Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,213)

Search Parameters:
Keywords = placental

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3064 KiB  
Article
Immunohistochemical Analysis of Placental Tissue of Women Infected with SARS-CoV-2 During Pregnancy—A Prospective Clinical Study
by Marija Bicanin Ilic, Tamara Nikolic Turnic, Aleksandar Nikolov, Srdjan Mujkovic, Ivana Likic Ladjevic, Igor Ilic, Marija Spasojevic, Nikola Jovic, Jovana Joksimovic Jovic, Dejana Rakic, Begzudin Ahmetovic, Sara Rosic and Aleksandra Dimitrijevic
Int. J. Mol. Sci. 2025, 26(15), 7659; https://doi.org/10.3390/ijms26157659 (registering DOI) - 7 Aug 2025
Abstract
SARS-CoV-2 has an affinity for binding to the human Angiotensin-converting enzyme 2 (ACE2) receptor through cleavage and conformational changes at the S1–S2 boundary and the receptor binding domain of the spike protein, which is also the most variable part of SARS-CoV-2. This study [...] Read more.
SARS-CoV-2 has an affinity for binding to the human Angiotensin-converting enzyme 2 (ACE2) receptor through cleavage and conformational changes at the S1–S2 boundary and the receptor binding domain of the spike protein, which is also the most variable part of SARS-CoV-2. This study aimed to investigate the expression of Angiotensin-converting enzyme 2 (ACE2), spike protein, and CD68+ markers in placental tissue to demonstrate a possible correlation with the level of systemic oxidative stress biomarkers in patients who were infected with SARS-CoV-2 during pregnancy. A prospective clinical cohort study was designed to investigate the presence of CD68+ macrophages, ACE2, and spike proteins in placental tissue using immunohistochemical methods and to compare these results with oxidative stress from our previous study. Spike and CD68+ macrophages’ immunoreactivity were more pronounced in the placental tissue of patients from the SARS-CoV-2 group. Placental tissue spike protein and CD68+ immunoreactivity correlate with maternal and fetal Thiobarbituric Acid Reactive (TBARS) levels. This study has confirmed that spike protein expression in placental tissue is associated with the newborn’s stay in intensive neonatal care. Therefore, immunoreactivity analysis for the Spike antigen is important in detecting newborns at risk of early neonatal complications. Full article
(This article belongs to the Special Issue Molecular Insights into Placental Pathology)
Show Figures

