Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = pilocarpine model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5082 KB  
Article
Cytoprotective and Immunomodulatory Properties of Mesenchymal Stem Cell Secretome and Its Effect on Organotypic Hippocampal Cultures in Mouse Model of Temporal Lobe Epilepsy
by Martyna Strzelec, Jan Detka, Marta Kot, Qi Wang, Małgorzata K. Sobocińska, Jens D. Mikkelsen and Marcin Majka
Int. J. Mol. Sci. 2026, 27(1), 265; https://doi.org/10.3390/ijms27010265 - 26 Dec 2025
Viewed by 293
Abstract
Temporal lobe epilepsy (TLE), the most common form of epilepsy, is often resistant to symptomatic treatment and characterized by persistent neuroinflammation, creating an urgent need for therapeutic strategies that can modulate early disease mechanisms. In this study, we examined the ability of the [...] Read more.
Temporal lobe epilepsy (TLE), the most common form of epilepsy, is often resistant to symptomatic treatment and characterized by persistent neuroinflammation, creating an urgent need for therapeutic strategies that can modulate early disease mechanisms. In this study, we examined the ability of the human MSC-derived secretome to influence epileptic hippocampal tissue during the latent phase of epileptogenesis using an ex vivo model. For this purpose, we characterized the MSC-derived secretome using multiplex Luminex profiling, optimized organotypic hippocampal cultures (OHCs) by evaluating cell viability, validated the pilocarpine-induced TLE model both morphologically and electrophysiologically, and investigated the influence of MSC-conditioned medium (MSC-CM) on epileptic hippocampal tissue. Using mouse-derived OHCs, we found that MSC-CM supports the preservation of nestin- and doublecortin (DCX)-positive progenitor cells, reduces NF-κB (p50/p105) levels, decreases LDH release into the culture medium, and modulates IL-6 secretion during the latent phase of epileptogenesis. Taken together, these findings suggest that the MSC-derived secretome exerts cytoprotective and context-dependent immunomodulatory effects, attenuating inflammatory signaling and cellular stress while supporting the preservation of neural progenitor markers in epileptic tissue. These properties highlight a potential phase-specific therapeutic window to modulate pathological processes during the latent phase of epileptogenesis. Full article
Show Figures

Graphical abstract

16 pages, 2593 KB  
Article
Sex-Dependent Effects of Prenatal Stress on Seizure Susceptibility and Neurodegeneration in Neonatal Rats
by Daniel Antonio Cruz-Rojas, Luis Beltrán-Parrazal, Consuelo Morgado-Valle, Grecia Herrera-Meza, Aleph A. Corona-Morales, Joel Martínez-Quiroz, Brenda Martínez-Rojas and María-Leonor López-Meraz
Brain Sci. 2025, 15(11), 1220; https://doi.org/10.3390/brainsci15111220 - 13 Nov 2025
Viewed by 571
Abstract
Background: Prenatal stress affects fetal neurodevelopment and may increase the risk of seizures. This study aimed to analyze the impact of maternal restraint stress during pregnancy on neonatal status epilepticus (SE) in rats. Methods: Pregnant Wistar rats were subjected to restraint stress from gestation [...] Read more.
Background: Prenatal stress affects fetal neurodevelopment and may increase the risk of seizures. This study aimed to analyze the impact of maternal restraint stress during pregnancy on neonatal status epilepticus (SE) in rats. Methods: Pregnant Wistar rats were subjected to restraint stress from gestation days 12 to 20. Offspring were assessed for body weight, size, and corticosterone levels. SE was induced in postnatal day 7 rats using the lithium–pilocarpine model. Neurodegeneration was analyzed using Fluoro-Jade C staining. Results: Maternal restraint stress resulted in reduced weight gain for the mothers and lower body weight and size for their offspring. Stressed neonates exhibited higher levels of serum corticosterone. Male neonates exhibited shorter latency to stage 1 seizures and increased hippocampal neurodegeneration compared with control males, whereas female neonates were largely unaffected. Conclusions: Maternal restraint stress produced only mild, sex-dependent effects on neonatal seizure susceptibility, affecting males but not females, suggesting a limited yet selective influence of prenatal stress on early brain vulnerability. Full article
(This article belongs to the Special Issue From Brain Circuits to Behavior: A Neuroendocrine Perspective)
Show Figures

