Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = placental vascular insufficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 914 KiB  
Article
Microvascular, Biochemical, and Clinical Impact of Hyperbaric Oxygen Therapy in Recalcitrant Diabetic Foot Ulcers
by Daniela Martins-Mendes, Raquel Costa, Ilda Rodrigues, Óscar Camacho, Pedro Barata Coelho, Vítor Paixão-Dias, Carla Luís, Ana Cláudia Pereira, Rúben Fernandes, Jorge Lima and Raquel Soares
Cells 2025, 14(15), 1196; https://doi.org/10.3390/cells14151196 - 4 Aug 2025
Viewed by 181
Abstract
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study aimed to evaluate the impact of HBOT on systemic biomarkers, local microvasculature, and clinical outcomes in patients with DFUs. Methods: In this non-randomized prospective study, 20 patients with ischemic DFUs were followed over a 36-month period. Fourteen received HBOT in addition to standard care, while six received standard care alone. Clinical outcomes—including DFU resolution, recurrence, lower extremity amputation (LEA), and mortality—were assessed alongside systemic inflammatory and angiogenic biomarkers and wound characteristics at baseline and at 3, 6, 12, and 36 months. CD31 immunostaining was performed on available tissue samples. Results: The two groups were comparable at baseline (mean age 62 ± 12 years; diabetes duration 18 ± 9 years). At 3 months, the HBOT group showed significant reductions in erythrocyte sedimentation rate and DFU size (p < 0.05), with downward trends observed in C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and an increase in stromal-derived factor-1 alpha (SDF1-α). No significant changes were observed in the control group. CD31+ microvessel density appeared to increase in HBOT-treated DFU tissue after one month, although the sample size was limited. Patients receiving HBOT had lower rates of LEA and mortality, improved wound healing, and sustained outcomes over three years. DFU recurrence rates were similar between groups. Conclusions: HBOT was associated with improved wound healing and favorable biomarker profiles in patients with treatment-resistant ischemic DFUs. While these findings are encouraging, the small sample size and non-randomized design limit their generalizability, highlighting the need for larger, controlled studies. Full article
Show Figures

Figure 1

28 pages, 2241 KiB  
Review
Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia
by Emmanuel Amabebe, Zheping Huang, Sukanta Jash, Balaji Krishnan, Shibin Cheng, Akitoshi Nakashima, Yitong Li, Zhixong Li, Ruizhi Wang, Ramkumar Menon, Xiao Zhen Zhou, Kun Ping Lu and Surendra Sharma
Biomedicines 2025, 13(1), 29; https://doi.org/10.3390/biomedicines13010029 - 26 Dec 2024
Viewed by 2777
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal–fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy [...] Read more.
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal–fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer’s disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis–trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively. Full article
(This article belongs to the Special Issue Pathogenesis and Treatment of Preeclampsia)
Show Figures

Figure 1

22 pages, 8462 KiB  
Article
MicroRNAs in the Pathogenesis of Preeclampsia—A Case-Control In Silico Analysis
by Ramanathan Kasimanickam and Vanmathy Kasimanickam
Curr. Issues Mol. Biol. 2024, 46(4), 3438-3459; https://doi.org/10.3390/cimb46040216 - 17 Apr 2024
Cited by 1 | Viewed by 2010
Abstract
Preeclampsia (PE) occurs in 5% to 7% of all pregnancies, and the PE that results from abnormal placentation acts as a primary cause of maternal and neonatal morbidity and mortality. The objective of this secondary analysis was to elucidate the pathogenesis of PE [...] Read more.
Preeclampsia (PE) occurs in 5% to 7% of all pregnancies, and the PE that results from abnormal placentation acts as a primary cause of maternal and neonatal morbidity and mortality. The objective of this secondary analysis was to elucidate the pathogenesis of PE by probing protein–protein interactions from in silico analysis of transcriptomes between PE and normal placenta from Gene Expression Omnibus (GSE149812). The pathogenesis of PE is apparently determined by associations of miRNA molecules and their target genes and the degree of changes in their expressions with irregularities in the functions of hemostasis, vascular systems, and inflammatory processes at the fetal–maternal interface. These irregularities ultimately lead to impaired placental growth and hypoxic injuries, generally manifesting as placental insufficiency. These differentially expressed miRNAs or genes in placental tissue and/or in blood can serve as novel diagnostic and therapeutic biomarkers. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

