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Abstract: Antiphospholipid syndrome (APS) is a complex thrombo-inflammatory autoimmune disease
characterized by the presence of antiphospholipid antibodies (aPL). Women with APS are at high risk
of recurrent early pregnancy loss as well as late obstetrical complications—premature birth due to
placental insufficiency or severe preeclampsia. Accumulating evidence implies that vascular thrombosis
is not the only pathogenic mechanism in obstetric APS, and that the direct negative effect of aPL on
the placental cells, trophoblast, plays a major role. In this review, we summarize the current findings
regarding the potential mechanisms involved in aPL-induced trophoblast dysfunction. Introduction
on the APS and aPL is followed by an overview of the effects of aPL on trophoblast—survival, cell
function and aPL internalization. Finally, the implication of several non-coding RNAs in pathogenesis
of obstetric APS is discussed, with special emphasis of their possible role in trophoblast dysfunction
and the associated mechanisms.
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1. Introduction

Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized
by recurrent arterial, venous and microvasculature thrombosis and/or obstetrical compli-
cations associated with circulating antiphospholipid antibodies (aPL) [1,2]. The diagnosis
and classification of APS is based on the Sydney 2006 updated international classification
criteria consensus [3]. According to these criteria, at least one of the clinical conditions
and persistent detection of at least one of the criteria aPL have to be present for APS
diagnosis [3] (Table 1). The autoantibodies accepted for the laboratory criteria include
lupus anticoagulant, anticardiolipin and anti-β2-glycoprotein I IgG and/or IgM antibodies
(Table 1). APS can be an isolated disease when it is defined as primary. Secondary APS
represents coexistence of APS with some other autoimmune disorder, usually systemic
lupus erythematosus (SLE) [1,4]. APS/SLE patients account for around 30% of all APS
cases [5–8].

The estimated APS annual incidence and prevalence in the general population ranges
between 1 and 2 cases per 100,000 persons and between 40 and 50 per 100,000 persons,
respectively [9]. Most of the APS patients are diagnosed during the reproductive period
with the mean age of diagnosis between 30 and 40 years for women, as several studies
presented [6,8–11]. Moreover, APS is found to be more frequent in females especially when
considering patients with secondary APS associated with SLE [6,9,10]. However, some
studies found that there was no difference in APS frequency between sexes [7–9].

According to the clinical manifestations, two main subtypes of APS could be distin-
guished: vascular and obstetrical APS [12]. Vascular APS is mainly characterized by venous,
arterial and small vessel thrombotic events in different organs [12]. Obstetrical APS (OAPS)
is manifested with pregnancy morbidities and lower frequency of thrombotic events [12–15].
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Distinct molecular signatures in these two APS subtypes were also found [16]. The most
prevalent pregnancy complications in OAPS are early recurrent pregnancy loss (RPL), un-
explained fetal death and stillbirth [5,14,17,18]. Complications in later stages of pregnancy
including premature birth, preeclampsia (PE) and intrauterine growth restriction (IUGR)
are also common for OAPS patients [5,14,17,18]. The original historic assumption was
that complications in OAPS were associated with placental thrombotic phenomena [19].
However, experimental data accumulating over the past couple of decades have shown
that inadequate placentation due to multiple detrimental effects of aPL on trophoblast,
specialized placental cells, as well as other cell types of the placenta and uterus is a major
cause of pregnancy morbidities in OAPS [12,14].

Table 1. Criteria for diagnosis of APS.

APS Disease Classification Criteria According to Sydney Protocol

Clinical Criteria (at Least 1 of 2) Laboratory Criteria (at Least 1 of 3)

Vascular thrombosis:

• ≥1 clinical episode of thrombosis in any tissue/organ,
arterial or venous

Pregnancy morbidity:

• ≥1 morphologically normal fetal loss, ≥10th week of
gestation, or

• ≥1 premature birth of a normal neonate before the 34th
week due to (i) eclampsia or severe preeclampsia or (ii)
placental insufficiency, or

• ≥3 unexplained consecutive spontaneous abortions < 10th
week of gestation (with exclusion of parental anatomic,
hormonal or chromosomal causes).

Presence of (at least twice in min. 12 weeks):

• Lupus coagulant (LA)
• Antibody to cardiolipin (aCL), β-2 glycoprotein I

(anti-β2GPI) (high titer, IgG or IgM)

Classification based on laboratory tests:

• Type I: >1 laboratory criterion present (any combination)
• Type IIa: LA antibodies only
• Type IIb: aCL antibodies only
• Type IIc: anti-β2GPI antibody only

The gold standard treatment of APS is low dose aspirin combined with low molecular
weight heparin at prophylactic or therapeutic doses, depending on a history of blood
clots and previous complications during pregnancy [20,21]. In about 20–30% of OAPS
patients, standard treatment does not give satisfactory results and they suffer from recurrent
pregnancy complications [22]. There are several treatment options reserved for refractory
OAPS including hydroxychloroquine, low-prednisone dose, intravenous immunoglobulins
or plasma exchange [21]. Biologic therapies using anti-TNF-α antibodies in combination
with standard treatment gave promising results for the treatment of refractory OAPS [22,23].
Recently, aPL-induced epigenetic modifications, including dysregulated expression of non-
coding RNAs, emerged as key contributors to the APS progression as well as potential
additional biomarkers and therapeutic targets in APS [24,25].

