Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (402)

Search Parameters:
Keywords = piglet diarrhea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3048 KiB  
Article
Hydrogen-Rich Water Attenuates Diarrhea in Weaned Piglets via Oxidative Stress Alleviation
by Pengfei Zhang, Jingyu Yang, Zhuoda Lu, Qianxi Liang, Xing Yang, Junchao Wang, Jinbiao Guo and Yunxiang Zhao
Biology 2025, 14(8), 997; https://doi.org/10.3390/biology14080997 (registering DOI) - 5 Aug 2025
Abstract
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the [...] Read more.
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the effects of HRW on weaned piglets, specifically investigating its impact on growth performance, diarrhea incidence, antioxidant function, intestinal morphology, gut microbiota, and hepatic metabolites. The results demonstrate that HRW significantly increased the average daily feed intake and significantly reduced the diarrhea rate in weaned piglets. Analysis of serum oxidative stress indicators revealed that HRW significantly elevated the activities of total antioxidant capacity and total superoxide dismutase while significantly decreasing malondialdehyde concentration. Assessment of intestinal morphology showed that HRW significantly increased the villus height to crypt depth ratio in the duodenum, jejunum, and ileum. Microbial analysis indicated that HRW significantly increased the abundance of Prevotella in the colon. Furthermore, HRW increased the abundance of beneficial bacteria, such as Akkermansia, in the jejunum and cecum, while concurrently reducing the abundance of harmful bacteria like Escherichia. Hepatic metabolite profiling revealed that HRW significantly altered the metabolite composition in the liver of weaned piglets. Differentially abundant metabolites were enriched in oxidative stress-related KEGG pathways, including ABC transporters; pyruvate metabolism; autophagy; FoxO signaling pathway; glutathione metabolism; ferroptosis; and AMPK signaling pathways. In conclusion, HRW alleviates diarrhea and promotes growth in weaned piglets by enhancing antioxidant capacity. These findings provide a scientific foundation for the application of HRW in swine production and serve as a reference for further exploration into the mechanisms underlying HRW’s effects on animal health and productivity. Full article
Show Figures

Figure 1

13 pages, 1778 KiB  
Article
Preparation and Characterization of Monoclonal Antibodies Against the Porcine Rotavirus VP6 Protein
by Botao Sun, Dingyi Mao, Jing Chen, Xiaoqing Bi, Linke Zou, Jishan Bai, Rongchao Liu, Ping Hao, Qi Wang, Linhan Zhong, Panchi Zhang and Bin Zhou
Vet. Sci. 2025, 12(8), 710; https://doi.org/10.3390/vetsci12080710 - 29 Jul 2025
Viewed by 269
Abstract
Porcine Rotavirus (PoRV), a predominant causative agent of neonatal diarrhea in piglets, shares substantial genetic homology with human rotavirus and represents a considerable threat to both public health and the global swine industry in the absence of specific antiviral interventions. The VP6 protein, [...] Read more.
Porcine Rotavirus (PoRV), a predominant causative agent of neonatal diarrhea in piglets, shares substantial genetic homology with human rotavirus and represents a considerable threat to both public health and the global swine industry in the absence of specific antiviral interventions. The VP6 protein, an internal capsid component, is characterized by exceptional sequence conservation and robust immunogenicity, rendering it an ideal candidate for viral genotyping and vaccine development. In the present study, the recombinant plasmid pET28a(+)-VP6 was engineered to facilitate the high-yield expression and purification of the VP6 antigen. BALB/c mice were immunized to generate monoclonal antibodies (mAbs) through hybridoma technology, and the antigenic specificity of the resulting mAbs was stringently validated. Subsequently, a panel of truncated protein constructs was designed to precisely map linear B-cell epitopes, followed by comparative conservation analysis across diverse PoRV strains. Functional validation demonstrated that all three mAbs exhibited high-affinity binding to VP6, with a peak detection titer of 1:3,000,000 and exclusive specificity toward PoRVA. These antibodies effectively recognized representative genotypes such as G3 and X1, while exhibiting no cross-reactivity with unrelated viral pathogens; however, their reactivity against other PoRV serogroups (e.g., types B and C) remains to be further elucidated. Epitope mapping identified two novel linear B-cell epitopes, 128YIKNWNLQNR137 and 138RQRTGFVFHK147, both displaying strong sequence conservation among circulating PoRV strains. Collectively, these findings provide a rigorous experimental framework for the functional dissection of VP6 and reinforce its potential as a valuable diagnostic and immunoprophylactic target in PoRV control strategies. Full article
Show Figures