Figure 1

21 pages, 742 KiB  
Review
Gut Microbiota and Its Metabolites Modulate Pregnancy Outcomes by Regulating Placental Autophagy and Ferroptosis
by Xingyu Du, Mabrouk Elsabagh, Feiyang He, Huisi Wu, Bei Zhang, Kewei Fan, Mengzhi Wang and Hao Zhang
Antioxidants 2025, 14(8), 970; https://doi.org/10.3390/antiox14080970 (registering DOI) - 7 Aug 2025
Abstract
During pregnancy, the regulation of autophagy and ferroptosis dynamically supports placental development and fetal health. Both processes—autophagy, clearing damaged organelles to maintain placental function, and ferroptosis, driven by iron-dependent lipid peroxidation—are involved in pathological conditions such as preeclampsia. Emerging evidence suggests that gut [...] Read more.
During pregnancy, the regulation of autophagy and ferroptosis dynamically supports placental development and fetal health. Both processes—autophagy, clearing damaged organelles to maintain placental function, and ferroptosis, driven by iron-dependent lipid peroxidation—are involved in pathological conditions such as preeclampsia. Emerging evidence suggests that gut microbiota-derived metabolites act as key regulators of this balance, yet their specific roles across different trimesters remain unclear. This review compiles evidence on how gut microbiota metabolites, like short-chain fatty acids and trimethylamine N-oxide, serve as trimester-specific modulators of the autophagy–ferroptosis balance during pregnancy. We explain how these metabolites influence pregnancy outcomes by regulating placental autophagy and ferroptosis. Furthermore, we explore potential diagnostic and therapeutic approaches for pregnancy complications, focusing on metabolite-based biomarkers and interventions that target microbial–metabolic interactions. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
21 pages, 4701 KiB  
Review
Maternal Lifestyle During Pregnancy and Its Influence on Offspring’s Telomere Length
by Elena Vakonaki, Maria Theodora Vitiadou, Eleftherios Panteris, Manolis Tzatzarakis, Aristides Tsatsakis and Eleftheria Hatzidaki
Life 2025, 15(8), 1250; https://doi.org/10.3390/life15081250 - 6 Aug 2025
Abstract
Telomeres are protective DNA sequences located at chromosome ends, essential to maintaining genomic stability. This narrative review examines how maternal lifestyle factors during pregnancy influence fetal telomere length (TL). Positive associations have been identified between offspring’s TL and maternal consumption of nutrients such [...] Read more.
Telomeres are protective DNA sequences located at chromosome ends, essential to maintaining genomic stability. This narrative review examines how maternal lifestyle factors during pregnancy influence fetal telomere length (TL). Positive associations have been identified between offspring’s TL and maternal consumption of nutrients such as vitamins C and D, folate, and magnesium. Additionally, adherence to a Mediterranean diet and regular physical activity during pregnancy are correlated with increased placental TL, supporting fetal genomic integrity. Conversely, maternal dietary patterns high in carbohydrates, fats, or alcohol, as well as exposure to triclosan and sleep-disordered breathing, negatively correlate with offspring’s TL. Maternal infections may also shorten TL through heightened inflammation and oxidative stress. However, evidence regarding the impact of other lifestyle factors—including maternal stress, smoking, caffeine intake, polyunsaturated fatty acid consumption, obesity, and sleep quality—remains inconsistent. Given that shorter telomere length has been associated with cardiovascular, pulmonary, and neurodegenerative diseases, as well as certain types of cancer, these findings highlight the vital importance of maternal health during pregnancy in order to prevent potential adverse effects on the fetus. Further studies are required to elucidate the precise timing, intensity, and interplay of these influences, enabling targeted prenatal interventions to enhance offspring health outcomes. Full article
Show Figures

Figure 1

21 pages, 3236 KiB  
Article
The Plasticizer Dibutyl Phthalate (DBP) Impairs Pregnancy Vascular Health: Insights into Calcium Signaling and Nitric Oxide Involvement
by Ana R. Quelhas, Melissa Mariana and Elisa Cairrao
J. Xenobiot. 2025, 15(4), 127; https://doi.org/10.3390/jox15040127 - 6 Aug 2025
Abstract
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor [...] Read more.
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor properties and considering its ability to cross the placental barrier, it is imperative to study DBP’s vascular effects in pregnancy, given the vulnerability of this period. Thus, this study investigated the potential effects of DBP on the cardiovascular system using umbilical arteries from healthy pregnant women. Specifically, the impact of DBP on the vascular reactivity after both rapid and 24 h DBP exposure was analyzed, as well as the contractility and the cell viability of vascular smooth muscle cells (VSMC). DBP did not exhibit overt cytotoxic effects on VSMCs, possibly due to its adsorption onto polystyrene surfaces, potentially limiting bioavailability. Interestingly, DBP induced vasorelaxation in a concentration-dependent manner. Although mechanistic insights remain to be fully elucidated, the results suggest the involvement of pathways associated with nitric oxide signaling and calcium handling. Overall, DBP exposure appears to modulate arterial tone regulation, which may have implications for vascular function during pregnancy. Full article
Show Figures