Figure 1

18 pages, 3419 KB  
Article
Region-Specific Long-Term Transcriptional Changes in the Plasminogen Activation System and Neuroinflammation in the Rat Brain After Status Epilepticus: Association with Depressive-like Behavior
by Anna Karan, Elizaveta Selivanova, Yulia Spivak and Elena Suleymanova
Brain Sci. 2025, 15(10), 1083; https://doi.org/10.3390/brainsci15101083 - 7 Oct 2025
Cited by 1 | Viewed by 658
Abstract
Background/Objectives: Growing evidence implicates that processes mediated by cytokines, growth factors, and the plasminogen activation (PA) system play crucial roles in the pathogenesis of epilepsy and its comorbidities. Methods: This study was carried out on the lithium–pilocarpine rat model of status [...] Read more.
Background/Objectives: Growing evidence implicates that processes mediated by cytokines, growth factors, and the plasminogen activation (PA) system play crucial roles in the pathogenesis of epilepsy and its comorbidities. Methods: This study was carried out on the lithium–pilocarpine rat model of status epilepticus (SE). We investigated mRNA expression patterns of PA system components (tPA/PAI-1/uPAR), pro-inflammatory cytokines (IL-1β/TNF-α), and TGF-β1 in the hippocampus and cortex 7 days (latent period) and 5 months (chronic period) after SE. In the chronic period, rats were subjected to the sucrose preference test for the evaluation of depressive-like behavior. Results: Our results revealed region-specific dysregulation of the PA system that persisted into the chronic period, with tPA (Plat) transiently upregulated in the dorsal hippocampus during the latent phase while uPAR (Plaur) exhibited sustained elevation in the entorhinal cortex into the chronic period. TGF-β1 (Tgfb1) exhibited widespread upregulation across all examined brain regions during the latent period, remaining elevated in the ventral hippocampus 5 months after SE. Notably, latent-phase neuroinflammation showed cortical specificity, with IL-1β (Il1b) expression increased in the frontal cortex while the hippocampal expression remained unchanged. The subgroup of rats displaying anhedonia (reduced sucrose preference) after SE exhibited higher Tgfb1 and Tnf expression in the ventral hippocampus and entorhinal cortex compared to non-anhedonic subgroup of rats and the control group (no SE) in the chronic period. Conclusions: Our findings demonstrate persistent, region-specific transcriptional changes in the PA system following SE, with higher expression of Tgfb1 and Tnf in a subgroup of rats with more severe functional outcome in the chronic period after SE. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

19 pages, 2397 KB  
Article
Effects of Two Boron-Containing Compounds Structurally Related to Topiramate on Three Models of Drug-Induced Seizures in Mice
by Yaqui Valenzuela-Schejtman, Marvin A. Soriano-Ursúa, Elizabeth Estevez-Fregoso, Daniel García-López, R. Ivan Cordova-Chavez, Maricarmen Hernández-Rodríguez, Andrei Biță, Alejandra Contreras-Ramos, Miriam Hernández-Zamora and Eunice D. Farfán-García
Pharmaceuticals 2025, 18(10), 1470; https://doi.org/10.3390/ph18101470 - 30 Sep 2025
Viewed by 1258
Abstract
Background: Epilepsy is a high-burden neurological disorder worldwide, and several sedative drugs are used as therapy. Topiramate is among the more recent drugs shown to be effective in some patients, although its benefits are limited. Two carbohydrate derivatives, FB1 (from D-fructose) and AB1 [...] Read more.
Background: Epilepsy is a high-burden neurological disorder worldwide, and several sedative drugs are used as therapy. Topiramate is among the more recent drugs shown to be effective in some patients, although its benefits are limited. Two carbohydrate derivatives, FB1 (from D-fructose) and AB1 (from D-arabinose), as well as phenylboronic acid, were recently reported as sedative and safe agents in mice. Their sedative properties and structural similarity to topiramate suggest potential antiseizure activity. Objective: The objective of this study was to evaluate the antiseizure potential of FB1 and AB1. Methods: Boron-containing compounds were administered to mice with seizures induced by pentylenetetrazol (a GABA-A receptor antagonist), 4-aminopyridine (a non-selective K+ channel blocker), or pilocarpine (a muscarinic agonist) to assess efficacy across models and explore potential mechanisms of action. Neuronal and glial toxicity was evaluated both in vitro and in vivo. Results: AB1 reduced seizure activity after intraperitoneal administration, whereas FB1 did not exhibit anticonvulsant effects, although it modified motor performance and limited neuronal loss. The effect of AB1 was comparable to that of topiramate across all three seizure models. Docking studies suggested that these compounds can interact with GABA-A (chloride), NMDA (glutamate), calcium, and potassium channels. Toxicity assays indicated that the concentrations required to affect neurons or glial cells were ≥300 µM, supporting the safety of these compounds. Conclusions: This preliminary evaluation demonstrates the antiseizure potential of AB1. Further experimental studies are needed to clearly establish its mechanism(s) of action. Full article
Show Figures

