Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (504)

Search Parameters:
Keywords = plant nutrient balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 19279 KiB  
Article
Smart Hydroponic Cultivation System for Lettuce (Lactuca sativa L.) Growth Under Different Nutrient Solution Concentrations in a Controlled Environment
by Raul Herrera-Arroyo, Juan Martínez-Nolasco, Enrique Botello-Álvarez, Víctor Sámano-Ortega, Coral Martínez-Nolasco and Cristal Moreno-Aguilera
Appl. Syst. Innov. 2025, 8(4), 110; https://doi.org/10.3390/asi8040110 - 7 Aug 2025
Abstract
The inclusion of the Internet of Things (IoT) in indoor agricultural systems has become a fundamental tool for improving cultivation systems by providing key information for decision-making in pursuit of better performance. This article presents the design and implementation of an IoT-based agricultural [...] Read more.
The inclusion of the Internet of Things (IoT) in indoor agricultural systems has become a fundamental tool for improving cultivation systems by providing key information for decision-making in pursuit of better performance. This article presents the design and implementation of an IoT-based agricultural system installed in a plant growth chamber for hydroponic cultivation under controlled conditions. The growth chamber is equipped with sensors for air temperature, relative humidity (RH), carbon dioxide (CO2) and photosynthetically active photon flux, as well as control mechanisms such as humidifiers, full-spectrum Light Emitting Diode (LED) lamps, mini split air conditioner, pumps, a Wi-Fi surveillance camera, remote monitoring via a web application and three Nutrient Film Technique (NFT) hydroponic systems with a capacity of ten plants each. An ATmega2560 microcontroller manages the smart system using the MODBUS RS-485 communication protocol. To validate the proper functionality of the proposed system, a case study was conducted using lettuce crops, in which the impact of different nutrient solution concentrations (50%, 75% and 100%) on the phenotypic development and nutritional content of the plants was evaluated. The results obtained from the cultivation experiment, analyzed through analysis of variance (ANOVA), show that the treatment with 75% nutrient concentration provides an appropriate balance between resource use and nutritional quality, without affecting the chlorophyll content. This system represents a scalable and replicable alternative for protected agriculture. Full article
(This article belongs to the Special Issue Smart Sensors and Devices: Recent Advances and Applications Volume II)
Show Figures

Figure 1

17 pages, 780 KiB  
Review
Progress in the Study of Plant Nitrogen and Potassium Nutrition and Their Interaction Mechanisms
by Weiyu Cao, Hai Sun, Cai Shao, Yue Wang, Jiapeng Zhu, Hongjie Long, Xiaomeng Geng and Yayu Zhang
Horticulturae 2025, 11(8), 930; https://doi.org/10.3390/horticulturae11080930 - 7 Aug 2025
Abstract
Nitrogen (N) and potassium (K) are essential macronutrients for plants whose functions and interactions profoundly influence plant physiological metabolism, environmental adaptation, and agricultural production efficiency. This review summarizes research advances in plant N and K nutrition and their interaction mechanisms, elucidating the key [...] Read more.
Nitrogen (N) and potassium (K) are essential macronutrients for plants whose functions and interactions profoundly influence plant physiological metabolism, environmental adaptation, and agricultural production efficiency. This review summarizes research advances in plant N and K nutrition and their interaction mechanisms, elucidating the key physiological functions of N and K individually and their respective absorption and transport mechanisms involving transporters such as NRTs and HAKs/KUPs. The review discusses the types of nutrient interactions (synergism and antagonism), with a primary focus on the physiological basis of N–K interactions and their interplay in root absorption and transport (e.g., K+-NO3 co-transport; NH4+ inhibition of K+ uptake), photosynthesis (jointly optimizing CO2 conductance, mesophyll conductance, and N allocation within photosynthetic machinery to enhance photosynthetic N use efficiency, PNUE), as well as sensing, signaling, co-regulation, and metabolism. This review emphasizes that N–K balance is crucial for improving crop yield and quality, enhancing fertilizer use efficiency (NUE/KUE), and reducing environmental pollution. Consequently, developing effective N–K management strategies based on these interaction mechanisms and implementing Balanced Fertilization Techniques (BFT) to optimize N–K ratios and application strategies in agricultural production represent vital pathways for ensuring food security, addressing resource constraints, and advancing green, low-carbon agriculture, including through coordinated management of greenhouse gas emissions. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