Figure 1

21 pages, 3744 KiB  
Article
Gestation-Stage Related Changes in the IGF System Components in the Equine Placenta
by Kirsten E. Scoggin, Fatma Adlan, Carleigh E. Fedorka, Shimaa I. Rakha, Tom A. E. Stout, Mats H. T. Troedsson and Hossam El-Sheikh Ali
Biomolecules 2025, 15(8), 1135; https://doi.org/10.3390/biom15081135 - 6 Aug 2025
Abstract
The insulin-like growth factor (IGF) system regulates implantation, placental development, and angiogenesis in eutherian mammals. However, little is known about the changes in this system in equine placenta (chorioallantois; CA) and the endometrium (EN) during pregnancy, or the relationship to vascular endothelial growth [...] Read more.
The insulin-like growth factor (IGF) system regulates implantation, placental development, and angiogenesis in eutherian mammals. However, little is known about the changes in this system in equine placenta (chorioallantois; CA) and the endometrium (EN) during pregnancy, or the relationship to vascular endothelial growth factor (VEGF) expression. The current study investigated the expression of the IGF system components, namely the ligands (IGF1 and IGF2), their receptors (IGF1R, IGF2R, and INSR), and their binding proteins (IGFBPs and IGF2BPs) in equine CA at 45 days, 4, 6, 10, and 11 months of gestational age (GA) and immediately postpartum (PP), and in equine EN at 4, 6, 10, and 11 months GA. IGF1 immunolocalization and serum concentrations were also evaluated across gestation. IGF1 mRNA expression in CA increased from day 45 to peak at 6 months and then gradually declined to reach a nadir in PP samples. This profile correlated positively with the VEGF expression profile (r = 0.62, p = 0.001). In contrast, IGF2 expression in CA was not correlated with VEGF (p = 0.14). Interestingly, IGF2 mRNA was more abundant in equine CA than IGF1 (p < 0.05) throughout gestation. Among the IGFBPs investigated in CA, the expression of IGFBP2 and IGF2BP2 was highly abundant (p < 0.05) at day 45 compared to other GAs. Conversely, mRNA expression for IGFBP3 and IGFBP5 was more abundant (p < 0.05) in PP than at all investigated GAs. Immunohistochemistry revealed that IGF1 is localized in the equine chorionic epithelium (cytoplasm and nucleus). IGF1 serum concentrations peaked at 9 months and declined to their lowest levels PP. In conclusion, this study demonstrates a positive correlation between IGF1 and VEGF expression in equine CA during gestation, suggesting that the IGF system plays a crucial role in placental angiogenesis by regulating VEGF. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 914 KiB  
Article
Microvascular, Biochemical, and Clinical Impact of Hyperbaric Oxygen Therapy in Recalcitrant Diabetic Foot Ulcers
by Daniela Martins-Mendes, Raquel Costa, Ilda Rodrigues, Óscar Camacho, Pedro Barata Coelho, Vítor Paixão-Dias, Carla Luís, Ana Cláudia Pereira, Rúben Fernandes, Jorge Lima and Raquel Soares
Cells 2025, 14(15), 1196; https://doi.org/10.3390/cells14151196 - 4 Aug 2025
Viewed by 181
Abstract
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study aimed to evaluate the impact of HBOT on systemic biomarkers, local microvasculature, and clinical outcomes in patients with DFUs. Methods: In this non-randomized prospective study, 20 patients with ischemic DFUs were followed over a 36-month period. Fourteen received HBOT in addition to standard care, while six received standard care alone. Clinical outcomes—including DFU resolution, recurrence, lower extremity amputation (LEA), and mortality—were assessed alongside systemic inflammatory and angiogenic biomarkers and wound characteristics at baseline and at 3, 6, 12, and 36 months. CD31 immunostaining was performed on available tissue samples. Results: The two groups were comparable at baseline (mean age 62 ± 12 years; diabetes duration 18 ± 9 years). At 3 months, the HBOT group showed significant reductions in erythrocyte sedimentation rate and DFU size (p < 0.05), with downward trends observed in C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and an increase in stromal-derived factor-1 alpha (SDF1-α). No significant changes were observed in the control group. CD31+ microvessel density appeared to increase in HBOT-treated DFU tissue after one month, although the sample size was limited. Patients receiving HBOT had lower rates of LEA and mortality, improved wound healing, and sustained outcomes over three years. DFU recurrence rates were similar between groups. Conclusions: HBOT was associated with improved wound healing and favorable biomarker profiles in patients with treatment-resistant ischemic DFUs. While these findings are encouraging, the small sample size and non-randomized design limit their generalizability, highlighting the need for larger, controlled studies. Full article
Show Figures