Figure 1

17 pages, 3927 KB  
Article
Spontaneous Seizure Outcomes in Mice Using an Improved Version of the Pilocarpine Model of Temporal Lobe Epilepsy
by Ronald P. Gaykema, Madison J. Failor, Aleksandra Maciejczuk, Magda Pikus, Mariia Oliinyk, Maggie B. Ellison, Amir A. Behrooz, Kiran Singh, John M. Williamson and Edward Perez-Reyes
Int. J. Mol. Sci. 2025, 26(19), 9540; https://doi.org/10.3390/ijms26199540 - 29 Sep 2025
Viewed by 1527
Abstract
Temporal lobe epilepsy (TLE) is a debilitating disorder that affects millions of people worldwide and is difficult to treat with medicines. There has been little progress in the development of novel therapies for these patients because of the lack of suitable animal models. [...] Read more.
Temporal lobe epilepsy (TLE) is a debilitating disorder that affects millions of people worldwide and is difficult to treat with medicines. There has been little progress in the development of novel therapies for these patients because of the lack of suitable animal models. Current rodent models of TLE use chemoconvulsants or electrical stimulation to induce status epilepticus, which evolves into chronic epilepsy with spontaneous recurring seizures. These models have face validity in human TLE as they share similarities with seizure onset in the hippocampus, EEG patterns, tonic–clonic convulsions behavior, and hippocampal sclerosis. Unfortunately, seizure frequencies are so variable that they hinder drug testing. The ideal model for screening epilepsy therapies would have spontaneous seizure frequencies that are greater than two per day, little-to-no seizure-free days, and would maintain these features for more than 4 weeks. This study describes a series of improvements to the mouse pilocarpine TLE model. First, a pharmacokinetic model was developed to guide pilocarpine dosing. Second, induction was combined with EEG monitoring, allowing for real-time monitoring of pilocarpine-induced EEG discharges and electrographic seizures that precede behavioral manifestations. Third, strains of mice were identified that withstand pilocarpine-induced status epilepticus and reliably develop spontaneous recurring seizures. The pilocarpine model was improved by lowering mortality and increasing the fraction of mice that developed spontaneous seizures and had seizure frequencies that are amenable to drug screening. Future studies are required to identify the ideal mouse strain for drug screening and validate the response to known anti-epileptic drugs. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy—3rd Edition)
Show Figures

Figure 1

35 pages, 10155 KB  
Article
Fenofibrate as a PPARα Agonist Modulates Neuroinflammation and Glutamate Receptors in a Rat Model of Temporal Lobe Epilepsy: Region-Specific Effects and Behavioral Outcomes
by Anna A. Kovalenko, Maria V. Zakharova, Olga E. Zubareva, Alexander P. Schwarz, Yury A. Skorik and Aleksey V. Zaitsev
Int. J. Mol. Sci. 2025, 26(18), 9054; https://doi.org/10.3390/ijms26189054 - 17 Sep 2025
Cited by 1 | Viewed by 1248
Abstract
Temporal lobe epilepsy (TLE) remains pharmacoresistant in 30–40% of patients. Peroxisome proliferator-activated receptor alpha (PPARα) agonists like fenofibrate exhibit anti-inflammatory and neuroprotective properties, but their region-specific effects during epileptogenesis and on behavioral comorbidities are unknown. We investigated fenofibrate (100 mg/kg, 7 days) in [...] Read more.
Temporal lobe epilepsy (TLE) remains pharmacoresistant in 30–40% of patients. Peroxisome proliferator-activated receptor alpha (PPARα) agonists like fenofibrate exhibit anti-inflammatory and neuroprotective properties, but their region-specific effects during epileptogenesis and on behavioral comorbidities are unknown. We investigated fenofibrate (100 mg/kg, 7 days) in the lithium-pilocarpine rat model during the latent phase. Fenofibrate (1) reduced anxiety-like behaviors and improved exploratory deficits; (2) decreased plasma short-chain fatty acids (butyric, pentanoic, hexanoic acids); (3) exerted region-specific modulation of glutamate receptors: restored N-methyl-D-aspartate receptor (NMDAR)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit gene expression in temporal cortex but failed to reverse and further exacerbated the downregulation of AMPAR subunits in the dorsal hippocampus; (4) prevented the upregulation of cortical neuroinflammation markers (reduced Nlrp3, Il1rn); and (5) enhanced the A2 astrocyte marker Ptx3 in the hippocampus while reducing the M2 microglial marker Arg1 in the temporal cortex. No effects on astrogliosis (Gfap), microgliosis (Aif1), or trophic factors (Bdnf, Tgfb1) were observed. This first comprehensive study demonstrates that fenofibrate differentially modulates neuroinflammation and synaptic plasticity across brain regions during epileptogenesis, providing behavioral benefits but highlighting potential hippocampal drawbacks. Its PPARα-mediated actions support further investigation as a complementary strategy for TLE, pending optimization of dosing/timing to mitigate regional disparities. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy—3rd Edition)
Show Figures