12 pages, 1714 KiB  
Review
SARS-CoV-2 Infection in Late Pregnancy and Childbirth from the Perspective of Perinatal Pathology
by Larisa Debelenko
J. Dev. Biol. 2023, 11(4), 42; https://doi.org/10.3390/jdb11040042 - 16 Nov 2023
Cited by 1 | Viewed by 2656
Abstract
This review focuses on SARS-CoV-2 infection in placental and fetal tissues. Viremia is rare in infected pregnant women, and the virus is seldom amplified from placental tissues. Definite and probable placental infection requires the demonstration of viral RNA or proteins using in situ [...] Read more.
This review focuses on SARS-CoV-2 infection in placental and fetal tissues. Viremia is rare in infected pregnant women, and the virus is seldom amplified from placental tissues. Definite and probable placental infection requires the demonstration of viral RNA or proteins using in situ hybridization (ISH) and immunohistochemistry (IHC). Small subsets (1.0–7.9%, median 2.8%) of placentas of SARS-CoV-2-positive women showed definite infection accompanied by a characteristic histopathology named SARS-CoV-2 placentitis (SP). The conventionally accepted histopathological criteria for SP include the triad of intervillositis, perivillous fibrin deposition, and trophoblast necrosis. SP was shown to be independent of the clinical severity of the infection, but associated with stillbirth in cases where destructive lesions affecting more than 75% of the placental tissue resulted in placental insufficiency and severe fetal hypoxic–ischemic injury. An association between maternal thrombophilia and SP was shown in a subset of cases, suggesting a synergy of the infection and deficient coagulation cascade as one of the mechanisms of the pathologic accumulation of fibrin in affected placentas. The virus was amplified from fetal tissues in approximately 40% of SP cases, but definite fetal involvement demonstrated using ISH or IHC is exceptionally rare. The placental pathology in SARS-CoV-2-positive women also includes chronic lesions associated with placental malperfusion in the absence of definite or probable placental infection. The direct viral causation of the vascular malperfusion of the placenta in COVID-19 is debatable, and common predispositions (hypertension, diabetes, and obesity) may play a role. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

20 pages, 1251 KiB  
Review
Trophoblast Cell Function in the Antiphospholipid Syndrome
by Svetlana Vrzić Petronijević, Aleksandra Vilotić, Žanka Bojić-Trbojević, Sanja Kostić, Miloš Petronijević, Ljiljana Vićovac and Milica Jovanović Krivokuća
Biomedicines 2023, 11(10), 2681; https://doi.org/10.3390/biomedicines11102681 - 30 Sep 2023
Cited by 5 | Viewed by 2295
Abstract
Antiphospholipid syndrome (APS) is a complex thrombo-inflammatory autoimmune disease characterized by the presence of antiphospholipid antibodies (aPL). Women with APS are at high risk of recurrent early pregnancy loss as well as late obstetrical complications—premature birth due to placental insufficiency or severe preeclampsia. [...] Read more.
Antiphospholipid syndrome (APS) is a complex thrombo-inflammatory autoimmune disease characterized by the presence of antiphospholipid antibodies (aPL). Women with APS are at high risk of recurrent early pregnancy loss as well as late obstetrical complications—premature birth due to placental insufficiency or severe preeclampsia. Accumulating evidence implies that vascular thrombosis is not the only pathogenic mechanism in obstetric APS, and that the direct negative effect of aPL on the placental cells, trophoblast, plays a major role. In this review, we summarize the current findings regarding the potential mechanisms involved in aPL-induced trophoblast dysfunction. Introduction on the APS and aPL is followed by an overview of the effects of aPL on trophoblast—survival, cell function and aPL internalization. Finally, the implication of several non-coding RNAs in pathogenesis of obstetric APS is discussed, with special emphasis of their possible role in trophoblast dysfunction and the associated mechanisms. Full article
(This article belongs to the Special Issue Basic and Clinical Researches of Antiphospholipid Syndrome)
Show Figures