Figure 1

24 pages, 3915 KiB  
Article
Prothrombotic Genetic Mutations Are Associated with Sub-Clinical Placental Vascular Lesions: A Histopathological and Morphometric Study
by Viorela-Romina Murvai, Anca Huniadi, Radu Galiș, Gelu Florin Murvai, Timea Claudia Ghitea, Alexandra-Alina Vesa and Ioana Cristina Rotar
Curr. Issues Mol. Biol. 2025, 47(8), 612; https://doi.org/10.3390/cimb47080612 - 4 Aug 2025
Viewed by 104
Abstract
Background: Inherited thrombophilia is increasingly recognized as a contributing factor to placental vascular pathology and adverse pregnancy outcomes. While the clinical implications are well-established, fewer studies have systematically explored the histopathological changes associated with specific genetic mutations in thrombophilic pregnancies. Materials and Methods: [...] Read more.
Background: Inherited thrombophilia is increasingly recognized as a contributing factor to placental vascular pathology and adverse pregnancy outcomes. While the clinical implications are well-established, fewer studies have systematically explored the histopathological changes associated with specific genetic mutations in thrombophilic pregnancies. Materials and Methods: This retrospective observational study included two cohorts of placental samples collected between September 2020 and September 2024 at a tertiary maternity hospital. Group 1 included women diagnosed with hereditary thrombophilia, and Group 2 served as controls without known maternal pathology. Placentas were examined macroscopically and histologically, with pathologists blinded to group allocation. Histological lesions were classified according to the Amsterdam Consensus and quantified using a composite score (0–5) based on five key vascular features. Results: Placental lesions associated with maternal vascular malperfusion—including infarctions, intervillous thrombosis, stromal fibrosis, villous stasis, and acute atherosis—were significantly more frequent in the thrombophilia group (p < 0.05 for most lesions). A combination of well-established thrombophilic mutations (Factor V Leiden, Prothrombin G20210A) and other genetic polymorphisms with uncertain clinical relevance (MTHFR C677T, PAI-1 4G/4G) showed moderate-to-strong correlations with histopathological markers of placental vascular injury. A composite histological score ≥3 was significantly associated with thrombophilia (p < 0.001). Umbilical cord abnormalities, particularly altered coiling and hypertwisting, were also more prevalent in thrombophilic cases. Conclusions: Thrombophilia is associated with distinct and quantifiable placental vascular lesions, even in pregnancies without overt clinical complications. The use of a histological scoring system may aid in the retrospective identification of thrombophilia-related placental pathology and support the integration of genetic and histologic data in perinatal risk assessment. Full article
(This article belongs to the Special Issue Feature Papers in Molecular Medicine 2025)
Show Figures

Figure 1

24 pages, 587 KiB  
Review
Uric Acid and Preeclampsia: Pathophysiological Interactions and the Emerging Role of Inflammasome Activation
by Celia Arias-Sánchez, Antonio Pérez-Olmos, Virginia Reverte, Isabel Hernández, Santiago Cuevas and María Teresa Llinás
Antioxidants 2025, 14(8), 928; https://doi.org/10.3390/antiox14080928 - 29 Jul 2025
Viewed by 477
Abstract
Preeclampsia (PE) is a multifactorial hypertensive disorder unique to pregnancy and a leading cause of maternal and fetal morbidity and mortality worldwide. Its pathogenesis involves placental dysfunction and an exaggerated maternal inflammatory response. Uric acid (UA), traditionally regarded as a marker of renal [...] Read more.
Preeclampsia (PE) is a multifactorial hypertensive disorder unique to pregnancy and a leading cause of maternal and fetal morbidity and mortality worldwide. Its pathogenesis involves placental dysfunction and an exaggerated maternal inflammatory response. Uric acid (UA), traditionally regarded as a marker of renal impairment, is increasingly recognized as an active contributor to the development of PE. Elevated UA levels are associated with oxidative stress, endothelial dysfunction, immune activation, and reduced renal clearance. Clinically, UA is measured in the second and third trimesters to assess disease severity and guide obstetric management, with higher levels correlating with early-onset PE and adverse perinatal outcomes. Its predictive accuracy improves when combined with other clinical and biochemical markers, particularly in low-resource settings. Mechanistically, UA and its monosodium urate crystals can activate the NLRP3 inflammasome, a cytosolic multiprotein complex of the innate immune system. This activation promotes the release of IL-1β and IL-18, exacerbating placental, vascular, and renal inflammation. NLRP3 inflammasome activation has been documented in placental tissues, immune cells, and kidneys of women with PE and is associated with hypertension, proteinuria, and endothelial injury. Experimental studies indicate that targeting UA metabolism or inhibiting NLRP3 activation, using agents such as allopurinol, metformin, or MCC950, can mitigate the clinical and histopathological features of PE. These findings support the dual role of UA as both a biomarker and a potential therapeutic target in the management of the disease. Full article
Show Figures