In this review, following the Introduction, we will briefly present general information
on aPL types, their antigens and general mechanisms of action. Further, we will focus on
aPL-induced effects on trophoblast cell survival and function. Finally, we will present cur-
rent knowledge on non-coding RNAs as mediators of aPL-induced obstetric complications.

2. Antiphospholipid Antibodies

Antiphospholipid antibodies (aPL) are autoantibodies directed against phospholipids
and/or phospholipid binding proteins present on cell membranes of various cell types,
such as endothelial cells, leukocytes and platelets [26]. Laboratory criteria aPL, as men-
tioned above, include lupus anticoagulant, anticardiolipin and anti-β2-glycoprotein I
(anti-β2GPI) antibodies [3]. In addition to these autoantibodies, aPL also include antibodies
to annexin A5 [27], annexin A2 [28], protein S [29,30], phosphatidylethanolamine [31],
lysobisphosphatidic acid [32], prothrombin [33] as well as autoantibodies to complexes,
such as prothrombin/phosphatidylserine [34] and vimentin/cardiolipin [35], designated
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as non-criteria aPL. It was estimated that women with poor obstetric outcomes in 6-30% of
all cases are carriers of aPL, either criteria and/or non-criteria [36–39].

A recent APS ACTION study has shown that a clinically meaningful aPL profile with
positivity of all three laboratory criteria is associated with pronounced clinical features
and more durable aPL for a period of 5 years in 78% of patients [40]. Within a spectrum
of patients with clinical manifestations of APS, a significant portion was found not to
meet these laboratory criteria. Patients without detectable criteria aPL are referred to as
seronegative [41], while others that did not fulfill the aPL laboratory criteria regarding level
or type of immunoglobulins are recognized as patients with non-criteria aPL, and/or lower
level of criteria aPL [42].

Recently, regarding clinical obstetric manifestations, not much difference was noted
in the cumulative incidence of adverse obstetrical events in seronegative and seropositive
APS patients, although higher rates of intrauterine deaths (15% vs. 5%; p = 0.03), of PE
(7% vs. 16%, p = 0.048) and lower live birth term (36 ± 3 vs. 38 ± 3 weeks of gestation;
p = 0.04) were noted in seropositive APS patients [43]. The cumulative incidence of preg-
nancy complications was significantly decreased in treated versus untreated women with
seronegative APS. A systematic review of studies comparing APS patients fulfilling Sydney
criteria (definite APS) and non-criteria APS patients (NC-APS) presented that most studies
have shown no significant difference in prevalence of clinical manifestations between defi-
nite and NC-APS patients including pregnancy morbidities [44]. A recent review focused
on the evidence showing that non-criteria aPL may play a functional role in the signal
transduction pathway(s) leading to thrombosis and pregnancy morbidity in seronegative
APS patients [26]. The results of the recent retrospective multicenter study [45] from the
European Registry on Obstetric Antiphospholipid Syndrome aimed at comparing clinical
features, laboratory data and fetal–maternal outcomes between women with OAPS and
with aPL-related obstetric complications not fulfilling Sydney criteria, yielded interesting
conclusions pertinent to pregnancy outcomes in affected women that received treatment
irrespective of fulfillment of aPL criteria. Treatment resulted in favorable obstetric out-
comes for both the mother and the infant with no difference between OAPS and NC-OAPS.
Given the shown obstetric benefits of treatment of patients with any aPL with clinical
symptoms [43], it is worth stressing that OAPS, as the most frequent treatable autoim-
mune disease during pregnancy, should be treated irrespective of the fulfillment of the
laboratory criteria.

Although accumulated data have shown a strong association of aPL and thrombosis,
the underlying molecular mechanisms have not been completely elucidated and multi-
ple mechanisms may be involved. It has been shown that aPL activates endothelial cells
and promotes a proinflammatory and procoagulant cell phenotype through activation
of Toll-like receptor 4/myeloid differentiation primary response 88 (TLR4/MyD88) sig-
naling pathway, leading to the increased expression of adhesion molecules and release
of cytokines [26,46]. Another mechanism of endothelial and monocyte cell activation by
anti-β2GPI involves the upregulation of Tissue Factor which is a key molecule in extrinsic
coagulation cascade initiation [47]. Platelets may also be activated by aPL, which leads to
increased thromboxane A2 synthesis, glycoprotein IIb-IIIa expression and platelet factor-4
secretion [26]. It has also been demonstrated that annexin A5 protein functions as a physio-
logical anticoagulant. It binds to phosphatidylserine on the cell surface forming a shield
and prevents activation of procoagulant complexes [48].