34 pages, 9516 KiB  
Article
Proteus sp. Strain JHY1 Synergizes with Exogenous Dopamine to Enhance Rice Growth Performance Under Salt Stress
by Jing Ji, Baoying Ma, Runzhong Wang and Tiange Li
Microorganisms 2025, 13(8), 1820; https://doi.org/10.3390/microorganisms13081820 - 4 Aug 2025
Viewed by 200
Abstract
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous [...] Read more.
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous dopamine (DA) significantly enhanced the production of indole-3-acetic acid and ammonia by strain JHY1. Pot experiments revealed that both DA and JHY1 treatments effectively alleviated the adverse effects of 225 mM NaCl on rice, promoting biomass, plant height, and root length. More importantly, the combined application of DA-JHY1 showed a significant synergistic effect in mitigating salt stress. The treatment increased the chlorophyll content, net photosynthetic rate, osmotic regulators (proline, soluble sugars, and protein), and reduced lipid peroxidation. The treatment also increased soil nutrients (ammoniacal nitrogen and available phosphorus), enhanced soil enzyme activities (sucrase and alkaline phosphatase), stabilized the ion balance (K+/Na+), and modulated the soil rhizosphere microbial community by increasing beneficial bacteria, such as Actinobacteria and Firmicutes. This study provides the first evidence that the synergistic effect of DA and PGPR contributes to enhanced salt tolerance in rice, offering a novel strategy for alleviating the adverse effects of salt stress on plant growth. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

35 pages, 698 KiB  
Review
Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
by Rahul Kumar, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra and Pankaj Gautam
Appl. Microbiol. 2025, 5(3), 79; https://doi.org/10.3390/applmicrobiol5030079 - 4 Aug 2025
Viewed by 71
Abstract
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis [...] Read more.
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis on the underlying molecular mechanisms and ecological ramifications. Common environmental metals, including arsenic, mercury, cadmium, and lead, exert substantial selective pressures on microbial communities. These induce oxidative stress and DNA damage, potentially leading to mutations that enhance antibiotic resistance. Key microbial responses include the overexpression of efflux pumps that expel both metals and antibiotics, production of detoxifying enzymes, and formation of protective biofilms, all of which contribute to the emergence of multidrug-resistant strains. In the soil environment, particularly the rhizosphere, heavy metals disrupt plant–microbe interactions by inhibiting beneficial organisms, such as rhizobacteria, mycorrhizal fungi, and actinomycetes, thereby impairing nutrient cycling and plant health. Nonetheless, certain microbial consortia can tolerate and detoxify heavy metals through sequestration and biotransformation, rendering them valuable for bioremediation. Advances in biotechnology, including gene editing and the development of engineered metal-resistant microbes, offer promising solutions for mitigating the spread of metal-driven AMR and restoring ecological balance. By understanding the interplay between metal pollution and microbial resistance, we can more effectively devise strategies for environmental protection and public health. Full article
Show Figures

Graphical abstract

18 pages, 2358 KiB  
Article
Characterizing the Temporally Dynamic Nature of Relative Growth Rates: A Kinetic Analysis on Nitrogen-, Phosphorus-, and Potassium-Limited Growth
by Andrew Sharkey, Asher Altman, Yuming Sun, Thomas K. S. Igou and Yongsheng Chen
Agriculture 2025, 15(15), 1641; https://doi.org/10.3390/agriculture15151641 - 29 Jul 2025
Viewed by 269
Abstract
Developing precision models to describe agricultural growth is a necessary step to promote sustainable agriculture and increase resource circulation. In this study, the researchers hydroponically cultivated Bibb lettuce (Lactuca sativa) across a variety of nitrogen, phosphorus, and potassium (NPK)-limited treatments and [...] Read more.
Developing precision models to describe agricultural growth is a necessary step to promote sustainable agriculture and increase resource circulation. In this study, the researchers hydroponically cultivated Bibb lettuce (Lactuca sativa) across a variety of nitrogen, phosphorus, and potassium (NPK)-limited treatments and developed robust data-driven kinetic models observing nutrient uptake, biomass growth, and tissue composition based on all three primary macronutrients. The resulting Dynamic μ model is the first to integrate plant maturity’s impact on growth rate, significantly improving model accuracy across limiting nutrients, treatments, and developmental stages. This reduced error supports this simple expansion as a practical and necessary inclusion for agricultural kinetic modeling. Furthermore, analysis of nutrient uptake refines the ideal hydroponic nutrient balance for Bibb lettuce to 132, 35, and 174 mg L−1 (N, P, and K, respectively), while qualitative cell yield analysis identifies minimum nutrient thresholds at approximately 26.2–41.7 mg-N L−1, 3.7–5.6 mg-P L−1, and 17.4–31.5 mg-K L−1 to produce compositionally healthy lettuce. These findings evaluate reclaimed wastewater’s ability to offset the fertilizer burden for lettuce by 23–45%, 14–57%, and 3–23% for N, P, and K and guide the required minimum amount of wastewater pre-processing or nutrient supplements needed to completely fulfill hydroponic nutrient demands. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