Figure 1

16 pages, 11837 KiB  
Article
Dietary Folic Acid Supplementation Attenuates Maternal High-Fat Diet-Induced Fetal Intrauterine Growth Retarded via Ameliorating Placental Inflammation and Oxidative Stress in Rats
by Huaqi Zhang, Xinyu Zhang, Yutong Wang, Xuenuo Zhao, Li Zhang, Jing Li, Yabin Zhang, Peng Wang and Hui Liang
Nutrients 2023, 15(14), 3263; https://doi.org/10.3390/nu15143263 - 24 Jul 2023
Cited by 14 | Viewed by 2536
Abstract
The placenta is particularly susceptible to inflammation and oxidative stress, leading to placental vascular dysfunction and placental insufficiency, which is associated with fetal intrauterine growth restriction (IUGR). It is unknown whether folic acid (FA) supplementation can alleviate high-fat diet-induced IUGR in rats by [...] Read more.
The placenta is particularly susceptible to inflammation and oxidative stress, leading to placental vascular dysfunction and placental insufficiency, which is associated with fetal intrauterine growth restriction (IUGR). It is unknown whether folic acid (FA) supplementation can alleviate high-fat diet-induced IUGR in rats by improving placental function. In this study, pregnant rats were randomized into one of four diet-based groups: (1) control diet (CON), (2) control diet supplemented with FA, (3) high-fat diet (HFD), and (4) high-fat diet supplemented with FA (HFD + FA). Dams were sacrificed at gestation day 18.5 (GD18.5). The results indicated that dietary FA supplementation normalized a maternal HFD-induced decrease in fetal weight. The decrease in placental efficiency, labyrinth zone (LZ) area, blood sinusoid area, vascular density, and the levels of angiogenesis factors induced by a maternal HFD were alleviated by the addition of FA, suggesting that FA supplementation can alleviate placental vascular dysplasia. Furthermore, FA supplementation increased the protein expressions of SIRT1, inhibited NF-κB transcriptional activation, attenuated the levels of NF-κB/downstream pro-inflammatory cytokines, induced Nrf2 activation, and increased downstream target protein expression. In conclusion, we found that dietary FA supplementation during pregnancy could improve maternal HFD-induced IUGR by alleviating placental inflammation and oxidative stress, which may be associated with the regulation of SIRT1 and its mediated NF-κB and Nrf2 signaling pathways. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

18 pages, 1295 KiB  
Article
Impact of Chorionic Somatomammotropin In Vivo RNA Interference Phenotype on Uteroplacental Expression of the IGF Axis
by Taylor K. Hord, Amelia R. Tanner, Victoria C. Kennedy, Cameron S. Lynch, Quinton A. Winger, Paul J. Rozance and Russell V. Anthony
Life 2023, 13(6), 1261; https://doi.org/10.3390/life13061261 - 26 May 2023
Cited by 3 | Viewed by 2115
Abstract
While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental [...] Read more.
While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental development and function. Previously, we demonstrated that in vivo RNA interference (RNAi) of the placental hormone, chorionic somatomammotropin (CSH), resulted in two phenotypes. One phenotype exhibits significant placental and fetal growth restriction (PI-FGR), impaired placental nutrient transport, and significant reductions in umbilical insulin and IGF1. The other phenotype does not exhibit statistically significant changes in placental or fetal growth (non-FGR). It was our objective to further characterize these two phenotypes by determining the impact of CSH RNAi on the placental (maternal caruncle and fetal cotyledon) expression of the IGF axis. The trophectoderm of hatched blastocysts (9 days of gestation, dGA) were infected with a lentivirus expressing either a non-targeting sequence (NTS RNAi) control or CSH-specific shRNA (CSH RNAi) prior to embryo transfer into synchronized recipient ewes. At ≈125 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies. Nutrient uptakes were determined, and tissues were harvested at necropsy. In both CSH RNAi non-FGR and PI-FGR pregnancies, uterine blood flow was significantly reduced (p ≤ 0.05), while umbilical blood flow (p ≤ 0.01), both uterine and umbilical glucose and oxygen uptakes (p ≤ 0.05), and umbilical concentrations of insulin and IGF1 (p ≤ 0.05) were reduced in CSH RNAi PI-FGR pregnancies. Fetal cotyledon IGF1 mRNA concentration was reduced (p ≤ 0.05) in CSH RNAi PI-FGR pregnancies, whereas neither IGF1 nor IGF2 mRNA concentrations were impacted in the maternal caruncles, and either placental tissue in the non-FGR pregnancies. Fetal cotyledon IGF1R and IGF2R mRNA concentrations were not impacted for either phenotype, yet IGF2R was increased (p ≤ 0.01) in the maternal caruncles of CSH RNAi PI-FGR pregnancies. For the IGF binding proteins (IGFBP1, IGFBP2, IGFBP3), only IGFBP2 mRNA concentrations were impacted, with elevated IGFBP2 mRNA in both the fetal cotyledon (p ≤ 0.01) and maternal caruncle (p = 0.08) of CSH RNAi non-FGR pregnancies. These data support the importance of IGF1 in placental growth and function but may also implicate IGFBP2 in salvaging placental growth in non-FGR pregnancies. Full article
(This article belongs to the Special Issue Placentology)
Show Figures