In placental tissue, trophoblast cells abundantly express β2GPI [49], which together
with hormonal and vascular changes linked to pregnancy highly contribute to the devel-
opment of obstetrical complications in the presence of aPL. Besides trophoblast, decidual
cells and other cell types at the feto–maternal interface highly express aPL antigens and
can be affected by aPL as well. However, several lines of evidence described different roles
of aPL in early and late pregnancy. Thus, in early pregnancy, aPL affect placentation and
apoptosis of trophoblast cells, while thrombotic mechanisms are connected to late obstetric
complications, such as IUGR and PE [1,50]. Moreover, it has been shown that anti-β2GPI
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binding to endothelial and trophoblast cells destroy the anticoagulant shield of annexin
A5, thereby inducing a procoagulant state in placenta which can lead to thrombosis, thus
influencing embryo fate [46,51].

At the level of trophoblast cells and the feto–maternal interface, various molecular
mechanisms of aPL’s detrimental effects were proposed. Through the activation of TLRs
and the NLR family pyrin domain containing 3 (NLRP3) inflammasome, aPL increase
IL-1β and IL-8 trophoblast secretion [52,53]. It has been reported that aPL reduce beta-
human chorionic gonadotropin (βhCG) production [54,55], signal transducer and activator
of transcription 3 (STAT3) activity and interleukin (IL)-6 secretion, leading to decreased
trophoblast function [56]. Several studies demonstrated a complement activation by aPL,
which leads to the release of reactive oxygen species, antiangiogenic factors, Tissue Factor as
well as TNF-α [57–59]. Due to the action of aPL, placentas of APS patients are structurally
modified as a consequence of aPL internalization by syncytiotrophoblast [60], which will
be discussed in the next section.

Clearly, there are many different mechanisms involved in APS during pregnancy.
Therefore, the knowledge about different molecular mechanisms triggered by aPL involved
in the abnormal development of placenta and placental dysfunction was and will be mostly
useful in terms of OAPS management.

3. The Impact of aPL on Trophoblast Cells

Placenta is a unique organ essential for pregnancy success, which forms contact be-
tween the mother and fetus and exerts multiple important functions. Aberrant placentation
is associated with diverse pregnancy complications such as miscarriage, stillbirth, pre-term
labor, IUGR and PE [61]. Trophoblast cells are specific placental cells, exerting a variety
of functions at the feto–maternal interface. Placental chorionic villi are covered with syn-
cytiotrophoblast, a multinucleated trophoblast layer directly facing maternal circulation,
which facilitates nutrient transport and gas exchange between mother and fetus. Syn-
cytiotrophoblast secretes hormones necessary for the maintenance of healthy pregnancy
such as βhCG and placental lactogen [61]. Underneath syncytium, there is a layer of
cytotrophoblast cells which continuously proliferate and through constant fusion form
syncytiotrophoblast. Another type of trophoblast cells are extravillous trophoblast cells
(EVTs), which also differentiate from cytotrophoblast through the process of epithelial-
mesenchymal transition (EMT). Detaching from the tips of the anchoring villi, EVTs invade
the maternal decidual stroma, spiral arteries and other luminal structures in the uterus,
which is essential for the process of placentation [61,62] (Figure 1A). The outcome of this
process is adequately attached placenta and modified spiral arteries that enable sufficient
supply of oxygen, nutrients and other factors to the developing fetus.

Trophoblast cells abundantly express aPL antigens, especially β2GPI [49]. Anti-β2GPI
antibodies are considered to be the main contributors to the pathogenesis of OAPS and a
great number of in vitro studies deciphering pathogenic mechanisms of the syndrome were
conducted using these autoantibodies. It was found that aPL induce detrimental effects
on trophoblast cells affecting their proliferation, differentiation and survival [63,64], as
well as other cellular processes including invasion and migration [65–69] through different
molecular mechanisms which will be discussed in this section.

3.1. Trophoblast Survival

Apoptosis has an important role in normal placental development [70,71]. However,
increased rates of trophoblast apoptosis are associated with placental diseases [70,71]. In
the past two decades, a growing body of evidence suggests that aPL affect trophoblast
cell proliferation and apoptosis. In vitro studies on rat’s embryos demonstrated that
purified aPL IgG treatment inhibited embryo and yolk sac growth and increased apoptosis
of ectoplacental cone giant cells [72,73]. In mice, passive immunization with human
aPL during gestation attenuated placental morphogenesis [69,74], reduced trophoblast
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proliferation [74] and increased placental apoptosis as evidenced by the increased index in
TUNEL-positive cells and pronounced DNA-fragmentation [75].
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Figure 1. (A). Schematic presentation of the anchoring chorionic villus and trophoblast invasion into the
decidual tissue in healthy pregnancy. (B). Possible mechanisms of antiphospholipid antibodies’ action
on trophoblast cells leading to defective placentation/placental malfunction. aPL—antiphospholipid
antibodies; CT—cytotrophoblast; ST—syncytiotrophoblast; EVT—extravillous trophoblast; SA—spiral
artery; MMP-matrix metalloproteinase; Gal-1—galectin-1; βhCG—β-human chorionic gonadotropin.