Figure 1

19 pages, 13401 KiB  
Article
ShenQiGan Extract Repairs Intestinal Barrier in Weaning-Stressed Piglets by Modulating Inflammatory Factors, Immunoglobulins, and Short-Chain Fatty Acids
by Rongxia Guo, Chenghui Jiang, Yanlong Niu, Chun Niu, Baoxia Chen, Ziwen Yuan, Yongli Hua and Yanming Wei
Animals 2025, 15(15), 2218; https://doi.org/10.3390/ani15152218 - 28 Jul 2025
Viewed by 237
Abstract
Weaning stress damages the intestines and disrupts the intestinal barrier in piglets, which significantly impacts the pig farming industry’s economy. We aimed to examine the effects of ShenQiGan extract (CAG) on intestinal barrier function and explore the underlying molecular mechanisms in stress-challenged weaned [...] Read more.
Weaning stress damages the intestines and disrupts the intestinal barrier in piglets, which significantly impacts the pig farming industry’s economy. We aimed to examine the effects of ShenQiGan extract (CAG) on intestinal barrier function and explore the underlying molecular mechanisms in stress-challenged weaned piglets. The experimental design involved 80 weaned piglets aged 28 days (with an average body weight of 7.78 ± 0.074 kg) that were randomly allocated into four groups: Control, LCAG (0.1% CAG), MCAG (0.5% CAG), and HCAG (1.0% CAG). After a 28-day trial period, the growth performance and incidence of diarrhea in piglets were evaluated. CAG increased the average daily gain of weaned piglets, reduced the feed-to-gain ratio, and decreased the incidence of diarrhea. It significantly lowered serum inflammatory cytokine levels while elevating immunoglobulin levels. The supplement notably enhanced concentrations of acetic acid, propionic acid, butyric acid, and isobutyric acid. Furthermore, CAG demonstrated intestinal morphology restoration and upregulation of tight junction proteins and MUC2 protein expression in jejunum. At the mRNA level, it significantly upregulated the expression of Occludin, Claudin1, and MUC2 genes. CAG improves growth performance and mitigates diarrhea in weaned piglets by enhancing intestinal barrier integrity, modulating systemic inflammatory responses, elevating immunoglobulin levels, and promoting short-chain fatty acids (SCFAs) production in the cecum. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

16 pages, 3054 KiB  
Article
Naringenin Inhibits Enterotoxigenic Escherichia coli-Induced Ferroptosis via Targeting HSP90 in IPEC-J2 Cells
by Pengxin Jiang, Kangping Liu, Yanan Cui, Puyu Liu, Xutao Wang, Zijuan Hou, Jiamei Cui, Ning Chen, Jinghui Fan, Jianguo Li, Yuzhu Zuo and Yan Li
Antioxidants 2025, 14(8), 914; https://doi.org/10.3390/antiox14080914 - 25 Jul 2025
Viewed by 324
Abstract
Enterotoxigenic Escherichia coli (ETEC) leads to severe diarrhea in piglets. Naringenin (Nar), a natural flavonoid compound, is known for its antibacterial and anti-antioxidant properties. However, the protective effects of Nar against ETEC-induced diarrhea have not been reported yet. This study investigated the protective [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) leads to severe diarrhea in piglets. Naringenin (Nar), a natural flavonoid compound, is known for its antibacterial and anti-antioxidant properties. However, the protective effects of Nar against ETEC-induced diarrhea have not been reported yet. This study investigated the protective mechanisms of Nar against ETEC infection in porcine intestinal epithelial cells (IPEC-J2). ETEC infection induced oxidative stress and ferroptosis in IPEC-J2 cells by elevating intracellular iron content and ROS accumulation, increasing MDA levels, downregulating SOD activity and GPX4 expression, and upregulating the transcription of CHAC1 and SLC7A11. In contrast, Nar suppressed ETEC-induced ferroptosis of IPEC-J2 cells by inhibiting the SLC7A11/GPX4 pathway. Specifically, Nar mitigated mitochondrial damage, reduced intracellular iron levels and ROS accumulation, and ultimately reversed the oxidative stress. Network pharmacology and molecular docking identified heat-shock protein 90 (HSP90) as a potential target of Nar. Overexpression and knockdown experiments revealed that ETEC-induced ferroptosis was mediated by upregulation of HSP90, while the protective effects of Nar against ETEC-induced ferroptosis were dependent on the downregulation of HSP90. In conclusion, Nar targets host HSP90 to protect IPEC-J2 cells from ferroptosis caused by ETEC infection. This study demonstrates that Nar is a potent antioxidant natural compound with potential for preventing ETEC-induced intestinal damage. Full article
(This article belongs to the Special Issue Oxidative Stress in Livestock and Poultry—3rd Edition)
Show Figures