Graphical abstract

13 pages, 1243 KiB  
Review
Antiphospholipid Syndrome in Pregnancy: New and Old Pathogenetic Mechanisms
by Silvia D’Ippolito, Greta Barbaro, Carmela Paciullo, Chiara Tersigni, Giovanni Scambia and Nicoletta Di Simone
Int. J. Mol. Sci. 2023, 24(4), 3195; https://doi.org/10.3390/ijms24043195 - 6 Feb 2023
Cited by 33 | Viewed by 12092
Abstract
The antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized, according to the Sydney criteria, by the persistent presence of autoantibodies directed against phospholipid-binding proteins associated with thrombosis and/or obstetrical complications. The most frequent complications in obstetric antiphospholipid syndrome are recurrent pregnancy losses [...] Read more.
The antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized, according to the Sydney criteria, by the persistent presence of autoantibodies directed against phospholipid-binding proteins associated with thrombosis and/or obstetrical complications. The most frequent complications in obstetric antiphospholipid syndrome are recurrent pregnancy losses and premature birth due to placental insufficiency or severe preeclampsia. In recent years, vascular APS (VAPS) and obstetric APS (OAPS) have been described as two different clinical entities. In VAPS, antiphospholipid antibodies (aPL) interfere with the mechanisms of coagulation cascade and the ‘two hit hypothesis’ has been suggested to explain why aPL positivity does not always lead to thrombosis. OAPS seems to involve additional mechanisms, such as the direct action of anti-β2 glycoprotein-I on trophoblast cells that can lead to a direct placental functional damage. Furthermore, new actors seem to play a role in the pathogenesis of OAPS, including extracellular vesicles, micro-RNAs and the release of neutrophil extracellular traps. The aim of this review is to investigate the state-of-the-art antiphospholipid syndrome pathogenesis in pregnancy, in order to provide a comprehensive overview of both old and new pathogenetic mechanisms involved in this complex disease. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Immunology in Italy)
Show Figures

Figure 1

18 pages, 1660 KiB  
Review
Molecular Mechanisms Underlying Twin-to-Twin Transfusion Syndrome
by Kazuhiro Kajiwara, Katsusuke Ozawa, Seiji Wada and Osamu Samura
Cells 2022, 11(20), 3268; https://doi.org/10.3390/cells11203268 - 17 Oct 2022
Cited by 12 | Viewed by 6479
Abstract
Twin-to-twin transfusion syndrome is a unique disease and a serious complication occurring in 10–15% of monochorionic multiple pregnancies with various placental complications, including hypoxia, anemia, increased oxidative stress, and ischemia-reperfusion injury. Fetoscopic laser photocoagulation, a minimally invasive surgical procedure, seals the placental vascular [...] Read more.
Twin-to-twin transfusion syndrome is a unique disease and a serious complication occurring in 10–15% of monochorionic multiple pregnancies with various placental complications, including hypoxia, anemia, increased oxidative stress, and ischemia-reperfusion injury. Fetoscopic laser photocoagulation, a minimally invasive surgical procedure, seals the placental vascular anastomoses between twins and dramatically improves the survival rates in twin-to-twin transfusion syndrome. However, fetal demise still occurs, suggesting the presence of causes other than placental vascular anastomoses. Placental insufficiency is considered as the main cause of fetal demise in such cases; however, little is known about its underlying molecular mechanisms. Indeed, the further association of the pathogenic mechanisms involved in twin-to-twin transfusion syndrome placenta with several molecules and pathways, such as vascular endothelial growth factor and the renin–angiotensin system, makes it difficult to understand the underlying pathological conditions. Currently, there are no effective strategies focusing on these mechanisms in clinical practice. Certain types of cell death due to oxidative stress might be occurring in the placenta, and elucidation of the molecular mechanism underlying this cell death can help manage and prevent it. This review reports on the molecular mechanisms underlying the development of twin-to-twin transfusion syndrome for effective management and prevention of fetal demise after fetoscopic laser photocoagulation. Full article
(This article belongs to the Special Issue Placental Development in Health and Disease)
Show Figures