Analyzing sections of human first trimester placentas after elective abortions and aPL-
associated miscarriages, Bose et al. found that aPL-associated trophoblast development
is aberrant [76]. Authors hypothesized that aPL may stimulate the premature onset of
cytotrophoblast proliferation and differentiation, in favor of syncytial fusion, which could
result in accelerated exhaustion of cytotrophoblast ‘stem’ cells, leading to the altered
morphology and function of placenta and consequential pregnancy loss [76]. Furthermore,
in vitro experiments using human placental explants from the first trimester of pregnancy
cultured with sera of APS/SLE patients with history of RPL showed reduced placental
villi growth and trophoblast cell proliferation as well as increased trophoblast apoptosis
in treated explants [73,77]. During pregnancy, as part of normal placental aging, the
syncytiotrophoblast layer sheds through the process of apoptosis releasing multinucleated
syncytial aggregates known as trophoblast debris in maternal circulation [78]. Studies
on the human placental explant model showed that aPL treatment increased trophoblast
shedding rates and altered the cell death process through which trophoblast debris is
formed [60,79]. It has been shown that aPL antibodies affected mitochondrial function
through mitochondrial leakage and cytochrome C release, which eventually led to necrotic
cell death and extrusion of necrotic trophoblast debris [60]. After phagocytosis, aPL-
induced trophoblast debris stimulated activation of endothelial cells which could explain,
at least in part, how aPL could increase the risk of PE and other adverse pregnancy
outcomes associated with an activated endothelium in OAPS patients [60,79]. An additional
proposed mechanism by which aPL could cause cell death in the syncytiotrophoblast is
the interruption of placental lipid signaling and decreased expression of protein kinase
C-epsilon (PRKCE) as determined on the placental explant model [80].

Moreover, aPL-induced transcriptome and metabolome alterations connected to tro-
phoblast cell death have been found [80,81]. Transcriptomic analysis revealed changes in
the expression of factors involved in the regulation of apoptosis, including BCL2L1, MCL1,
PDCD2L, FASLG, SEMA6A, PRKCE and TRAIL mRNAs in response to aPL treatment of
human placental explants [81]. Altered lipid metabolism, especially of ceramides and dia-
cylglycerols, important players in cell death regulatory pathways, was the most pronounced
aPL-induced metabolic change detected in treated human placental explants [80]. Expres-
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sion of anti-apoptotic BCL2 and pro-apoptotic BAX genes on mRNA and protein levels was
altered in primary trophoblast cells after aPL treatment [82]. Reduced BCL2/BAX ratio indi-
cating a pro-apoptotic state was detected but with no change in apoptosis rates as evidenced
by DNA fragmentation or positivity for the caspase-cleaved epitope of cytokeratin-18 cy-
toskeletal protein (M30) [82]. In agreement with that, results from our laboratory showed
that aPL moderately increased proliferation of the EVT cell line HTR-8/SVneo with no
change in the rate of apoptosis [83]. On the other hand, Mulla and colleagues showed that
lower concentrations of aPL also moderately stimulated proliferation of HTR-8/SVneo cells
but as aPL concentration increased, viability of trophoblast cells were significantly reduced
mediated by increased activity of caspase-8, caspase-9 and caspase-3 [52]. An aPL-induced
HTR-8/SVneo cell death was at least partially due to increased proinflammatory response
of HTR-8/SVneo cells to aPL treatment [52]. Discrepancy between results of different
studies on the extent of aPL-induced effects on trophoblast cell survival are most probably
due to the heterogeneity of aPL used in experiments as well as the duration of treatment.

Taken together, these observations suggest that apoptosis might be an important
mechanism in aPL-induced defective placentation in OAPS, without necessarily involving
thrombotic phenomena.

3.2. Trophoblast Cell Function

Along its invasive pathway, trophoblast undergoing EMT acquire markers of an in-
vasive phenotype—integrins α5β1 and α1β1 (forming fibronectin and laminin/collagen
receptors), among others, and start to secrete proteolytic enzymes, of which matrix met-
alloproteinases (MMP) -2 and -9 have the most important role [84,85]. A subpopulation
of EVTs that invades the spiral arteries, designated endovascular trophoblast, has been
shown to express specific endothelial markers, such as integrin αVβ3, VE-cadherin and α4
integrins [85,86].

A number of in vitro studies on trophoblast cells showed that aPL directly alter
trophoblast cell function including invasion and migration abilities. IgG isolated from
patients with APS as well as monoclonal antibodies reactive with β2GPI suppressed
trophoblast invasion, as shown using several trophoblast cell models including primary
trophoblast isolated from first or third trimester placenta, as well as normal trophoblast
HTR-8/SVneo and choriocarcinoma JAR cell lines [65–69]. Moreover, Poulton et al. showed
that IgG purified from OAPS patients but not from vascular APS patients inhibited HTR-
8/SVneo invasion expressing the difference between these two APS subtypes [87].