Figure 1

20 pages, 4318 KB  
Article
IDO Activation Affects BDNF/TrkB Signaling Pathway, Oxidative Stress, and Mitochondrial Enzymatic Activities in Temporal Lobe Epilepsy
by Jingwen Xu, Liping Wei, Junling Fu, Ziting Kong and Lun Cai
Curr. Issues Mol. Biol. 2025, 47(9), 764; https://doi.org/10.3390/cimb47090764 - 16 Sep 2025
Cited by 1 | Viewed by 1105
Abstract
Indoleamine 2,3-dioxygenase (IDO) activation by seizures elevates toxic tryptophan metabolites linked to seizure exacerbation. Brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) signaling, oxidative stress, and mitochondrial respiratory chain complex dysfunction contribute to temporal lobe epilepsy (TLE), but their regulatory links remain unclear. Male [...] Read more.
Indoleamine 2,3-dioxygenase (IDO) activation by seizures elevates toxic tryptophan metabolites linked to seizure exacerbation. Brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) signaling, oxidative stress, and mitochondrial respiratory chain complex dysfunction contribute to temporal lobe epilepsy (TLE), but their regulatory links remain unclear. Male Kunming mice were grouped into Control, Control + 1-Methyl-DL-tryptophan (1-MT), TLE, and TLE + 1-MT. TLE was induced with 300 mg/kg pilocarpine. Two weeks after modeling, 1-MT (50 mg/kg) was administered twice daily for two weeks in 1-MT groups. Assessments included video monitoring to record seizure frequency and duration; Nissl and Fluoro-Jade B (FJB) staining to evaluate neuronal damage; real-time quantitative PCR (qRT-PCR) and Western blot to detect IDO, BDNF, and TrkB expression; assays for the following oxidative stress markers: malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT); and detection of mitochondrial complex I/IV activities. Results showed TLE mice had significantly increased IDO expression, BDNF/TrkB over-activation, elevated oxidative stress, impaired mitochondrial complex I/IV activities, severe neuronal damage, and increased seizure frequency/duration. 1-MT intervention reversed all these pathological changes, restoring levels to near-control status. This indicates IDO activation promotes TLE progression, which is associated with modulation of the BDNF/TrkB signaling pathway, exacerbation of oxidative stress, and impairment of mitochondrial complex I/IV activities—supporting IDO as a potential therapeutic target for TLE. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 2932 KB  
Article
KMO Inhibition Improves Seizures and Depressive-like Behaviors Without Aggravating Cognitive Impairment in Epileptic Mice
by Jingwen Xu, Yifen Huang, Liping Wei, Ziting Kong, Junling Fu and Lun Cai
Curr. Issues Mol. Biol. 2025, 47(9), 705; https://doi.org/10.3390/cimb47090705 - 1 Sep 2025
Viewed by 1179
Abstract
The objective of this study is to investigate the effects of kynurenine-3-monooxygenase (KMO) inhibition on seizures, depressive-like behaviors, and cognitive functions in epileptic mice, and to elucidate its impact on the kynurenine metabolic pathway. Male Kunming (KM) mice were randomized into four groups: [...] Read more.
The objective of this study is to investigate the effects of kynurenine-3-monooxygenase (KMO) inhibition on seizures, depressive-like behaviors, and cognitive functions in epileptic mice, and to elucidate its impact on the kynurenine metabolic pathway. Male Kunming (KM) mice were randomized into four groups: the epileptic model (EM), epileptic model treated with Ro 61-8048 (RM), healthy control (HC), and healthy control treated with Ro 61-8048 (RC). Chronic epilepsy was induced in the EM and RM groups via an intraperitoneal pilocarpine injection (225 mg/kg). The RM and RC groups received Ro 61-8048 (42 mg/kg). The seizure frequency was monitored continuously using a 24 h video recording. Depressive-like behaviors were assessed with the sucrose preference test (SPT) and forced swim test (FST); cognitive function was evaluated with the Y-maze test and open field test (OFT). The concentrations of kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA) were determined by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Compared to the EM group, the RM group exhibited a reduced seizure frequency and severity (p < 0.05), ameliorated depressive-like behaviors (increased sucrose preference in SPT, and decreased immobility time in FST, p < 0.05), and enhanced cognitive performance (elevated spontaneous alternation and reduced non-sequential alternation in a Y-maze, and increased time and distance in a central open field area, p < 0.05). Mechanistically, compared to the RC group, the RM group showed an increased KYNA/KYN ratio, and a decreased 3-HK/KYN ratio (p < 0.05) KMO inhibition rectifies the neurotoxic–neuroprotective imbalance in the kynurenine pathway (downregulating the 3-HK/3-HANA ratio and upregulating the KYNA/KYN ratio), thereby decreasing seizures, depressive-like behaviors, and cognitive deficits. These findings suggest KMO inhibition is a potential therapeutic strategy for epilepsy-associated depression. A further investigation of its mechanisms and clinical applicability is warranted. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