Figure 1

19 pages, 1918 KiB  
Article
Study on NGF and VEGF during the Equine Perinatal Period—Part 2: Foals Affected by Neonatal Encephalopathy
by Nicola Ellero, Aliai Lanci, Vito Antonio Baldassarro, Giuseppe Alastra, Jole Mariella, Maura Cescatti, Carolina Castagnetti and Luciana Giardino
Vet. Sci. 2022, 9(9), 459; https://doi.org/10.3390/vetsci9090459 - 26 Aug 2022
Cited by 2 | Viewed by 3237
Abstract
Neonatal Encephalopathy (NE) may be caused by hypoxic ischemic insults or inflammatory insults and modified by innate protective or excitatory mechanisms. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. The preliminary aim was to clinically characterize a population [...] Read more.
Neonatal Encephalopathy (NE) may be caused by hypoxic ischemic insults or inflammatory insults and modified by innate protective or excitatory mechanisms. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. The preliminary aim was to clinically characterize a population of foals spontaneously affected by NE. The study aimed to: (i) evaluate nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) levels in plasma samples obtained in the affected population at parturition from the mare’s jugular vein, umbilical cord vein and foal’s jugular vein, as well as in amniotic fluid; (ii) evaluate the NGF and VEGF content in the plasma of foals affected by NE during the first 72 h of life/hospitalization; (iii) evaluate NGF and VEGF levels at birth/admission in relation to selected mare’s and foal’s clinical parameters; (iv) evaluate the relationship between the two trophic factors and thyroid hormone levels (TT3 and TT4) in the first 72 h of life/hospitalization; and (v) assess the mRNA expression of NGF, VEGF and brain-derived neurotrophic factor (BDNF), and their cell surface receptors, in the placenta of mares that delivered foals affected by NE. Thirteen affected foals born from mares hospitalized for peripartum monitoring (group NE) and twenty affected foals hospitalized after birth (group exNE) were included in the study. Dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF, and BDNF placental gene expression was performed using a semi-quantitative real-time PCR. In group NE, NGF levels decreased significantly from T0 to T24 (p = 0.0447) and VEGF levels decreased significantly from T0 to T72 (p = 0.0234), whereas in group exNE, only NGF levels decreased significantly from T0 to T24 (p = 0.0304). Compared to healthy foals, a significant reduction of TT3 levels was observed in both NE (T24, p = 0.0066; T72 p = 0.0003) and exNE (T0, p = 0.0082; T24, p < 0.0001; T72, p < 0.0001) groups, whereas a significant reduction of TT4 levels was observed only in exNE group (T0, p = 0.0003; T24, p = 0.0010; T72, p = 0.0110). In group NE, NGF levels were positively correlated with both TT3 (p = 0.0475; r = 0.3424) and TT4 levels (p = 0.0063; r = 0.4589). In the placenta, a reduced expression of NGF in the allantois (p = 0.0033) and a reduced expression of BDNF in the amnion (p = 0.0498) were observed. The less pronounced decrease of the two trophic factors compared to healthy foals, their relationship with thyroid hormones over time, and the reduced expression of NGF and BDNF in placental tissues of mares that delivered affected foals, could be key regulators in the mechanisms of equine NE. Full article
(This article belongs to the Special Issue Neuropeptides: Role and Function in Species of Veterinary Interest)
Show Figures