Further investigations showed that aPL-associated reduction in invasiveness could
at least, in part, be attributed to downregulation in invasion mediators—integrin sub-
units α1, α5 and β1 [67,68,88,89]. MMP-2 and MMP-9 are highly expressed during im-
plantation and early stages of pregnancy, playing a key role in the degradation of the
extracellular matrix (ECM) by trophoblast cells [90,91]. Anti-β2GPI antibodies inhibited
MMP-2 and MMP-9 secretion by trophoblast cells [66,68], while IgG from aPL-positive
sera (aPL IgG) significantly decreased the level of MMP-9 and the overall gelatinolytic
capacity of HTR-8/SVneo cells as assessed by in situ gelatin zymography [89]. Another
possible mechanism of aPL-mediated invasion suppression is through downregulation of
IL-6 secretion and STAT3 activity, as this was shown for mouse anti-β2GPI antibodies in
HTR-8/SVneo cells [56]. This cytokine acts as an important regulator of the implantation
and placentation processes [56]. Both mouse anti-β2GPI and patient-derived aPL induced
an inflammatory response in trophoblast cells, which may result in a negative impact on
trophoblast cell function, including an invasive capacity [52,92–94].

Our previous findings further support the hypothesis of the direct negative effect of
aPL on trophoblast invasion process. Galectin-1 (Gal-1), lectin abundantly present at the
feto–maternal interface, is an important part of the trophoblast invasion machinery, as it
modulates trophoblast adhesive and invasive capacities [95]. This lectin has the ability
to bind various ECM proteins, as well as cell surface adhesion molecules, including tro-
phoblast integrin β1 [96]. Results obtained in our previous research on HTR-8/SVneo cells
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showed that Gal-1 was reduced in conditioned media of aPL IgG-treated cells, while total
cell protein remained unaltered, suggesting that aPL IgG may affect Gal-1 secretion in a
manner not yet elucidated [89]. We have shown that aPL IgG treatment activates the p38
MAPK signaling pathway, and that inhibitory effects on integrin subunits and secreted
Gal-1 were dependent on this activation [89]. The role of the p38 MAPK signaling pathway
was shown in multiple processes involving trophoblast, such as the stimulation of tro-
phoblast cell motility by EGF, demonstrated in experiments on EVT cell line SGHPL-4 [97].

Furthermore, aPL seem to interfere with the trophoblast ability to differentiate into an
endothelial-like phenotype contributing to aPL-associated aberrant spiral artery remod-
eling. Placentas of mice treated with anti-β2GPI antibodies during gestation showed a
number of pathological changes including defective vascular remodeling [69]. Moreover,
in vitro experiments detected that anti-β2GPI antibodies inhibited the HTR-8/SVneo tube
formation ability [69] and compromised the trophoblast ability to bind and integrate into
the endothelium [98]. Previous research showed that treatment of primary term trophoblast
with aPL IgG downregulated VE-cadherin expression [88], an adhesion molecule important
for trophoblast–endothelial interaction, endovascular invasion and spiral artery remod-
eling [99,100]. Moreover, integrin subunit α4 was also decreased by the treatment [89].
This integrin subunit is upregulated in endovascular trophoblast, probably as one of the
adhesion molecules needed to facilitate adhesion to vascular epithelia, where α4β1 integrin
is proposed to bind the vascular cell adhesion molecule-1 (VCAM-1) [86]. The schematic
representation of the possible mechanisms of aPL action at the site of implantation, based
on in vitro findings is given in Figure 1B.

Recently, Yes-associated protein (YAP), the transcription co-activator of the Hippo sig-
naling pathway, was proposed to act as key effector molecule which links aPL-induced up-
stream intracellular signals and alteration of different trophoblast functions [101]. Namely,
it was detected that aPL treatment decreased YAP protein levels in HTR-8/SVneo cells [101].
YAP downregulation increased apoptosis, inhibited migration, invasion and tube forma-
tion ability of HTR-8/SVneo cells [101–103]. Previous studies of early implantation and
trophoblast development showed that inhibition of YAP reduced endometrial attachment,
outgrowth, and trophoblast gene expressions of human embryonic stem cell–derived tro-
phoblastic spheroids [104]. Furthermore, decreased YAP expression levels were found in PE
placentas [102,103]. All the data present the importance of YAP regulation of trophoblast
function, indicating the diversity of effects aPL-induced YAP downregulation could have
in establishment and maintenance of pregnancy.

In conclusion, the findings of our and other groups’ research suggest that aPL may
induce defective placentation by reducing trophoblast invasion through inhibiting effector
molecules—integrins and MMPs and by limiting the amount of Gal-1 present extracellularly.
Furthermore, these autoantibodies may interfere with the modification of spiral arteries
through downregulation of adhesion molecules characteristic for endovascular trophoblast.
Other mechanisms are not excluded.

3.3. Internalization of aPL in Trophoblast Cells

In addition to cell invasion, other cell functions specific for trophoblast have also been
shown to be negatively influenced by aPL. Cytotrophoblast fusion and production of a
major trophoblast-derived hormone βhCG, necessary for pregnancy progression, were sup-
pressed by aPL [54,105–107]. Additionally, a recent study linked aPL to syncitiotrophoblast
oxidative stress [108]. This is in accordance with the high heterogeneity of these antibodies.
What is still not well understood is the exact mechanism through which these autoantibod-
ies initiate these cellular responses, but both cell surface and intracellular antigens have
been proposed as targets.