19 pages, 4928 KiB  
Article
Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation
by Yujie Niu, Xiaoling Ma, Chuying Wang, Peng Zhang, Qicheng Lu, Rui Long, Yanyan Wu and Wenju Zhang
Microorganisms 2025, 13(8), 1723; https://doi.org/10.3390/microorganisms13081723 - 23 Jul 2025
Viewed by 236
Abstract
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that [...] Read more.
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that may impair silage quality. This study aimed to investigate the effects of lactic acid bacteria inoculation on the fermentation quality, bacterial community, and metabolome of whole-plant triticale silage at the dough stage. Fresh triticale was ensiled for 30 days without or with an inoculant containing Lactiplantibacillus plantarum and Streptococcus bovis. Fermentation quality, bacterial succession, and metabolic profiles were analyzed at multiple time points. Inoculation significantly improved fermentation quality, characterized by a rapid pH drop, increased lactic acid production, and better preservation of fiber components. Microbial analysis revealed that inoculation successfully established Lactobacillus as the dominant genus while suppressing spoilage bacteria like Enterobacter and Clostridium. Metabolomic analysis on day 30 identified numerous differential metabolites, indicating that inoculation primarily altered pathways related to amino acid and purine metabolism. In conclusion, inoculating dough-stage triticale with this LAB combination effectively directs the fermentation trajectory. It enhances silage quality not only by optimizing organic acid profiles and microbial succession but also by modulating key metabolic pathways, ultimately leading to improved nutrient preservation. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

26 pages, 3919 KiB  
Article
Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems
by Chaoyu Liao, Min Tang, Chao Zhang, Meihua Deng, Yan Li and Shaoyuan Feng
Plants 2025, 14(14), 2233; https://doi.org/10.3390/plants14142233 - 19 Jul 2025
Viewed by 339
Abstract
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In [...] Read more.
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In this study, we systematically examined the combined effects of straw mulching at the seedling and jointing stages of winter wheat, as well as varying mulching thicknesses and soybean planting densities, on soil properties and crop yields through field experiments. The experimental design included straw mulching treatments during the seedling stage (T1) and the jointing stage (T2) of winter wheat, with soybean planting densities classified as low (D1, 1.8 × 105 plants·ha−1) and high (D2, 3.6 × 105 plants·ha−1). Mulching thicknesses were set at low (S1, 2830.19 kg·ha−1), medium (S2, 8490.57 kg·ha−1), and high (S3, 14,150.95 kg·ha−1), in addition to a no-mulch control (CK) for each treatment. The results demonstrated that (1) straw mulching significantly increased soil water content in the order S3 > S2 > S1 > CK and exerted a temperature-buffering effect. This resulted in increases in soil organic carbon, available phosphorus, and available potassium by 1.88−71.95%, 1.36−165.8%, and 1.92−36.34%, respectively, while decreasing available nitrogen content by 1.42−17.98%. (2) The T1 treatments increased wheat yields by 1.22% compared to the control, while the T2 treatments resulted in a 23.83% yield increase. Soybean yields increased by 23.99% under D1 and by 36.22% under D2 treatments. (3) Structural equation modeling indicated that straw mulching influenced yields by modifying interactions among soil organic carbon, available nitrogen, available phosphorus, available potassium, bulk density, soil temperature, and soil water content. Wheat yields were primarily regulated by the synergistic effects of soil temperature, water content, and available potassium, whereas soybean yields were determined by the dynamic balance between organic carbon and available potassium. This study provides empirical evidence to inform the optimization of straw return practices in wheat–soybean rotation systems. Full article
Show Figures