Figure 1

22 pages, 3582 KiB  
Article
Chronic Venous Disease during Pregnancy Causes a Systematic Increase in Maternal and Fetal Proinflammatory Markers
by Miguel A. Ortega, Ana M. Gómez-Lahoz, Lara Sánchez-Trujillo, Oscar Fraile-Martinez, Cielo García-Montero, Luis G. Guijarro, Coral Bravo, Juan A. De Leon-Luis, Jose V. Saz, Julia Bujan, Natalio García-Honduvilla, Jorge Monserrat and Melchor Alvarez-Mon
Int. J. Mol. Sci. 2022, 23(16), 8976; https://doi.org/10.3390/ijms23168976 - 11 Aug 2022
Cited by 14 | Viewed by 2836
Abstract
Chronic venous disease (CVD) is a common vascular disorder characterized by increased venous hypertension and insufficient venous return from the lower limbs. Pregnancy is a high-risk situation for developing CVD. Approximately a third of the women will develop this condition during pregnancy, and [...] Read more.
Chronic venous disease (CVD) is a common vascular disorder characterized by increased venous hypertension and insufficient venous return from the lower limbs. Pregnancy is a high-risk situation for developing CVD. Approximately a third of the women will develop this condition during pregnancy, and similarly to arterial hypertensive disorders, previous evidence has described a plethora of alterations in placental structure and function in women with pregnancy-induced CVD. It is widely known that arterial-induced placenta dysfunction is accompanied by an important immune system alteration along with increased inflammatory markers, which may provide detrimental consequences for the women and their offspring. However, to our knowledge, there are still no data collected regarding cytokine profiling in women with pregnancy-induced CVD. Thus, the aim of the present work was to examine cytokine signatures in the serum of pregnant women (PW) with CVD and their newborns (NB). This study was conducted through a multiplex technique in 62 PW with pregnancy-induced CVD in comparison to 52 PW without CVD (HC) as well as their NB. Our results show significant alterations in a broad spectrum of inflammatory cytokines (IL-6, IL-12, TNF-α, IL-10, IL-13, IL-2, IL-7, IFN-γ, IL-4, IL-5, IL-21, IL-23, GM-CSF, chemokines (fractalkine), MIP-3α, and MIP-1β). Overall, we demonstrate that pregnancy-induced CVD is associated with a proinflammatory environment, therefore highlighting the potentially alarming consequences of this condition for maternal and fetal wellbeing. Full article
(This article belongs to the Special Issue Pathogenesis of Pregnancy-Related Complication)
Show Figures

Figure 1

10 pages, 2518 KiB  
Article
The Importance of Post-Mortem Investigations in Stillbirths: Case Studies and a Review of the Literature
by Carmen Scalise, Fabrizio Cordasco, Matteo Antonio Sacco, Pietrantonio Ricci and Isabella Aquila
Int. J. Environ. Res. Public Health 2022, 19(14), 8817; https://doi.org/10.3390/ijerph19148817 - 20 Jul 2022
Cited by 8 | Viewed by 3184
Abstract
Stillbirth has an important economic and social impact, though it remains “inexplicable” in many cases. We report the analysis of 11 cases of intrauterine fetal death carried out through a retrospective study conducted in the period between 2014 and 2017. The purpose of [...] Read more.
Stillbirth has an important economic and social impact, though it remains “inexplicable” in many cases. We report the analysis of 11 cases of intrauterine fetal death carried out through a retrospective study conducted in the period between 2014 and 2017. The purpose of the study is to quantify the contribution of the autopsy and placental examination in identifying the cause of stillbirths. For each case, the medical record was analyzed with the relative maternal and partner data, the results of the external fetal and autopsy examination as well as the macroscopic and histological placental examination. The peak of stillbirth was found in a maternal age group between 30 and 39 years, below the 32nd week and above the 37th week of gestation. The results obtained from the clinical history and external fetal examination make it possible to trace the cause of death in only 18.2% of cases. By adding to these data, the results of the fetal autopsy and the placental examination, it is possible to establish the cause of death in 90.9% of cases. The most frequent abnormalities found in the placenta and cord were short or hypercoiled cord, umbilical cord vascular thrombosis, turns around the neck or stretching of the funiculus, placental infarction and placental insufficiency; also, amniotic fluid abnormalities, such as suspected oligohydramnios and chorioamniositi, were found. The accurate analysis of post-mortem placental and fetal examination is essential to reduce the number of unresponsive intrauterine fetal deaths. Determining the cause of fetal death must help clinicians and parents in better management and care in future pregnancies. Full article
Show Figures