The ability of patient-derived autoantibodies to penetrate living cells was first pro-
posed more than 40 years ago [109]. Since then, this property was shown for a num-
ber of autoantibodies, which led to the conclusion that intracellular antigens are not
immunologically privileged, as first thought to be. Several studies have demonstrated that
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different types of aPL may be detected intracellularly. A study by Galve-de Rochemon-
teix and colleagues (2000) showed that aPL are accumulated in late endosomes of baby
hamster kidney (BHK) cells in culture [110]. A more recent study demonstrated that anti-
phosphatidylethanolamine antibodies target the cytosolic surface of early endosomes in
human umbilical vein endothelial cells (HUVECs) and hypothesizes that these antibodies
could have important implications for a wide range of biological processes in different
cell types [111]. Trying to elucidate the mechanism of interaction between anti–β2GPI
monoclonal antibodies WB-6 with resting monocytes, Virachith and colleagues (2019) found
that WB-6 exhibits binding activity to DNA and enters living monocytes [112].

It is well known that the passive immunity provided to the human fetus is in part ob-
tained through the transport of maternal IgG across the syncytiotrophoblast. Even though
the transport of maternal IgG increases after the 22nd week of gestation and is mediated by
the Fcγ receptor, there are data indicating that transport across early placental trophoblast
is not limited by a lack of specific IgG receptors. Furthermore, aPL have been shown to
bind EVTs [68,113,114], and also to bind and internalize into syncytiotrophoblast [60]. This
process was independent on Fc-receptor, as shown by employment of anti-β2GPI that
lacks Fc fragment but was dependent on the low-density lipoprotein receptor (LDLR) [60].
Extrusion of necrotic trophoblast debris from syncytiotrophoblast, caused by aPL treat-
ment, was dependent on the internalization of these antibodies [60]. A subsequent study
from the same group showed that the same aPL are not internalized in the EVTs from
explanted villi [114]. Our study, however, demonstrated that patient-derived aPL IgG was
able to enter and accumulate in the primary first trimester cytotrophoblast in culture and
HTR-8/SVneo cells in a time-dependent manner [113], similarly to findings of Hou and
colleagues on HUVECs [111]. We suspect that this discrepancy could be due to the longer
exposure time in our approach and, to a lesser degree, to the difference in species of origin
and specificity of the used antibodies.

Based on the collected data from studies on the aPL potential to enter trophoblast as
well as other types of cells, it can be concluded that there is a whole spectra of possible cell
surface as well as intracellular targets for these autoantibodies, implicating other possible
routes for aPL’s influence on trophoblast cell function.

4. Non-Coding RNAs—Emerging Players in OAPS Pathophysiology

Being multifunctional regulators of different biological processes, as the growing
body of evidence suggests, it is not surprising that there is increasing interest in study-
ing the involvement of non-coding RNAs (ncRNAs) in the pathophysiology of APS and
other autoimmune disorders [25,115–121]. NcRNAs, including microRNAs (miRNAs)
and long non-coding RNAs (lncRNAs), regulate gene expression on transcriptional and
post-transcriptional levels [122,123]. Aberrant expression of ncRNAs could significantly
affect various cellular processes eventually leading to the development of different patholo-
gies [124–126].

An in vitro study on trophoblast HTR-8/SVneo cells revealed that anti-β2GPI upregu-
lated cellular and exosome levels of miR-146a-5p, miR-146a-3p, miR-155 and miR-210 [93].
Moreover, women positive for aPL experiencing pregnancy complications had elevated cir-
culating miR-146a-3p levels compared to healthy controls [93]. Previous research showed
that aPL stimulated a proinflammatory response in trophoblast cells [52]. Specifically,
anti-β2GPI elicited IL-8 secretion among other cytokines in HTR-8/SVneo cells through
the TLR4/MyD88 pathway [52]. Since miR-146a-5p, miR-155 and miR-210 were shown
to mediate TLR signaling [127–130], Gysler and colleagues investigated the role of these
miRNAs in TLR4-dependent IL-8 secretion in aPL-treated trophoblast cells [93]. They
showed that aPL-stimulated upregulation of miR-146a-5p, miR-146a-3p and miR-210 but
not miR-155 was TLR4 dependent. However, anti-β2GPI-induced IL-8 secretion was shown
to be mediated by miR-146a-3p and it was through the activation of RNA sensor TLR8 [93].

MiR-146a, miR-155 and miR-210 are important regulators of numerous cellular pro-
cesses. Although there are some studies with opposing results [131,132], a number of
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studies showed that overexpression of miR-146a [133–136], miR-155 [137–139] and miR-
210 [140–143] inhibited migration and invasion of trophoblast cells. MiR-146a and miR-155
are major regulators of the immune response and disrupted expression of these miR-
NAs has been associated with pathologies characterized by chronic inflammation [144].
MiR-146a affects trophoblast EMT, migration and invasion abilities through direct downreg-
ulation of TNF receptor-associated factor 6 (TRAF6) [134] and atypical chemokine receptor
2 (ACKR2) [136]. TRAF6 is a signal transducer in the TLR4/MyD88 pathway involved in
the regulation of the immune response [145,146] but also implicated in different cellular
processes including regulation of proliferation, migration and invasion of cancer cells [146].
ACKR2, a chemokine scavenger, is involved in the maintenance of balance between pro and
anti-inflammatory cytokines at the feto–maternal interface [147] and dysregulation of this
molecule is associated with different pregnancy complications [148,149]. Wnt/β-catenin
signaling pathway was also found to be affected by miR-146a-5p through direct regulation
of Wnt2 expression [135]. Furthermore, it was shown that overexpression of miR-146a
downregulated CXCR4 and EGFR in HTR-8/SVneo cells [133] affecting signaling pathways
activated through these two receptors which are involved in regulation of trophoblast
migration and invasion [150,151]. MiR-155 affects the TGF-β/Smad signaling pathway
important for regulation of EVT invasion [152] directly targeting expression of Smad2 [153].
Other direct miR-155 targets were also implicated in the regulation of trophoblast cell
functions including angiogenic factor CYR61 [137], an important regulator of cell cycle
progression cyclin D1 [154], eNOS [139] and forkhead-box class O transcription factor 3
(FOXO3) [155].