Figure 1

15 pages, 1006 KiB  
Review
Multifunctional Applications of Biofloc Technology (BFT) in Sustainable Aquaculture: A Review
by Changwei Li and Limin Dai
Fishes 2025, 10(7), 353; https://doi.org/10.3390/fishes10070353 - 17 Jul 2025
Viewed by 403
Abstract
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant [...] Read more.
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant properties, microbial proteins for efficient feed production, and algae biomass for nutrient recycling and bioenergy. In environmental remediation, its porous microbial aggregates remove microplastics and heavy metals through integrated physical, chemical, and biological mechanisms, addressing critical aquatic pollution challenges. Agri-aquatic integration systems create symbiotic loops where nutrient-rich aquaculture effluents fertilize plant cultures, while plants act as natural filters to stabilize water quality, reducing freshwater dependence and enhancing resource efficiency. Emerging applications, including pigment extraction for ornamental fish and the anaerobic fermentation of biofloc waste into organic amendments, further demonstrate its alignment with circular economy principles. While technical advancements highlight its capacity to balance productivity and ecological stewardship, challenges in large-scale optimization, long-term system stability, and economic viability necessitate interdisciplinary research. By shifting focus to its underexplored functionalities, this review positions BFT as a transformative technology capable of addressing interconnected global challenges in food security, pollution mitigation, and sustainable resource use, offering a scalable framework for the future of aquaculture and beyond. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Graphical abstract

24 pages, 836 KiB  
Article
Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops
by Elżbieta Harasim and Cezary A. Kwiatkowski
Sustainability 2025, 17(14), 6473; https://doi.org/10.3390/su17146473 - 15 Jul 2025
Viewed by 325
Abstract
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: [...] Read more.
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: A. organic system (control)—without the use of chemical plant protection products and NPK mineral fertilization; B. conventional system—the use of plant protection products and NPK fertilization in the range and doses recommended for spring wheat; C. integrated system—use of plant protection products and NPK fertilization in an “economical” way—doses reduced by 50%. The second experimental factor was irrigation strategy: 1. no irrigation—control; 2. double irrigation; 3. multiple irrigation The aim of the research was to determine the physical, chemical, and enzymatic properties of loess soil under spring wheat crops as influenced by the factors listed above. The highest organic C content of the soil (1.11%) was determined in the integrated system with multiple irrigation of spring wheat, whereas the lowest one (0.77%)—in the conventional system without irrigation. In the conventional system, the highest contents of total N (0.15%), P (131.4 mg kg−1), and K (269.6 mg kg−1) in the soil were determined under conditions of multiple irrigation. In turn, the organic system facilitated the highest contents of Mg, B, Cu, Mn, and Zn in the soil, especially upon multiple irrigation of crops. It also had the most beneficial effect on the evaluated physical parameters of the soil. In each farming system, the multiple irrigation of spring wheat significantly increased moisture content, density, and compaction of the soil and also improved its total sorption capacity (particularly in the integrated system). The highest count of beneficial fungi, the lowest population number of pathogenic fungi, and the highest count of actinobacteria were recorded in the soil from the organic system. Activity of soil enzymes was the highest in the integrated system, followed by the organic system—particularly upon multiple irrigation of crops. Summing up, the present study results demonstrate varied effects of the farming systems on the quality and health of loess soil. From a scientific point of view, the integrated farming system ensures the most stable and balanced physicochemical and biological parameters of the soil due to the sufficient amount of nutrients supplied to the soil and the minimized impact of chemical plant protection products on the soil. The multiple irrigation of crops resulting from indications of soil moisture sensors mounted on plots (indicating the real need for irrigation) contributed to the improvement of almost all analyzed soil quality indices. Multiple irrigation generated high costs, but in combination with fertilization and chemical crop protection (conventional and integrated system), it influenced the high productivity of spring wheat and compensated for the incurred costs (the greatest profit). Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