Figure 1

21 pages, 2923 KiB  
Article
The Impact of Maternal SARS-CoV-2 Infection Next to Pre-Immunization with Gam-COVID-Vac (Sputnik V) Vaccine on the 1-Day-Neonate’s Blood Plasma Small Non-Coding RNA Profile: A Pilot Study
by Angelika V. Timofeeva, Ivan S. Fedorov, Vitaliy V. Chagovets, Victor V. Zubkov, Mziya I. Makieva, Anna B. Sugak, Vladimir E. Frankevich and Gennadiy T. Sukhikh
COVID 2022, 2(7), 837-857; https://doi.org/10.3390/covid2070061 - 24 Jun 2022
Cited by 1 | Viewed by 3946
Abstract
The antenatal and postnatal effects of maternal SARS-CoV-2 on the fetus outcomes, especially in the case of maternal pre-vaccination against this infection, are still under investigation. Such effects may be due to placental insufficiency caused by maternal hypoxia and inflammatory response associated with [...] Read more.
The antenatal and postnatal effects of maternal SARS-CoV-2 on the fetus outcomes, especially in the case of maternal pre-vaccination against this infection, are still under investigation. Such effects may be due to placental insufficiency caused by maternal hypoxia and inflammatory response associated with SARS-CoV-2, and/or be a direct cytopathic effect of the virus. In this work, we studied the profile of small non-coding RNAs (sncRNAs) in the blood plasma of a newborn from a mother who had SARS-CoV-2 at the 22nd week of gestation after immunization with Gam-COVID-Vac (Sputnik V). The fetus had ultrasound signs of hypertrophy of the right heart and hydropericardium 4 weeks after infection of the mother with SARS-CoV-2, as well as cysts of the cerebral vascular plexuses by the time of birth. Taking this into account, we compared the sncRNA profile of this newborn on the first postpartum day with that of neonates born to COVID-19-negative women with different perinatal outcomes: severe cardiovascular and/or neurological disorders, or absence of any perinatal complications. According to next-generation sequencing data, we found that the fetus born to a COVID-19-affected mother pre-immunized with Gam-COVID-Vac (Sputnik V) vaccine differs from newborns with severe cardiovascular and/or nervous system abnormalities either in multidirectional changes in circulating sncRNAs or in less pronounced unidirectional changes in the level of sncRNAs relative to control samples. Considering this, it can be concluded that maternal vaccination against SARS-CoV-2 before pregnancy has a protective effect in preventing antenatal development of pathological processes in the cardiovascular and nervous systems of the neonate associated with COVID-19. Full article
Show Figures