MiR-210 is a master hypoxamiR, a miRNA whose expression is induced by hypoxic
conditions [156]. It is an important regulator of mitochondrial metabolism, cell prolifera-
tion and differentiation, angiogenesis and other oxygen-sensitive processes [156]. Over-
expression of miR-210 in trophoblast cells inhibited mitochondrial respiration which con-
sequently could lead to generation of excessive amounts of reactive oxygen species and
increased placental oxidative stress [157]. MiR-210 inhibited HTR-8/SVneo invasion via
ERK/MAPK-dependent mechanism [140]. Overexpression of miR-210 dysregulated expres-
sion of EMT-related proteins and consequentially inhibited invasive abilities of trophoblast
cells [143]. Namely, expression of the mesenchymal marker vimentin and N-cadherin, a
promoter of EMT, was decreased while E-cadherin, an epithelial marker, was upregulated
in HTR-8/SVneo cells overexpressing miR-210 [143]. Moreover, trophoblast upregulation
of miR-210-3p has been associated with impaired remodeling of spiral arteries [142]. In this
study, authors showed that miR-210-3p-dependent impairment of trophoblast function is
mediated through direct dysregulation of caudal-related homeobox transcription factor 2
(CDX2), essential transcription factor for trophoblast differentiation active during blastocyst
development [142].

Reduced trophoblast invasion and spiral artery remodeling are associated with preg-
nancy complications characteristic for OAPS patients, such as RPL and PE [14,17]. Since
increased levels of miR-146a, miR-155 and miR-210 have been found in placentas of aPL-
negative RPL [134,158–160] and PE patients [135–137,139,161–163] it could be concluded
that aPL-induced upregulation of named miRNAs in trophoblast cells is a contributing
factor to the development of these obstetric complications in OAPS patients. Moreover,
increased levels of miR-146a, miR-155 and miR-210 were found in blood of patients suffer-
ing from pregnancy loss and/or PE [140,164–167] suggesting the use of these miRNAs as
biomarkers for early diagnostics as well as mechanism-based targets of new therapeutics
for RPL and PE associated or not with OAPS.

As mentioned above, APS is one of the main risk factors for RPL [168] but underlying
mechanisms of aPL-induced RPL are still not completely elucidated. Recent studies iden-
tified lncRNA MALAT1 as one of the major regulators of the processes important for the
adequate placental development and function in early pregnancy [158,169–173]. Namely,
MALAT1 levels were significantly downregulated in placentas of the patients experienc-
ing RPL of unknown etiology compared to the healthy controls [158,174]. Furthermore,
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recent research showed that trophoblast and placental MALAT1 levels of aPL-positive
RPL patients were even lower than MALAT1 levels of aPL-negative RPL patients [172].
Furthermore, aPL-positive RPL mouse model was generated [172]. The embryo resorption
rate was increased in aPL-positive RPL mice compared both to RPL mice negative for
aPL and control mice [172]. Placental MALAT1 overexpression by adenoviral transfection
in aPL-positive RPL mice significantly decreased embryo resorption rate compared to
untreated aPL-RPL mice [172].

Moreover, low expression levels of MALAT1 were also found in placentas of PE patients
comparing with normal controls [170,171,173,175]. Effects of decreased MALAT1 expression
on trophoblast cell function were investigated in vitro by downregulation of this lncRNA
in HTR-8/SVneo and JAR cells. The results showed that trophoblast cells with decreased
MALAT1 levels proliferated less than unmodified cells and their migrating and invasive
abilities were decreased as well as expression of EMT-related proteins [158,169–173]. Different
mechanisms of action were proposed for MALAT1-dependent regulation of trophoblast
cell function. It was shown that MALAT1 modulates IGF-1/PI3K/Akt signaling affecting
trophoblast migration and invasion abilities [169]. Furthermore, VEGFA was found to be a
downstream mediator of MALAT1-depepndent inhibition of trophoblast proliferation [173]
and endovascular differentiation [171].