20 pages, 1779 KiB  
Article
Chloride as a Partial Nitrate Substitute in Hydroponics: Effects on Purslane Yield and Quality
by George P. Spyrou, Ioannis Karavidas, Theodora Ntanasi, Sofia Marka, Evangelos Giannothanasis, Gholamreza Gohari, Enrica Allevato, Leo Sabatino, Dimitrios Savvas and Georgia Ntatsi
Plants 2025, 14(14), 2160; https://doi.org/10.3390/plants14142160 - 13 Jul 2025
Viewed by 329
Abstract
This study examined the effects of both nitrogen (N) rate and form on the growth, nutrient uptake, and quality parameters of hydroponically grown purslane (Portulaca oleracea L.) during a spring cultivation cycle. Purslane was cultivated in a floating hydroponic system under either [...] Read more.
This study examined the effects of both nitrogen (N) rate and form on the growth, nutrient uptake, and quality parameters of hydroponically grown purslane (Portulaca oleracea L.) during a spring cultivation cycle. Purslane was cultivated in a floating hydroponic system under either adequate or limiting N conditions. More specifically, under adequate N conditions, plants were supplied with NS where ammonium nitrogen (NH4-N) accounted for either 7% (Nr7) or 14% (Nr14) of the total-N. The limiting N conditions were achieved through the application of either an NS where 30% of N inputs were compensated with Cl (N30), or an NS where 50% of N inputs were balanced by elevating Cl and S by 30% and 20%, respectively (N50). The results demonstrated that mild N stress enhanced the quality characteristics of purslane without significant yield losses. However, further and more severe N restrictions in the NS resulted in significant yield losses without improving product quality. The highest yield reduction (20%) occurred under high NH4-N supply (Nr14), compared to Nr7-treated plants, which was strongly associated with impaired N assimilation and reduced biomass production. Both N-limiting treatments (N30 and N50) effectively reduced nitrate accumulation in edible tissues by 10% compared to plants grown under adequate N supply (Nr7 and Nr14); however, nitrate levels remained relatively high across all treatments, even though the environmental conditions of the experiment favored nitrate reduction. All applied N regimes and compensation strategies improved the antioxidant and flavonoid content, with the highest antioxidant activity observed in plants grown under high NH4-N application, indirectly revealing the susceptibility of purslane to NH4-N-rich conditions. Overall, the form and rate of N supply significantly influenced both plant performance and biochemical quality. Partial replacement of N with Cl (N30) emerged as the most promising strategy, benefiting quality traits and effectively reducing nitrate content without significantly compromising yield. Full article
Show Figures

Figure 1

23 pages, 1366 KiB  
Review
The Biological Value of Proteins for Pediatric Growth and Development: A Narrative Review
by Marlene Fabiola Escobedo-Monge, Joaquín Parodi-Román, María Antonieta Escobedo-Monge and José Manuel Marugán-Miguelsanz
Nutrients 2025, 17(13), 2221; https://doi.org/10.3390/nu17132221 - 4 Jul 2025
Viewed by 1558
Abstract
In personalized nutrition, dietary guidelines must be adapted to the physiological and developmental needs of individuals across the lifespan, especially during childhood and adolescence. These should account for nutritional status, health conditions, and early-life risk factors, including those that emerge during pregnancy. This [...] Read more.
In personalized nutrition, dietary guidelines must be adapted to the physiological and developmental needs of individuals across the lifespan, especially during childhood and adolescence. These should account for nutritional status, health conditions, and early-life risk factors, including those that emerge during pregnancy. This narrative review synthesizes recent evidence (2020–2025) on the biological value of protein sources in supporting pediatric growth and development. While adequate protein intake is essential for physical and cognitive development in individuals under nineteen, excessive intake may accelerate growth and increase the long-term risks of overweight and obesity. Compared to animal-based proteins (ABPs), plant-based proteins (PBPs) carry a higher risk of nutrient deficiencies in vulnerable populations due to lower digestibility and incomplete amino acid profiles. Although plant-based diets are encouraged for environmental reasons—particularly to reduce the ecological impact of livestock—protein intake must remain appropriate for age, sex, health status, and context. Nutritional strategies must ensure an adequate supply of essential amino acids and proper micronutrient supplementation, regardless of whether children follow diets rich in ABPs, PBPs, or a combination of both. Attention to these factors is vital to balancing nutritional adequacy with long-term health and sustainability goals. Full article
(This article belongs to the Special Issue Food Fortification and Nutritional Policies)
Show Figures