Graphical abstract

25 pages, 4837 KiB  
Article
Multimodal Computational Approach for Forecasting Cardiovascular Aging Based on Immune and Clinical–Biochemical Parameters
by Madina Suleimenova, Kuat Abzaliyev, Ainur Manapova, Madina Mansurova, Symbat Abzaliyeva, Saule Doskozhayeva, Akbota Bugibayeva, Almagul Kurmanova, Diana Sundetova, Merey Abdykassymova and Ulzhas Sagalbayeva
Diagnostics 2025, 15(15), 1903; https://doi.org/10.3390/diagnostics15151903 - 29 Jul 2025
Viewed by 219
Abstract
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, [...] Read more.
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, IL-10, CD14, CD19, CD8, CD4, etc.), cytokines and markers of cardiovascular disease, inflammatory markers (TNF, GM-CSF, CRP), growth and angiogenesis factors (VEGF, PGF), proteins involved in apoptosis and cytotoxicity (perforin, CD95), as well as indices of liver function, kidney function, oxidative stress and heart failure (albumin, cystatin C, N-terminal pro B-type natriuretic peptide (NT-proBNP), superoxide dismutase (SOD), C-reactive protein (CRP), cholinesterase (ChE), cholesterol, and glomerular filtration rate (GFR)). Clinical and behavioural risk factors were also considered: arterial hypertension (AH), previous myocardial infarction (PICS), aortocoronary bypass surgery (CABG) and/or stenting, coronary heart disease (CHD), atrial fibrillation (AF), atrioventricular block (AB block), and diabetes mellitus (DM), as well as lifestyle (smoking, alcohol consumption, physical activity level), education, and body mass index (BMI). Methods: The study included 52 patients aged 65 years and older. Based on the clinical, biochemical and immunological data obtained, a model for predicting the risk of premature cardiovascular aging was developed using mathematical modelling and machine learning methods. The aim of the study was to develop a predictive model allowing for the early detection of predisposition to the development of CVDs and their complications. Numerical methods of mathematical modelling, including Runge–Kutta, Adams–Bashforth and backward-directed Euler methods, were used to solve the prediction problem, which made it possible to describe the dynamics of changes in biomarkers and patients’ condition over time with high accuracy. Results: HLA-DR (50%), CD14 (41%) and CD16 (38%) showed the highest association with aging processes. BMI was correlated with placental growth factor (37%). The glomerular filtration rate was positively associated with physical activity (47%), whereas SOD activity was negatively correlated with it (48%), reflecting a decline in antioxidant defence. Conclusions: The obtained results allow for improving the accuracy of cardiovascular risk prediction, and form personalised recommendations for the prevention and correction of its development. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

