-May, J.; King, W.; Ganguly, S.; Elisseeff, J.H. Autologous Protein Solution processing alters lymphoid and myeloid cell populations and modulates gene expression dependent on cell type. Arthritis Res. Ther. 2022, 24, 221. [Google Scholar] [CrossRef]
- Nishio, H.; Saita, Y.; Kobayashi, Y.; Takaku, T.; Fukusato, S.; Uchino, S.; Wakayama, T.; Ikeda, H.; Kaneko, K. Platelet-rich plasma promotes recruitment of macrophages in the process of tendon healing. Regen. Ther. 2020, 14, 262–270. [Google Scholar] [CrossRef]
- Jayaram, P.; Mitchell, P.J.T.; Shybut, T.B.; Moseley, B.J.; Lee, B. Leukocyte-Rich Platelet-Rich Plasma Is Predominantly Anti-inflammatory Compared with Leukocyte-Poor Platelet-Rich Plasma in Patients with Mild-Moderate Knee Osteoarthritis: A Prospective, Descriptive Laboratory Study. Am. J. Sports Med. 2023, 51, 2133–2140. [Google Scholar] [CrossRef]
- Mariani, E.; Canella, V.; Cattini, L.; Kon, E.; Marcacci, M.; Di, M.B.; Pulsatelli, L.; Filardo, G. Leukocyte-Rich Platelet-Rich Plasma Injections Do Not Up-Modulate Intra-Articular Pro-Inflammatory Cytokines in the Osteoarthritic Knee. PLoS ONE 2016, 11, e0156137. [Google Scholar] [CrossRef]
- Romandini, I.; Boffa, A.; Di Martino, A.; Andriolo, L.; Cenacchi, A.; Sangiorgi, E.; Orazi, S.; Pizzuti, V.; Zaffagnini, S.; Filardo, G. Leukocytes Do Not Influence the Safety and Efficacy of Platelet-Rich Plasma Injections for the Treatment of Knee Osteoarthritis: A Double-Blind Randomized Controlled Trial. Am. J. Sports Med. 2024, 52, 3212–3222. [Google Scholar] [CrossRef]
- Laver, L.; Filardo, G.; Sanchez, M.; Magalon, J.; Tischer, T.; Abat, F.; Bastos, R.; Cugat, R.; Iosifidis, M.; Kocaoglu, B.; et al. The use of injectable orthobiologics for knee osteoarthritis: A European ESSKA-ORBIT consensus. Part 1-Blood-derived products (platelet-rich plasma). Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 783–797. [Google Scholar] [CrossRef]
- Barot, D.; Usimaki, A.; Linardi, R.L.; Arensberg, C.M.; Ortved, K.F. Equine autologous blood-based products contain variable quantities of transforming growth factor-β1, interleukin-1 receptor antagonist, and α2-macroglobulin. Am. J. Vet. Res. 2025, 86, 1–8. [Google Scholar] [CrossRef]
- King, W.J.; vanDerWeegen, W.; vanDrumpt, R.; Soons, H.; Toler, K.; Woodell-May, J.E. White Blood Cell Concentration Correlates with Increased Concentrations of IL-1ra and Changes in WOMAC Pain Scores in an Open-Label Safety Study of Autologous Protein Solution. Exp. Orthop. 2016, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Berrigan, W.A.; Bailowitz, Z.; Park, A.; Reddy, A.; Liu, R.; Lansdown, D. A Greater Platelet Dose May Yield Better Clinical Outcomes for Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Systematic Review. Arthroscopy 2025, 41, 809–817.e802. [Google Scholar] [CrossRef]
- Roos, E.M.; Lohmander, L.S. The Knee injury and Osteoarthritis Outcome Score (KOOS): From joint injury to osteoarthritis. Health Qual. Life Outcomes 2003, 1, 64. [Google Scholar] [CrossRef]