Figure 1

22 pages, 3230 KiB  
Article
Study on Soil Nutrients and Microbial Community Diversity in Ancient Tea Plantations of China
by Jiaxin Li, Wei Huang, Xinyuan Lin, Waqar Khan, Hongbo Zhao, Binmei Sun, Shaoqun Liu and Peng Zheng
Agronomy 2025, 15(7), 1608; https://doi.org/10.3390/agronomy15071608 - 30 Jun 2025
Viewed by 236
Abstract
Ancient tea plantations possess extremely important economic and cultivation value. In China, ancient tea plantations with trees over 100 years old have been preserved. However, the status of soil microorganisms, soil fertility, and soil heavy metal pollution in these ancient tea plantations remains [...] Read more.
Ancient tea plantations possess extremely important economic and cultivation value. In China, ancient tea plantations with trees over 100 years old have been preserved. However, the status of soil microorganisms, soil fertility, and soil heavy metal pollution in these ancient tea plantations remains unclear. This study took four Dancong ancient tea plantations in Fenghuang, Chaozhou City, and Guangdong Province as the research objects. Soil samples were collected from the surface layer (0–20 cm) and subsurface layer (20–40 cm) of the ancient tea trees. The rhizosphere soil microbial diversity and soil nutrients were determined. On this basis, the soil fertility was evaluated by referring to the soil environmental quality standards so as to conduct a comprehensive evaluation of the soil in the Dancong ancient tea plantations. This study found that Proteobacteria, Acidobacteriota, Chloroflexi, and Actinobacteria were the dominant bacteria in the rhizosphere soil of the Dancong ancient tree tea plantation. Ascomycota and Mortierellomycota are the dominant fungal phyla. Subgroup_2, AD3, Acidothermus, and Acidibacter were the dominant bacterial genera. Saitozyma, Mortierella, and Fusarium are the dominant fungal genera. The redundancy analysis (RDA) revealed that at the bacterial phylum level, Verrucomicrobia showed positive correlations with alkali-hydrolyzable nitrogen (AN), available potassium (AK), and total nitrogen (TN); Proteobacteria exhibited a positive correlation with available phosphorus (AP); and Gemmatimonadetes was positively correlated with total potassium (TK). At the fungal phylum level, Ascomycota demonstrated a positive correlation with TK. TN, AN, and TK were identified as key physicochemical indicators influencing soil bacterial diversity, while TN, AN, AP, and AK were the key physicochemical indicators affecting soil fungal diversity. This study revealed that the soil of Dancong ancient tea plantations has reached Level I fertility in terms of TN, TP, SOM, and AP. TK and AN show Level I or near-Level I fertility, but AK only meets Level III fertility for tea planting, serving as the main limiting factor for soil fertility quality. Considering the relatively abundant TK content in the tea plantations, potassium-solubilizing bacteria should be prioritized over blind potassium fertilizer application. Meanwhile, it is particularly noteworthy that AN and SOM are at extremely high levels. Sustained excess of AN and SOM may lead to over-proliferation of dominant microorganisms, inhibition of other functional microbial communities, and disruption of ecological balance. Therefore, optimizing nutrient input methods during fertilization is recommended. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

13 pages, 1303 KiB  
Review
Positive Role of Trichoderma harzianum in Increasing Plant Tolerance to Abiotic Stresses: A Review
by Yueyao Geng, Shuying Chen, Pinke Lv, Yankai Li, Jingxuan Li, Fangling Jiang, Zhen Wu, Qirong Shen and Rong Zhou
Antioxidants 2025, 14(7), 807; https://doi.org/10.3390/antiox14070807 - 30 Jun 2025
Viewed by 543
Abstract
As a beneficial fungus, Trichoderma harzianum (T. harzianum) has been widely applied for growth promotion and biocontrol. Recently, it has attracted much attention with regard to improving stress tolerance in plants under abiotic stress. In this paper, the multiple mechanisms of [...] Read more.
As a beneficial fungus, Trichoderma harzianum (T. harzianum) has been widely applied for growth promotion and biocontrol. Recently, it has attracted much attention with regard to improving stress tolerance in plants under abiotic stress. In this paper, the multiple mechanisms of T. harzianum for alleviating abiotic stress damage in plants are reviewed. T. harzianum can regulate the synthesis of key phytohormones, such as abscisic acid (ABA), indole-3-acetic acid (IAA), etc., thereby enhancing the physiological response ability of plants under stress conditions such as drought, salt stress, and high temperature. These are associated with antioxidant system regulation in plants, which reduces levels of reactive oxygen species (ROS) and oxidative damage and maintains intracellular redox balance. T. harzianum can also improve plant nutrient uptake and root development, secondary metabolism, soil environment and structure, and expression of related genes. In addition, in this paper, the characteristics of T. harzianum application in field and horticultural crops are summarized and compared, revealing differences in the methods, concentrations, time, and effects of applying T. harzianum to various crops. We further explore the synergistic regulation effect of T. harzianum and plant–microbiome interaction on the stress microenvironment. Future perspectives on the molecular mechanism of T. harzianum and its field application potential are discussed. This review provides a theoretic and practical reference for the application of T. harzianum in agricultural production. Full article
Show Figures