17 pages, 2388 KiB  
Review
Interactions Between Prolactin, Intracellular Signaling, and Possible Implications in the Contractility and Pathophysiology of Asthma
by Eduardo Calixto, Juan C. Gomez-Verjan, Marco Cerbón, Valeria Rodríguez-Chávez, Bianca S. Romero-Martínez, María E. Martinez-Enriquez, Luis M. Montaño, Héctor Solís-Chagoyán, Arnoldo Aquino-Gálvez, Nadia A. Rivero-Segura, Georgina González-Ávila, Ana del Carmen Susunaga Notario, Gloria E. Pérez-Figueroa, Verónica Carbajal, Edgar Flores-Soto and Bettina Sommer
Int. J. Mol. Sci. 2025, 26(15), 7332; https://doi.org/10.3390/ijms26157332 - 29 Jul 2025
Viewed by 378
Abstract
Prolactin (PRL) is a hormone primarily associated with lactation, but it plays various roles in both men and women. PRL belongs to the family of peptide hormones, including placental lactogen and growth hormone. Interestingly, PRL is a pleiotropic hormone affecting several physiological and [...] Read more.
Prolactin (PRL) is a hormone primarily associated with lactation, but it plays various roles in both men and women. PRL belongs to the family of peptide hormones, including placental lactogen and growth hormone. Interestingly, PRL is a pleiotropic hormone affecting several physiological and pathological conditions, including fertility. Moreover, several pathophysiological roles have been associated with this hormone, including those of the immune system, autoimmune disorders, asthma, and ageing. Additionally, PRL receptors are ubiquitously expressed in tissues, including the mammary gland, gonads, liver, kidney, adrenal gland, brain, heart, lungs, pituitary gland, uterus, skeletal muscle, skin blood cells, and immune system. Therefore, in the present paper, we cover the potential role that PRL may play in asthma by promoting inflammation and modulating immune responses. The detection of its receptor in lung tissue suggests a direct role in airway smooth muscle contractility through activation of signaling pathways such as JAK2-STAT5, MAPK/ERK1/2, and PI3K/Akt, as well as influencing ionic currents that regulate cell contraction, proliferation, and survival. In this sense, this review aims to explore the potential involvement of PRL in asthma pathophysiology by examining its interactions with intracellular signaling pathways and its possible impact on airway smooth muscle contractility and immune modulation. Full article
(This article belongs to the Special Issue New Insights into Airway Smooth Muscle: From Function to Dysfunction)
Show Figures

Figure 1

16 pages, 2374 KiB  
Article
Soy Isoflavone Supplementation in Sow Diet Enhances Antioxidant Status and Promotes Intestinal Health of Newborn Piglets
by Le Liu, Lizhu Niu, Mengmeng Xu, Qing Yu, Lixin Chen, Hongyu Deng, Wen Chen and Long Che
Animals 2025, 15(15), 2223; https://doi.org/10.3390/ani15152223 - 28 Jul 2025
Viewed by 283
Abstract
This study aimed to explore the effects of dietary supplementation with soy isoflavones (SI) in the later stages of pregnancy on the antioxidant capacity of sows and intestinal health of newborn piglets. Forty sows with similar body weights and parity (average of 1–2 [...] Read more.
This study aimed to explore the effects of dietary supplementation with soy isoflavones (SI) in the later stages of pregnancy on the antioxidant capacity of sows and intestinal health of newborn piglets. Forty sows with similar body weights and parity (average of 1–2 parity) were randomly divided into two groups (n = 20): the control group and SI group (dose: 100 mg/kg of feed). Feeding was started on day 85 of gestation and continued until farrowing. SI supplementation significantly increased the antioxidant levels in the serum of the sows and newborn piglets, placental tissue, and the intestinal tract of the piglets. This observation was indicated by a decreased activity of the oxidative stress marker malondialdehyde (MDA); increased activity of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase; and enhanced total antioxidant capacity. The organ indices of the intestine and liver and the villus height/crypt depth of the jejunum of newborn piglets significantly increased. SI supplementation activated the Nrf2 signaling pathway in the jejunum of neonatal piglets and the expression of placental antioxidant proteins, and it downregulated the expression of the Bax and Caspase 3 apoptotic proteins in the placenta and neonatal piglets. Intestinal and placental barrier integrity was strengthened. For example, ZO-1, Occludin, and Claudin 1 exhibited elevated expression. In conclusion, dietary supplementation with SI enhanced the antioxidant capacity of sows and piglets and improved the health of the placenta and intestinal tract of newborn piglets. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