Figure 1

12 pages, 297 KiB  
Review
Chronic Low Grade Inflammation in Pathogenesis of PCOS
by Ewa Rudnicka, Katarzyna Suchta, Monika Grymowicz, Anna Calik-Ksepka, Katarzyna Smolarczyk, Anna M. Duszewska, Roman Smolarczyk and Blazej Meczekalski
Int. J. Mol. Sci. 2021, 22(7), 3789; https://doi.org/10.3390/ijms22073789 - 6 Apr 2021
Cited by 386 | Viewed by 32197
Abstract
Polycystic ovary syndrome (PCOS) is a one of the most common endocrine disorders, with a prevalence rate of 5–10% in reproductive aged women. It’s characterized by (1) chronic anovulation, (2) biochemical and/or clinical hyperandrogenism, and (3) polycystic ovarian morphology. PCOS has significant clinical [...] Read more.
Polycystic ovary syndrome (PCOS) is a one of the most common endocrine disorders, with a prevalence rate of 5–10% in reproductive aged women. It’s characterized by (1) chronic anovulation, (2) biochemical and/or clinical hyperandrogenism, and (3) polycystic ovarian morphology. PCOS has significant clinical implications and can lead to health problems related to the accumulation of adipose tissue, such as obesity, insulin resistance, metabolic syndrome, and type 2 diabetes. There is also evidence that PCOS patients are at higher risk of cardiovascular diseases, atherosclerosis, and high blood pressure. Several studies have reported the association between polycystic ovary syndrome (PCOS) and low-grade chronic inflammation. According to known data, inflammatory markers or their gene markers are higher in PCOS patients. Correlations have been found between increased levels of C-reactive protein (CRP), interleukin 18 (IL-18), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), white blood cell count (WBC), monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α) in the PCOS women compared with age- and BMI-matched controls. Women with PCOS present also elevated levels of AGEs and increased RAGE (receptor for advanced glycation end products) expression. This chronic inflammatory state is aggravating by obesity and hyperinsulinemia. There are studies describing mutual impact of hyperinsulinemia and obesity, hyperandrogenism, and inflammatory state. Endothelial cell dysfunction may be also triggered by inflammatory cytokines. Many factors involved in oxidative stress, inflammation, and thrombosis were proposed as cardiovascular risk markers showing the endothelial cell damage in PCOS. Those markers include asymmetric dimethylarginine (ADMA), C-reactive protein (CRP), homocysteine, plasminogen activator inhibitor-I (PAI-I), PAI-I activity, vascular endothelial growth factor (VEGF) etc. It was also proposed that the uterine hyperinflammatory state in polycystic ovary syndrome may be responsible for significant pregnancy complications ranging from miscarriage to placental insufficiency. In this review, we discuss the most importance evidence concerning the role of the process of chronic inflammation in pathogenesis of PCOS. Full article
(This article belongs to the Special Issue Polycystic Ovary Syndrome: From Molecular Mechanisms to Therapies)
33 pages, 2788 KiB  
Review
Why Venous Leg Ulcers Have Difficulty Healing: Overview on Pathophysiology, Clinical Consequences, and Treatment
by Joseph D. Raffetto, Daniela Ligi, Rosanna Maniscalco, Raouf A. Khalil and Ferdinando Mannello
J. Clin. Med. 2021, 10(1), 29; https://doi.org/10.3390/jcm10010029 - 24 Dec 2020
Cited by 212 | Viewed by 30402
Abstract
Venous leg ulcers (VLUs) are one of the most common ulcers of the lower extremity. VLU affects many individuals worldwide, could pose a significant socioeconomic burden to the healthcare system, and has major psychological and physical impacts on the affected individual. VLU often [...] Read more.
Venous leg ulcers (VLUs) are one of the most common ulcers of the lower extremity. VLU affects many individuals worldwide, could pose a significant socioeconomic burden to the healthcare system, and has major psychological and physical impacts on the affected individual. VLU often occurs in association with post-thrombotic syndrome, advanced chronic venous disease, varicose veins, and venous hypertension. Several demographic, genetic, and environmental factors could trigger chronic venous disease with venous dilation, incompetent valves, venous reflux, and venous hypertension. Endothelial cell injury and changes in the glycocalyx, venous shear-stress, and adhesion molecules could be initiating events in VLU. Increased endothelial cell permeability and leukocyte infiltration, and increases in inflammatory cytokines, matrix metalloproteinases (MMPs), reactive oxygen and nitrogen species, iron deposition, and tissue metabolites also contribute to the pathogenesis of VLU. Treatment of VLU includes compression therapy and endovenous ablation to occlude the axial reflux. Other interventional approaches such as subfascial endoscopic perforator surgery and iliac venous stent have shown mixed results. With good wound care and compression therapy, VLU usually heals within 6 months. VLU healing involves orchestrated processes including hemostasis, inflammation, proliferation, and remodeling and the contribution of different cells including leukocytes, platelets, fibroblasts, vascular smooth muscle cells, endothelial cells, and keratinocytes as well as the release of various biomolecules including transforming growth factor-β, cytokines, chemokines, MMPs, tissue inhibitors of MMPs (TIMPs), elastase, urokinase plasminogen activator, fibrin, collagen, and albumin. Alterations in any of these physiological wound closure processes could delay VLU healing. Also, these histological and soluble biomarkers can be used for VLU diagnosis and assessment of its progression, responsiveness to healing, and prognosis. If not treated adequately, VLU could progress to non-healed or granulating VLU, causing physical immobility, reduced quality of life, cellulitis, severe infections, osteomyelitis, and neoplastic transformation. Recalcitrant VLU shows prolonged healing time with advanced age, obesity, nutritional deficiencies, colder temperature, preexisting venous disease, deep venous thrombosis, and larger wound area. VLU also has a high, 50–70% recurrence rate, likely due to noncompliance with compression therapy, failure of surgical procedures, incorrect ulcer diagnosis, progression of venous disease, and poorly understood pathophysiology. Understanding the molecular pathways underlying VLU has led to new lines of therapy with significant promise including biologics such as bilayer living skin construct, fibroblast derivatives, and extracellular matrices and non-biologic products such as poly-N-acetyl glucosamine, human placental membranes amnion/chorion allografts, ACT1 peptide inhibitor of connexin 43, sulodexide, growth factors, silver dressings, MMP inhibitors, and modulators of reactive oxygen and nitrogen species, the immune response and tissue metabolites. Preventive measures including compression therapy and venotonics could also reduce the risk of progression to chronic venous insufficiency and VLU in susceptible individuals. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Figure 1

Back to TopTop