Figure 1

19 pages, 6650 KiB  
Article
Multi-Strain Probiotic Regulates the Intestinal Mucosal Immunity and Enhances the Protection of Piglets Against Porcine Epidemic Diarrhea Virus Challenge
by Xueying Wang, Qi Zhang, Weijian Wang, Xiaona Wang, Baifen Song, Jiaxuan Li, Wen Cui, Yanping Jiang, Weichun Xie and Lijie Tang
Microorganisms 2025, 13(8), 1738; https://doi.org/10.3390/microorganisms13081738 - 25 Jul 2025
Viewed by 350
Abstract
Porcine epidemic diarrhea virus (PEDV) infection induces severe, often fatal, watery diarrhea and vomiting in neonatal piglets, characterized by profound dehydration, villus atrophy, and catastrophic mortality rates approaching 100% in unprotected herds. This study developed a composite probiotic from Min-pig-derived Lactobacillus crispatus LCM233, [...] Read more.
Porcine epidemic diarrhea virus (PEDV) infection induces severe, often fatal, watery diarrhea and vomiting in neonatal piglets, characterized by profound dehydration, villus atrophy, and catastrophic mortality rates approaching 100% in unprotected herds. This study developed a composite probiotic from Min-pig-derived Lactobacillus crispatus LCM233, Ligilactobacillus salivarius LSM231, and Lactiplantibacillus plantarum LPM239, which exhibited synergistic growth, potent acid/bile salt tolerance, and broad-spectrum antimicrobial activity against pathogens. In vitro, the probiotic combination disrupted pathogen ultrastructure and inhibited PEDV replication in IPI-2I cells. In vivo, PEDV-infected piglets administered with the multi-strain probiotic exhibited decreased viral loads in anal and nasal swabs, as well as in intestinal tissues. This intervention was associated with the alleviation of diarrhea symptoms and improved weight gain. Furthermore, the multi-strain probiotic facilitated the repair of intestinal villi and tight junctions, increased the number of goblet cells, downregulated pro-inflammatory cytokines, enhanced the expression of barrier proteins, and upregulated antiviral interferon-stimulated genes. These findings demonstrate that the multi-strain probiotic mitigates PEDV-induced damage by restoring intestinal barrier homeostasis and modulating immune responses, providing a novel strategy for controlling PEDV infections. Full article
(This article belongs to the Special Issue Viral Infection on Swine: Pathogenesis, Diagnosis and Control)
Show Figures

Figure 1

17 pages, 489 KiB  
Article
Protease Enzyme Supplementation in Weaning Piglets Fed Reduced Crude Protein Diets: Effects on Gut Health Integrity and Performance Response
by Nathana Rudio Furlani, Stephane Alverina Briguente Da Motta, Bruno Teixeira Ramos, Wender Vieira Fernandes, Maria Rogervânia Silva de Farias, Rony Riveros, Tarciso Tizziani and Melissa Izabel Hannas
Animals 2025, 15(14), 2109; https://doi.org/10.3390/ani15142109 - 17 Jul 2025
Viewed by 416
Abstract
Two trials evaluated the effects of dietary protease inclusion in weaned piglets fed diets with or without crude protein (CP) reduction, focusing on performance, intestinal health, and amino acid digestibility. In Trial I, 270 piglets (21–63 days) received six treatments: control (PC), PC [...] Read more.
Two trials evaluated the effects of dietary protease inclusion in weaned piglets fed diets with or without crude protein (CP) reduction, focusing on performance, intestinal health, and amino acid digestibility. In Trial I, 270 piglets (21–63 days) received six treatments: control (PC), PC with 100 g/ton protease A (PC+A), CP reduced by 1.0% (NC1) or 1.5% (NC1.5), NC1.5 with 50 g/ton protease A (NC1.5+A), and NC1.5 with 50 g/ton protease B (NC1.5+B). PC+A improved weight gain, feed intake, and feed conversion compared with NC1.5+A. The incidence of diarrhea was reduced in animals fed protease-supplemented diets (PC+A, NC1.5+A and NC1.5+B). PC had greater ileal villus height than NC1.5+B, and PC+A showed a higher jejunal villus-to-crypt ratio than reduced CP groups. NC1.5+B increased jejunal expression of IL-6, TNF-α, and haptoglobin. In Trial II, 12 ileal-cannulated piglets received diets with or without protease A. Protease improved the standardized ileal digestibility (SID) of methionine+cysteine and tryptophan but reduced the SID of glycine and proline. While protease supplementation can improve some amino acids (Met+Cys and Thr) protein digestibility, our findings suggest it cannot fully replace careful amino acid balancing in CP-reduced diets. However, protease-supplemented diets were associated with improved intestinal morphometry and a reduced incidence of diarrhea. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