12 pages, 659 KiB  
Review
HTLV-1 in Pregnancy and Neonatal Health: Evidence, Challenges, and Future Directions
by Ana Clara Assis Alves Emerick, Letícia Castilho Yamanaka, Stefany Silva Pereira, Tammy Caram Sabatine, Taline de Brito Cavalcante, Thamy Cristina Campos, Gustavo Yano Callado, Edward Araujo Júnior, Antonio Braga, Gloria Calagna and Evelyn Traina
Diagnostics 2025, 15(15), 1886; https://doi.org/10.3390/diagnostics15151886 - 28 Jul 2025
Viewed by 324
Abstract
Human T-cell lymphotropic virus (HTLV), a retrovirus associated with severe conditions such as leukemia/lymphoma and myelopathy, exhibits variable global prevalence, with higher rates observed in regions such as northeastern Brazil and sub-Saharan Africa. While intrauterine transmission can occur via viral expression in placental [...] Read more.
Human T-cell lymphotropic virus (HTLV), a retrovirus associated with severe conditions such as leukemia/lymphoma and myelopathy, exhibits variable global prevalence, with higher rates observed in regions such as northeastern Brazil and sub-Saharan Africa. While intrauterine transmission can occur via viral expression in placental tissue and contact with umbilical cord blood, the predominant route is vertical transmission through breastfeeding. Diagnostic testing, particularly serological screening with ELISA and confirmatory methods such as Western blot and PCR, is essential for early detection during pregnancy. The implementation of prenatal screening programs, as seen in Japan and Brazil, has proven effective in reducing vertical transmission by guiding interventions such as breastfeeding cessation in infected mothers. Beyond clinical implications, the psychosocial impact on affected pregnant women highlights the need for an interdisciplinary approach. Although the association between HTLV infection and adverse obstetric outcomes remains controversial, studies suggest increased risks of preterm birth, low birth weight, and other neonatal complications. Given the importance of early diagnosis and prevention, universal prenatal screening protocols represent a critical strategy to reduce viral transmission and its long-term consequences. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

16 pages, 4271 KiB  
Article
Considering Litter Effects in Preclinical Research: Evidence from E17.5 Acid-Sensing Ion Channel 2a Knockout Mice Exposed to Acute Seizures
by Junie P. Warrington, Tyranny Pryor, Maria Jones-Muhammad and Qingmei Shao
Brain Sci. 2025, 15(8), 802; https://doi.org/10.3390/brainsci15080802 - 28 Jul 2025
Viewed by 181
Abstract
Background: The reproducibility of research findings continues to be a challenge in many fields, including neurosciences. It is now required that biological variables such as sex and age be considered in preclinical and clinical research. Rodents are frequently used to model clinical conditions; [...] Read more.
Background: The reproducibility of research findings continues to be a challenge in many fields, including neurosciences. It is now required that biological variables such as sex and age be considered in preclinical and clinical research. Rodents are frequently used to model clinical conditions; however, litter information is rarely presented. Some studies utilize entire litters with each animal treated as an independent sample, while others equally assign animals from each litter to different groups/treatments, and others use averaged data. These methods can yield different results. Methods: This study used different analysis methods to evaluate embryo and placenta weights from E17.5 acid-sensing ion channel 2a (ASIC2a) mice with or without seizure exposure. Results: When each embryo was treated as an individual sample, fetal and placental weight significantly differed following seizures in the ASIC2a heterozygous (+/−) and homozygous (−/−) groups. Differences in fetal weight were driven by females in the ASIC2a+/− group and both sexes in the ASIC2a−/− group. These differences were lost when an average per sex/genotype/litter was used. There was no difference in placental weight when treated individually; however, female ASIC2a−/− placentas weighed less following seizures. This difference was lost with averaged data. ASIC2a−/− fetuses from −/− dams had reduced weights post-seizure exposure. Position on the uterine horn influenced embryo and placental weight. Conclusions: Our results indicate that using full litters analyzed as individual data points should be avoided, as it can lead to Type I errors. Furthermore, studies should account for litter effects and be transparent in their methods and results. Full article
Show Figures