23 pages, 4058 KB  
Article
Inhibition of Astrocyte Reactivity by Mdivi-1 After Status Epilepticus in Rats Exacerbates Microglia-Mediated Neuroinflammation and Impairs Limbic–Cortical Glucose Metabolism
by Francisca Gómez-Oliver, Rubén Fernández de la Rosa, Mirjam Brackhan, Pablo Bascuñana, Miguel Ángel Pozo and Luis García-García
Biomolecules 2025, 15(9), 1242; https://doi.org/10.3390/biom15091242 - 27 Aug 2025
Cited by 2 | Viewed by 1177
Abstract
The lithium–pilocarpine rat model of status epilepticus (SE) is a well-established paradigm for studying epileptogenesis. Astrocyte reactivity has been implicated in modulating seizure susceptibility and neuroinflammation, yet its functional role in early epileptogenesis remains unclear. Herein, we evaluated the effects of Mdivi-1, a [...] Read more.
The lithium–pilocarpine rat model of status epilepticus (SE) is a well-established paradigm for studying epileptogenesis. Astrocyte reactivity has been implicated in modulating seizure susceptibility and neuroinflammation, yet its functional role in early epileptogenesis remains unclear. Herein, we evaluated the effects of Mdivi-1, a pharmacological inhibitor of mitochondrial fission protein Drp1, for its ability to modulate astrocytic mitochondrial dynamics and for its reported preventive neuroprotective properties. Mdivi-1 was administered shortly after SE onset, and we assessed brain glucose metabolism using [18F]FDG PET, alongside histological markers of neurodegeneration, astrocyte reactivity, and microglial activation, at 3 days post-SE. As expected, SE induced widespread brain hypometabolism measured by a VOI analysis, hippocampal neurodegeneration, and glial activation. Post-SE Mdivi-1 administration reduced hippocampal astrogliosis but neither conferred neuroprotection nor rescued glucose metabolism. On the contrary, Mdivi-1 exacerbated limbic–cortical hypometabolism when evaluated by SPM and normalized to whole brain tracer uptake and microglia-mediated neuroinflammation. These findings challenge the assumption that early astrocyte inhibition confers neuroprotection. Furthermore, early suppression of astrocyte reactivity after the damage has occurred may shift the neuroinflammatory response toward maladaptive microglial activation. Thus, while Mdivi-1 holds promise as a preventive neuroprotective agent, its use post-SE may have unintended adverse effects on the brain’s response to SE. Full article
(This article belongs to the Special Issue Biomolecular Approaches and Drugs for Neurodegeneration—2nd Edition)
Show Figures