- Kuwasawa, A.; Okazaki, K.; Noda, K.; Nihei, K. Clinical results of autologous protein solution injection for knee osteoarthritis with severe disease grade is inferior to mild or moderate grade. Sci. Rep. 2023, 13, 6404. [Google Scholar] [CrossRef]
- Usimaki, A.; Ciamillo, S.A.; Barot, D.; Linardi, R.L.; Engiles, J.B.; Ortved, K.F. Single injection of intra-articular autologous protein solution in horses with acute interleukin-1B-induced synovitis decreases joint pathology scores. Equine Vet. J. 2025, 57, 806–816. [Google Scholar] [CrossRef]
- King, W.; Bendele, A.; Marohl, T.; Woodell-May, J. Human blood-based anti-inflammatory solution inhibits osteoarthritis progression in a meniscal-tear rat study. J. Orthop. Res. 2017, 35, 2260–2268. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, I.; Katano, H.; Mizuno, M.; Endo, K.; Asami, A.; Kajiwara, M.; Otomo, N.; Koga, H.; Masumoto, J.; Ozeki, N. 3D-MRI analysis of cartilage thickness changes after PRP injection in medial knee osteoarthritis: A preliminary report. PLoS ONE 2025, 20, e0321067. [Google Scholar] [CrossRef] [PubMed]
- Bannuru, R.R.; Vaysbrot, E.E.; McIntyre, L.F. Did the American Academy of Orthopaedic Surgeons osteoarthritis guidelines miss the mark? Arthroscopy 2014, 30, 86–89. [Google Scholar] [CrossRef]
- King, W.J.; Han, B.; Woodell-May, J.E. An Autologous Protein Solution Induces the M2 Pro-Healing Phenotype of Cultured Macrophages. In Proceedings of the Regenerative Medicine Workshop, Hilton Head, SC, USA, 26–29 March 2014. [Google Scholar]
- Vedi, V.; Woodell-May, J. Prospective Post Market Data Collection on Patients with Knee Osteoarthritis Treated with Autologous Protein Solution (APS) (PROGRESS III Study). In Proceedings of the Osteoarthritis Research Society International (OARSI), Vienna, Austria, 30 April–3 May 2020. [Google Scholar]
- Kon, E.; Engebretsen, L.; Verdonk, P.; Nehrer, S.; Filardo, G. Five Year Follow-Up of a Single, Intra-Articular Injection of Autologous Protein Solution in Patients with Knee OA (Progress II). In Proceedings of the International Cartilage Regeneration and Joint Preservation Society, Berlin, Germany, 12–15 April 2022; p. 620. [Google Scholar]
- Woodell-May, J.; Steckbeck, K.; Miller, K.; Blanton, A.; Toler, K. Anchor-Based Method to Determine Minimal Clinically Important Improvement (MCII) for a Novel Autologous Therapy Used to Treat Osteoarthritis. In Proceedings of the Orthopaedic Research Society, Long Beach, CA, USA, 2–6 February 2024; p. 1682. [Google Scholar]
Transition Question | n | WOMAC Pain Improvement | WOMAC Function Improvement |
---|---|---|---|
Very Much Worse | 1 | −1.0 | −7.0 |
Much Worse | 1 | 1.5 | 4.5 |
Minimally Worse | 5 | 3.2 | 3.8 |
No Change | 6 | 4.2 | 7.4 |
Minimally Improved | 9 | 5.8 | 15.8 |
Much Improved | 18 | 8.4 | 25.3 |
Very Much Improved | 4 | 10.9 | 37.8 |
Transition Question | MCII for WOMAC Pain Improvement | MCII for WOMAC Function Improvement |