Graphical abstract

19 pages, 2212 KiB  
Review
Antiphospholipid Syndrome—Diagnostic and Methodologic Approach
by Agata Stańczewska, Karolina Szewczyk-Golec and Iga Hołyńska-Iwan
Metabolites 2025, 15(8), 500; https://doi.org/10.3390/metabo15080500 - 27 Jul 2025
Viewed by 521
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by venous and arterial thrombosis and obstetric complications, driven by antiphospholipid antibodies (APLAs). This review synthesizes the latest advancements and current understanding, diagnosis, and treatment of APS. APLAs, including lupus anticoagulant (LAC), anticardiolipin (aCL), and [...] Read more.
Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by venous and arterial thrombosis and obstetric complications, driven by antiphospholipid antibodies (APLAs). This review synthesizes the latest advancements and current understanding, diagnosis, and treatment of APS. APLAs, including lupus anticoagulant (LAC), anticardiolipin (aCL), and anti-β2-glycoprotein I (aβ2-GPI), interfere with coagulation and endothelial function, as well as with placental health. APS can be primary or secondary; it is often associated with systemic autoimmune diseases like lupus. The pathogenesis of APS remains only partially understood. APLAs promote thrombosis through endothelial damage, platelet activation, and inflammatory signaling pathways. Laboratory diagnosis relies on persistent positivity for APLAs and LAC through tests like ELISA and clotting assays, following a three-step confirmation process. New integrated test systems have been introduced to improve standardization. Classification criteria have evolved, with the 2023 EULAR-ACR criteria providing a weighted, domain-based scoring system, enhancing diagnostic precision. Catastrophic APS (CAPS) is a severe, rare manifestation of APS, characterized by multi-organ failure due to rapid, widespread microthrombosis and systemic inflammation, which requires urgent anticoagulation. Seronegative APS is proposed for patients with clinical features of APS but negative standard antibody tests, possibly due to non-criteria antibodies or transient immunosuppression. Treatment primarily involves long-term anticoagulation with vitamin K antagonists; direct oral anticoagulants are generally not recommended. APS diagnosis and management remain complex due to clinical heterogeneity and laboratory challenges. Continued refinement of diagnostic tools and criteria is essential for improving outcomes in this life-threatening condition. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

25 pages, 5521 KiB  
Article
Trypanosoma cruzi Growth Is Impaired by Oleoresin and Leaf Hydroalcoholic Extract from Copaifera multijuga in Human Trophoblast and Placental Explants
by Guilherme de Souza, Clara Peleteiro Teixeira, Joed Pires de Lima Júnior, Marcos Paulo Oliveira Almeida, Marina Paschoalino, Luana Carvalho Luz, Natália Carine Lima dos Santos, Rafael Martins de Oliveira, Izadora Santos Damasceno, Matheus Carvalho Barbosa, Guilherme Vieira Faria, Maria Anita Lemos Vasconcelos Ambrosio, Rodrigo Cassio Sola Veneziani, Jairo Kenupp Bastos, Angelica Oliveira Gomes, Rosiane Nascimento Alves, Carlos Henrique Gomes Martins, Samuel Cota Teixeira, Eloisa Amália Vieira Ferro and Bellisa Freitas Barbosa
Pathogens 2025, 14(8), 736; https://doi.org/10.3390/pathogens14080736 - 25 Jul 2025
Viewed by 269
Abstract
Congenital Chagas disease (CCD) is caused when Trypanosoma cruzi crosses the placental barrier during pregnancy and reaches the fetus, which can lead to serious consequences in the developing fetus. Current treatment is carried out with nifurtimox or benznidazole, but their effectiveness is limited, [...] Read more.
Congenital Chagas disease (CCD) is caused when Trypanosoma cruzi crosses the placental barrier during pregnancy and reaches the fetus, which can lead to serious consequences in the developing fetus. Current treatment is carried out with nifurtimox or benznidazole, but their effectiveness is limited, and they cause side effects, requiring the search for new therapeutic strategies. In this sense, many studies have demonstrated the potential of different compounds of the Copaifera genus in the control of parasitic diseases. Here, we aimed to evaluate the effect of oleoresin (OR) and leaf hydroalcoholic extract (LHE) of Copaifera multijuga on Trypanosoma cruzi infection in human villous trophoblast cells (BeWo line) and human placenta explants. Treatment with both compounds reduced invasion, proliferation, and release of trypomastigotes. Furthermore, OR and LHE affected the trypomastigotes and amastigote morphology, compromising their ability to invade and proliferate in BeWo cells, respectively. Also, treatment with OR decreased ROS production in infected BeWo cells, while LHE induced an increase. In addition, both compounds induced pro-inflammatory and anti-inflammatory cytokine production. In human placental explants, both compounds also decreased T. cruzi infection, in addition to inducing the production of pro-inflammatory cytokines. Thus, both OR and LHE of C. multijuga control T. cruzi infection at the human maternal–fetal interface, highlighting the possible therapeutic potential of these compounds for the treatment of CCD. Full article
Show Figures

Graphical abstract

Back to TopTop