Figure 1

12 pages, 810 KB  
Opinion
Pharmacological Modulation of Pupil Size in Presbyopia: Optical Modeling and Clinical Implications
by Pablo De Gracia and Andrew D. Pucker
J. Clin. Med. 2025, 14(17), 6040; https://doi.org/10.3390/jcm14176040 - 26 Aug 2025
Viewed by 2405
Abstract
Presbyopia is a ubiquitous age-related condition characterized by reduced near focusing ability due to lenticular stiffening. Pharmacologic agents such as pilocarpine have re-emerged as a less-invasive treatment option by inducing miosis and thereby enhancing depth of focus. However, the optimal pharmacologically induced pupil [...] Read more.
Presbyopia is a ubiquitous age-related condition characterized by reduced near focusing ability due to lenticular stiffening. Pharmacologic agents such as pilocarpine have re-emerged as a less-invasive treatment option by inducing miosis and thereby enhancing depth of focus. However, the optimal pharmacologically induced pupil size that balances improved near vision with sufficient retinal illuminance remains undetermined. In this work, we present for the first time a direct integration of advanced theoretical modeling with a systematic synthesis of clinical trial outcomes to define the optimal target pupil size for pharmacologic presbyopia correction. We modeled visual performance using the Visual Strehl Ratio of the Optical Transfer Function (VSOTF) and convolved images of optotypes across a range of pupil diameters from 1.5 mm to 3.5 mm. This combined optical–clinical approach allowed us to quantitatively compare modeled image quality and depth of focus predictions with real-world clinical efficacy data from pilocarpine-based interventions. Simulations showed that smaller pupil sizes (1.5–2.5 mm) significantly extended depth of focus compared to standard multifocal optics while maintaining image quality within acceptable limits. These findings align with clinical trials of pilocarpine formulations, which commonly achieve post-treatment pupil diameters in the 2.0–2.5 mm range and are associated with clinically meaningful gains in near vision. Our analysis uniquely demonstrates that these clinically achieved pupil sizes closely match the theoretically optimal 2.0–3.0 mm range identified in our modeling, strengthening the evidence base for drug design and patient selection. These results reinforce the role of pharmacologically controlled pupil size as a central target in presbyopia management. By explicitly linking predictive optical modeling with aggregated clinical outcomes, we introduce a novel framework to guide future pharmacologic development strategies and refine clinical counseling in the emerging era of presbyopia therapeutics. Full article
Show Figures

Figure 1

15 pages, 2053 KB  
Article
Effects of Phenosanic Acid in Rat Seizure Models
by Victor A. Aniol, Natalia A. Lazareva, Yulia V. Moiseeva, Olga A. Nedogreeva, Margarita R. Novikova, Pavel A. Kostryukov, Mikhail V. Onufriev and Natalia V. Gulyaeva
Int. J. Mol. Sci. 2025, 26(12), 5668; https://doi.org/10.3390/ijms26125668 - 13 Jun 2025
Cited by 1 | Viewed by 1256
Abstract
Oxidative stress and membrane damage are believed to be principally involved in the pathogenesis of epilepsy. This study aimed to assess the effects of phenosanic acid (PA), an antioxidant and membrane protector, in acute pentylenetetrazole and chronic lithium–pilocarpine seizure models in male Wistar [...] Read more.
Oxidative stress and membrane damage are believed to be principally involved in the pathogenesis of epilepsy. This study aimed to assess the effects of phenosanic acid (PA), an antioxidant and membrane protector, in acute pentylenetetrazole and chronic lithium–pilocarpine seizure models in male Wistar rats. PA was administered acutely (ip, 120 mg/kg BW ip, or 240 mg/kg BW per os) or chronically (80 mg/kg BW/day per os). Indices of free radical oxidation, the hypothalamo–pituitary–adrenocortical axis, and the nitrergic system were assessed in blood and brain regions. Morphological analysis of the hippocampus was performed in the lithium–pilocarpine model. PA exerted an acute anti-seizure effect in the pentylenetetrazole model. In the lithium–pilocarpine model, acute PA treatment decreased the death rate and corticosterone levels in the neocortex and brainstem. In contrast, the level of free radical oxidation products reacting with thiobarbituric acid declined in the brain stem in response to chronic PA treatment. In the lithium–pilocarpine model, the neuronal density in the dentate gyrus was elevated, and the proliferating cell nuclear antigen positive (PCNA+) cell counts in the subgranular zone did not differ between groups. Doublecortin positive (DCX+) cell count was significantly increased after chronic PA treatment. PA-induced reduction in mortality in the lithium–pilocarpine epilepsy model may be partially mediated by decreasing the lipid peroxidation and corticosterone levels in different brain regions. Chronic PA treatment may affect adult hippocampal neurogenesis by either prolonging the action of factors that increase neurogenesis after status epilepticus or by slowing down the neuronal differentiation rate. These data suggest that PA may be a disease-modifying AED able to hamper epileptogenesis. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy—3rd Edition)
Show Figures