Figure 1

18 pages, 1217 KiB  
Article
Nutritional Profiling and Labeling Practices of Plant-Based, Hybrid, and Animal-Based Dog Foods: A Study of European Pack Labels (2020–2024)
by Fatma Boukid and Kurt A. Rosentrater
Animals 2025, 15(13), 1883; https://doi.org/10.3390/ani15131883 - 26 Jun 2025
Viewed by 679
Abstract
As pet owners become increasingly mindful of pet health and sustainability, labeling plays a crucial role in shaping informed purchasing decisions for pet food. This study evaluated the nutritional adequacy and pricing of plant-based, hybrid, and animal-based dog foods. Using the Mintel database, [...] Read more.
As pet owners become increasingly mindful of pet health and sustainability, labeling plays a crucial role in shaping informed purchasing decisions for pet food. This study evaluated the nutritional adequacy and pricing of plant-based, hybrid, and animal-based dog foods. Using the Mintel database, we analyzed product labels, ingredient compositions, and marketing claims for various dog food categories. The findings revealed notable differences in key nutrients, such as protein, fiber, fat, ash, and moisture content. Plant-based dog foods generally offer higher fiber and ash content but often fall short in protein and fat levels, particularly in snacks and treats, which may impact their suitability for meeting the dietary needs of canines. Hybrid dog foods, which blend plant and animal ingredients, show greater variability, with some achieving balanced protein and fat content, while fiber levels depend on the plant-based proportion. Animal-based foods tend to excel in protein and fat content, particularly in wet and dry formats, while being lower in fiber and ash content. A key concern is the reliance on additives, particularly in plant-based and hybrid options, which raises questions about the long-term health impacts on pets. Pricing trends indicate that plant-based dog foods are generally more expensive than hybrid and animal-based options, although the cost varies widely across all categories. Full article
(This article belongs to the Special Issue Advancements in Nutritional Management of Companion Animals)
Show Figures

Figure 1

13 pages, 741 KiB  
Article
Reducing Cation Leaching and Improving Greenhouse Cucumber’s Nutritional Yield Through Optimized Organic–Inorganic Fertilization
by Xilin Guan, Wenqing Cao, Dunyi Liu, Huanyu Zhao, Ming Lu, Xinhao Gao, Xinping Chen, Yumin Liu and Shenzhong Tian
Agronomy 2025, 15(7), 1523; https://doi.org/10.3390/agronomy15071523 - 23 Jun 2025
Viewed by 379
Abstract
Excessive nutrient inputs from manure and synthetic fertilizers have caused great challenges for sustainable vegetable production. There is limited information about the nutritional yields and leaching losses of potassium (K), calcium (Ca), and magnesium (Mg) under various organic–inorganic fertilization practices. We hypothesized that [...] Read more.
Excessive nutrient inputs from manure and synthetic fertilizers have caused great challenges for sustainable vegetable production. There is limited information about the nutritional yields and leaching losses of potassium (K), calcium (Ca), and magnesium (Mg) under various organic–inorganic fertilization practices. We hypothesized that nutritional yields and cation leaching would be influenced by different fertilization practices. A two-year cucumber-cultivating experiment was conducted in North China with the following three treatments: Farmers’ Traditional Practice (FP), based on local farmers’ practices; Current Recommended Nutrient Management (CRNM), based on pieces of literature, bio-organic fertilizer, and kaolin replacing chicken manure in FP; Nutrient Balance Management (DBNM), based on target yields and plant-based amendments replacing bio-organic fertilizers. The nutritional yields of Ca and Mg under CRNM and DBNM were 26.4–39.6% and 20.3–32.5% higher than FP. The K, Ca, and Mg leaching under CRNM were significantly reduced by 41.1%, 18.9%, and 18.5%, compared with FP. Ca leaching under DBNM was further significantly reduced by 7.9%. A significant negative relationship was observed between the leaching losses of K, Ca, and Mg and the surface soil pH (0–20 cm). These findings suggest that DBNM could play an important role in obtaining higher nutritional yields, reducing leaching losses, and alleviating soil acidification in vegetable production. Full article
Show Figures

Figure 1

Back to TopTop