---|---|---|
Based on the 25th percentile of the PGI—“Minimally Improved” subjects | 2.0 | 7.5 |
PRO (n = Joints) | Baseline (n = 104) | 2 Weeks (n = 57) | 4 Weeks (n = 62) | 3 Months (n = 51) | 6 Months (n = 40) | 12 Months (n = 32) | p Value | |
---|---|---|---|---|---|---|---|---|
KOOS | Pain | 49.7 (16.1) | 60.1 (18.9) | 60.2 (18.8) | 63.4 (21.6) | 57.9 (25.2) | 64.0 (23.4) | p < 0.01 |
Symptoms | 53.6 (18.6) | 62.7 (16.7) | 63.0 (16.7) | 62.6 (20.4) | 57.3 (23.7) | 62.1 (23.8) | p < 0.01 | |
NRS | Pain | 5.8 (2.3) | 4.3 (2.5) | 4.3 (2.5) | 4.0 (2.6) | 4.7 (2.7) | 3.7 (2.8) | p < 0.01 |
Function | 5.1 (2.2) | 3.8 (2.6) | 4.2 (2.6) | 4.1 (2.5) | 4.3 (2.5) | 3.5 (2.6) | p < 0.01 | |
Stiffness | 5.3 (2.5) | 4.0 (2.3) | 4.0 (2.3) | 3.6 (2.2) | 4.2 (2.6) | 3.7 (2.9) | p < 0.01 |
PRO (n = Subjects) | Baseline (n = 78) | 2 Weeks (n = 44) | 4 Weeks (n = 48) | 3 Months (n = 40) | 6 Months (n = 32) | 12 Months (n = 26) | p Value | |
---|---|---|---|---|---|---|---|---|
KOOS | Daily Living | 62.9 (21.6) | 64.8 (21.9) | 67.6 (20.9) | 61.3 (25.3) | 61.5 (22.7) | 64.6 (25.7) | p = 0.537 |
Sports and Rec | 32.8 (25.9) | 30.2 (24.8) | 37.3 (29.1) | 36.6 (30.5) | 37.7 (27.3) | 36.0 (29.6) | p = 0.524 | |
QoL | 34.8 (23.2) | 36.8 (23.4) | 41.3 (25.3) | 34.3 (21.9) | 42.1 (25.4) | 40.2 (26.1) | p = 0.649 |
Study | Time Point | Category | Pain Responders % (n) | Average Pain Point Improvement Mean (SD) |
---|---|---|---|---|
PROGRESS II RCT | 12 mo. | Meets MCII | 80.4% (37/46) | 7.5 (3.0) |
Below MCII | 19.6% (9/46) | −0.78 (2.2) | ||
60 mo. | Meets MCII | 88.2% (15/17) | 7.8 (3.2) | |
Below MCII | 11.7% (2/17) | −1.0 (2.8) | ||
PROGRESS III Registry | 12 mo. | Meets MCII | 62.5% (20/32) | 4.7 (2.5) |
Below MCII | 37.5% (12/32) | −1.25 (2.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woodell-May, J.; Steckbeck, K.; King, W.; Miller, K.; Han, B.; Vedi, V.; Kon, E. Mechanistic Insights and Real-World Evidence of Autologous Protein Solution (APS) in Clinical Use. Int. J. Mol. Sci. 2025, 26, 7577. https://doi.org/10.3390/ijms26157577
Woodell-May J, Steckbeck K, King W, Miller K, Han B, Vedi V, Kon E. Mechanistic Insights and Real-World Evidence of Autologous Protein Solution (APS) in Clinical Use. International Journal of Molecular Sciences. 2025; 26(15):7577. https://doi.org/10.3390/ijms26157577
Chicago/Turabian StyleWoodell-May, Jennifer, Kathleen Steckbeck, William King, Katie Miller, Bo Han, Vikas Vedi, and Elizaveta Kon. 2025. "Mechanistic Insights and Real-World Evidence of Autologous Protein Solution (APS) in Clinical Use" International Journal of Molecular Sciences 26, no. 15: 7577. https://doi.org/10.3390/ijms26157577
APA StyleWoodell-May, J., Steckbeck, K., King, W., Miller, K., Han, B., Vedi, V., & Kon, E. (2025). Mechanistic Insights and Real-World Evidence of Autologous Protein Solution (APS) in Clinical Use. International Journal of Molecular Sciences, 26(15), 7577. https://doi.org/10.3390/ijms26157577