Figure 1

13 pages, 1349 KB  
Article
TMEM14A Gene Affects Hippocampal Sclerosis in Mesial Temporal Lobe Epilepsy
by Joonho Kim, Soomi Cho, Kyoung Hoon Jeong, Woo-Seok Ha, Kyung Min Kim, Min Kyung Chu, Ji Hyun Lee, Sangwoo Kim and Won-Joo Kim
J. Clin. Med. 2025, 14(11), 3810; https://doi.org/10.3390/jcm14113810 - 29 May 2025
Viewed by 1569
Abstract
Background: Hippocampal sclerosis (HS) is a hallmark of mesial temporal lobe epilepsy (MTLE). However, genetic studies on MTLE patients with HS (MTLE-HS) remain limited, especially in East Asian populations. This study aimed to identify genetic variants associated with MTLE-HS and elucidate their [...] Read more.
Background: Hippocampal sclerosis (HS) is a hallmark of mesial temporal lobe epilepsy (MTLE). However, genetic studies on MTLE patients with HS (MTLE-HS) remain limited, especially in East Asian populations. This study aimed to identify genetic variants associated with MTLE-HS and elucidate their biological relevance through integrative genomic and transcriptomic analyses. Methods: We conducted a genome-wide association study (GWAS) on 157 Korean epilepsy patients, including 52 MTLE-HS subjects and 105 non-acquired focal epilepsy individuals without HS as controls. The splicing and expression quantitative trait locus (sQTL and eQTL, respectively) effects of significant variants were analyzed using GTEx datasets. Transcriptomic data from the hippocampi of MTLE-HS subjects and an epilepsy mouse model were examined to assess TMEM14A expression. Gene correlation enrichment analysis was performed to investigate potential associations with epilepsy-related phenotypes. Results: The GWAS identified rs6924849, located downstream of TMEM14A, as significantly associated with MTLE-HS. The sQTL analysis revealed that rs6924849 induces abnormal TMEM14A splicing in hippocampal tissue. Transcriptomic analyses showed reduced TMEM14A expression in MTLE-HS hippocampi, while mice with pilocarpine-induced epilepsy exhibited a transient increase in TMEM14A expression during the acute phase post-status epilepticus. Gene correlation enrichment analyses linked TMEM14A to seizure-related phenotypes in both humans and mice. Conclusions: This study identifies rs6924849 as a novel genetic variant associated with MTLE-HS in an East Asian population. The dysfunctional splicing and altered expression of TMEM14A may contribute to the neuronal loss characteristic of HS, as TMEM14A regulates apoptosis. These findings emphasize the potential role of TMEM14A in MTLE-HS pathogenesis from genomic and transcriptomic perspectives. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

17 pages, 20838 KB  
Article
Dorsal Striatum Is Compromised by Status Epilepticus Induced in Immature Developing Animal Experimental Model of Mesial Temporal Lobe Epilepsy
by Azzat Al-Redouan, Aaron Busch, Martin Salaj, Hana Kubova and Rastislav Druga
Int. J. Mol. Sci. 2025, 26(7), 3349; https://doi.org/10.3390/ijms26073349 - 3 Apr 2025
Cited by 3 | Viewed by 950
Abstract
This study investigated the striatopallidal complex’s involvement in status epilepticus (SE) caused by morphological neurodegenerative changes in a post-natal immature developing brain in a lithium−pilocarpine male Wistar albino rat model of mesial temporal lobe epilepsy. One hundred experimental pups were grouped by age [...] Read more.
This study investigated the striatopallidal complex’s involvement in status epilepticus (SE) caused by morphological neurodegenerative changes in a post-natal immature developing brain in a lithium−pilocarpine male Wistar albino rat model of mesial temporal lobe epilepsy. One hundred experimental pups were grouped by age as follows: 12, 15, 18, 21, and 25 days. SE was induced by lithium−pilocarpine. Brain sections were microscopically examined by Fluoro-Jade B fluorescence stain at intervals of 4, 12, 24, and 48 h and 1 week after SE. Each interval was composed of four induced SE pups and a control. Fluoro-Jade B positive neurons in the dorsal striatum (DS) were screened and plotted on stereotaxic rat brain maps. The DS showed consistent neuronal damage in pups aged 18, 21, and 25 days. The peak of the detected damage was observed in pups aged 18 days, and the start of the morphological sequela was observed 12 h post SE. The neuronal damage in the DS was distributed around its periphery, extending medially. The damaged neurons showed intense Fluoro-Jade B staining at the intervals of 12 and 24 h post SE. SE neuronal damage was evidenced in the post-natal developing brain selectively in the DS and was age-dependent with differing morphological sequela. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