Among other mechanisms of action, lncRNAs can regulate gene expression by affect-
ing miRNA expression and activity via sequestration [123,176]. Some lncRNAs, part of
competing endogenous RNA (ceRNA) family, act as molecular miRNA sponges. They
competitively bind specific miRNAs and thus prevent them from binding to their target
mRNAs. In that way, negative miRNA effect on target gene expression is reduced [123,176].
Mutual regulation of miRNA and lncRNA activities is involved in regulation and fine
tuning of many biological processes. Growing body of evidence has shown that MALAT1
functions as ceRNA [158,169,173,177–182]. Among other miRNAs, miR-146a [158,177–179]
and miR-155 [183,184] have also been shown to be MALAT1 binding partners. These
studies indicate the involvement of MALAT1/miR-146a and/or miR-155 regulatory axes
in diverse negative effects of aPL on placental function leading to RPL or other obstetrical
complications in OAPS.

Recently, another lncRNA named LncNR_040117 has been identified as an important
mediator of APS-induced RPL [24]. Firstly, it has been shown that platelet-derived mi-
croparticles (PMPs) isolated during first trimester of pregnancy from APS patients with the
history of RPL stimulated apoptosis and inhibited invasion and migration of trophoblast
HTR-8/SVneo cells [185]. PMPs are vesicles derived from platelets undergone activation or
apoptosis [186]. They are the most abundant type of microparticles present in human circula-
tion and they were associated with different pathologies such as cancer, cardiovascular and
autoimmune diseases [186–188]. PMPs mediate various physiological processes affecting
target cells thorough specific interactions including surface receptor signaling and delivering
of bioactive molecules such as cytokines, enzymes, growth factors and RNAs [186–190].
Content of PMPs’ cargo molecules depend on the signals activating platelets and stimulating
PMPs’ formation and it is modified in pathological conditions [186–188]. lncRNA profiling
of APS-associated PMPs identified LncNR_040117 as one of the significantly overexpressed
lncRNAs in PMPs isolated from APS patients with the history of RPL comparing to the
gestational age matched healthy controls [24]. Moreover, this lncRNA has been proposed
for biomarker of APS-induced RPL [24]. Downregulation of LncNR_040117 stimulated
proliferation, migration and invasion of transfected HTR-8/SVneo cells [24,191]. These
results indicate that LncNR_040117 upregulation by intake of APS-related PMPs could have
opposite, detrimental effects on trophoblast function. On the other hand, finding strategies
for targeted blocking of this lncRNA could be a potential method of preventing miscarriage
in APS patients. The possible implications of APS-associated ncRNAs in trophoblast cell
function are summarized in Table 2.
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Table 2. Possible implication of APS-associated ncRNAs in trophoblast cell function.

ncRNA APS-Associated ncRNA
Dysregulation Implication in Trophoblast Function

miR-146a-5p
miR-146a-3p

miR-155
miR-210

Upregulated in anti-β2GPI treated
HTR-8/SVneo cells [93]

Overexpression of miR-146a [133–136], miR-155 [137–139]
and miR-210 [140–143] inhibited invasion and migration of

HTR-8/SVneo cells
Overexpression of miR-210 inhibited

mitochondrial respiration in primary EVT cells [157]
Overexpression of miR-210-3pinhibited tube formation of

HTR-8/SVneo cells [142]

lncRNA MALAT1 Downregulated in placentas of
APS-induced RPL patients [172]

MALAT1 downregulation inhibited proliferation, migration
and invasion of HTR-8/SVneo cells [158,169–172]

LncNR_040117 Upregulated in PMPs isolated from
APS-induced RPL patients [24]

LncNR_040117 downregulation stimulated proliferation,
migration and invasion of HTR-8/SVneo cells [185,191]

EVT—extravillous trophoblast; PMPs—platelet-derived microparticles; RPL—recurrent pregnancy loss.

NcRNA research field is constantly developing, giving insights in complex regulation
of biological processes in health and disease. Future elucidation of various participants in
these fine-tuned processes will provide new opportunities for the development of potential
therapeutics and strategies for management of obstetrical complications related to APS.

5. Conclusions

Given that APS still represents one of the most common threats for pregnancy compli-
cations, the current knowledge regarding placental dysfunction in APS must be significantly
improved. There are multiple possible mechanisms involved in APS-associated placental
dysfunction. According to the evidence from in vitro and in vivo studies, both extracellular
and intracellular antigens may be targeted by aPL, activating different cellular responses
that further cause excessive apoptosis and impaired trophoblast invasion/placentation. The
aPL-induced modulation of epigenetic mechanisms such as changing ncRNAs expression
is emerging as a key contributor to APS progression.

Current treatment strategies are not effective for all patients. Conventional treatment
strategies mostly include antithrombotic agents, while immunosuppressive therapy has
been increasingly used. Non-coding RNAs are emerging players in the pathogenesis of
APS. Given that these molecules have been proposed as biomarkers of many pathological
conditions and as therapeutic targets, future investigations could be directed towards
identification of differentially expressed ncRNAs in APS, and elucidation of their roles in
the pathogenesis of APS. This would provide basis for the development of ncRNA-targeting
treatments. Several ncRNA-targeting drugs for other conditions are already being tested in
clinical trials.

Taken together, further investigations are needed to fully understand the causes of
APS-associated pregnancy complications, so that every affected woman can be treated
adequately.
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