16 pages, 1141 KB  
Article
Using Immunoliposomes as Carriers to Enhance the Therapeutic Effectiveness of Macamide N-3-Methoxybenzyl-Linoleamide
by Karin J. Vera-López, María Aranzamendi-Zenteno, Gonzalo Davila-Del-Carpio and Rita Nieto-Montesinos
Neurol. Int. 2025, 17(3), 38; https://doi.org/10.3390/neurolint17030038 - 3 Mar 2025
Cited by 3 | Viewed by 1984
Abstract
Background/Objectives: Epilepsy is one of the most common chronic neurological disorders, characterized by alterations in neuronal electrical activity that result in recurrent seizures and involuntary body movements. Anticonvulsants are the primary treatment for this condition, helping patients improve their quality of life. However, [...] Read more.
Background/Objectives: Epilepsy is one of the most common chronic neurological disorders, characterized by alterations in neuronal electrical activity that result in recurrent seizures and involuntary body movements. Anticonvulsants are the primary treatment for this condition, helping patients improve their quality of life. However, the development of new drugs with fewer side effects and greater economic accessibility remains a key focus in nanomedicine. Macamides, secondary metabolites derived from Maca (Lepidium meyenii), represent a promising class of novel drugs with diverse therapeutic applications, particularly in the treatment of neurological disorders. Methods: In this study, we optimized the potential of the macamide N-3-methoxybenzyl-linoleamide (3-MBL) as an anticonvulsant agent through its encapsulation in PEGylated liposomes conjugated with OX26 F(ab′)2 fragments. Results: These immunoliposomes exhibited a size of 120.52 ± 9.46 nm and a zeta potential of −8.57 ± 0.80 mV. Furthermore, in vivo tests using a pilocarpine-induced status epilepticus model revealed that the immunoliposomes provided greater efficacy against epileptic seizures compared to the free form of N-3-methoxybenzyl-linoleamide at the same dose. Notably, the observed anticonvulsant effect was comparable to that of carbamazepine, a traditional FDA-approved antiepileptic drug. Conclusions: This pioneering work employs liposomal nanocarriers to deliver macamides to the brain, aiming to set a new standard for the use of modified liposomes in anticonvulsant epilepsy treatment. Full article
Show Figures

Figure 1

27 pages, 3320 KB  
Article
Urinary Metabolic Profiling During Epileptogenesis in Rat Model of Lithium–Pilocarpine-Induced Temporal Lobe Epilepsy
by Fatma Merve Antmen, Emir Matpan, Ekin Dongel Dayanc, Eylem Ozge Savas, Yunus Eken, Dilan Acar, Alara Ak, Begum Ozefe, Damla Sakar, Ufuk Canozer, Sehla Nurefsan Sancak, Ozkan Ozdemir, Osman Ugur Sezerman, Ahmet Tarık Baykal, Mustafa Serteser and Guldal Suyen
Biomedicines 2025, 13(3), 588; https://doi.org/10.3390/biomedicines13030588 - 27 Feb 2025
Viewed by 2057
Abstract
Background/Objectives: Temporal lobe epilepsy (TLE) often develops following an initial brain injury, where specific triggers lead to epileptogenesis—a process transforming a healthy brain into one prone to spontaneous, recurrent seizures. Although electroencephalography (EEG) remains the primary diagnostic tool for epilepsy, it cannot [...] Read more.
Background/Objectives: Temporal lobe epilepsy (TLE) often develops following an initial brain injury, where specific triggers lead to epileptogenesis—a process transforming a healthy brain into one prone to spontaneous, recurrent seizures. Although electroencephalography (EEG) remains the primary diagnostic tool for epilepsy, it cannot predict the risk of epilepsy after brain injury. This limitation highlights the need for biomarkers, particularly those measurable in peripheral samples, to assess epilepsy risk. This study investigated urinary metabolites in a rat model of TLE to identify biomarkers that track epileptogenesis progression across the acute, latent, and chronic phases and elucidate the underlying mechanisms. Methods: Status epilepticus (SE) was induced in rats using repeated intraperitoneal injections of lithium chloride–pilocarpine hydrochloride. Urine samples were collected 48 h, 1 week, and 6 weeks after SE induction. Nuclear magnetic resonance spectrometry was used for metabolomic analysis, and statistical evaluations were performed using MetaboAnalyst 6.0. Differences between epileptic and control groups were represented using the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Volcano plot analysis identified key metabolic changes, applying a fold-change threshold of 1.5 and a p-value < 0.05. Results: The acute phase exhibited elevated levels of acetic acid, dihydrothymine, thymol, and trimethylamine, whereas glycolysis and tricarboxylic acid cycle metabolites, including pyruvic and citric acids, were reduced. Both the acute and latent phases showed decreased theobromine, taurine, and allantoin levels, with elevated 1-methylhistidine in the latent phase. The chronic phase exhibited reductions in pimelic acid, tiglylglycine, D-lactose, and xanthurenic acid levels. Conclusions: These findings highlight stage-specific urinary metabolic changes in TLE, suggesting distinct metabolites as biomarkers for epileptogenesis and offering insights into the mechanisms underlying SE progression. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

Back to TopTop