12 pages, 3211 KiB  
Article
CRISPR/Cas12a-Based One-Tube RT-RAA Assay for PoRV Genotyping
by Mingfang Bi, Zunbao Wang, Kaijie Li, Yuhe Ren, Dan Ma and Xiaobing Mo
Int. J. Mol. Sci. 2025, 26(14), 6846; https://doi.org/10.3390/ijms26146846 - 16 Jul 2025
Viewed by 335
Abstract
Porcine rotavirus (PoRV), a primary etiological agent of viral diarrhea in piglets, frequently co-infects with other enteric pathogens, exacerbating disease severity and causing substantial economic losses. Its genetic recombination capability enables cross-species transmission potential, posing public health risks. Globally, twelve G genotypes and [...] Read more.
Porcine rotavirus (PoRV), a primary etiological agent of viral diarrhea in piglets, frequently co-infects with other enteric pathogens, exacerbating disease severity and causing substantial economic losses. Its genetic recombination capability enables cross-species transmission potential, posing public health risks. Globally, twelve G genotypes and thirteen P genotypes have been identified, with G9, G5, G3, and G4 emerging as predominant circulating strains. The limited cross-protective immunity between genotypes compromises vaccine efficacy, necessitating genotype surveillance to guide vaccine development. While conventional molecular assays demonstrate sensitivity, they lack rapid genotyping capacity and face technical limitations. To address this, we developed a novel diagnostic platform integrating reverse transcription recombinase-aided amplification (RT-RAA) with CRISPR–Cas12a. This system employs universal primers for the simultaneous amplification of G4/G5/G9 genotypes in a single reaction, coupled with sequence-specific CRISPR recognition, achieving genotyping within 50 min at 37 °C with 100 copies/μL sensitivity. Clinical validation showed a high concordance with reverse transcription quantitative polymerase chain reaction (RT-qPCR). This advancement provides an efficient tool for rapid viral genotyping, vaccine compatibility evaluation, and optimized epidemic control strategies. Full article
(This article belongs to the Special Issue Protein Design and Engineering in Biochemistry)
Show Figures

Figure 1

16 pages, 8302 KiB  
Article
Complex Medium-Chain Triglycerides Mitigate Porcine Epidemic Diarrhea Virus Infection in Piglets by Enhancing Anti-Inflammation, Antioxidation, and Intestinal Barrier Function
by Tingting Hu, Yunhao Liu, Sihui Gao, Xiaonan Zhao, Huangzuo Cheng, Youjun Hu, Huaqiao Tang, Zhiwen Xu and Chunlin Fang
Viruses 2025, 17(7), 920; https://doi.org/10.3390/v17070920 - 27 Jun 2025
Viewed by 421
Abstract
Porcine epidemic diarrhea (PED), a highly contagious enteric disease caused by the porcine epidemic diarrhea virus (PEDV), is characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and significant economic losses in the swine industry. The shortage of effective [...] Read more.
Porcine epidemic diarrhea (PED), a highly contagious enteric disease caused by the porcine epidemic diarrhea virus (PEDV), is characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and significant economic losses in the swine industry. The shortage of effective PED vaccines emphasizes the need to explore potent natural compounds for therapeutic intervention. It has been shown that glycerol monolaurate (GML) effectively inhibits PEDV replication in vivo and in vitro. Further investigation is needed to assess whether complex medium-chain triglycerides (CMCTs), composed of glyceryl tricaprylate/caprate (GTCC) and GML, offer an efficient anti-PEDV activity. In this study, piglets were orally infected with PEDV and exhibited typical clinical signs, including diarrhea and vomiting, accompanied by intestinal inflammation, oxidative stress, and tissue damage. CMCTs were administered orally twice daily for one week. In vivo findings indicate that CMCT treatment alleviated clinical signs and prevented weight loss. It significantly increased serum immunoglobulins (IgG, IgM, and IgA) and intestinal mucosal sIgA and MUC-2 levels, while reducing pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-17) and increasing antiviral interferons (IFN-α and IFN-γ), anti-inflammatory cytokines (IL-4 and IL-10), and IL-22. Antioxidant enzyme activities (T-AOC, SOD, GSH-Px, and CAT) were elevated, whereas oxidative stress markers (iNOS, NO, and MDA) were decreased. Expression of intestinal tight junction proteins claudin-1 and ZO-1 was restored. Moreover, CD4+ and CD8+ T cell populations increased, and the functions of regulatory T cells (Tregs) were restored. Gut microbiota analysis showed increased beneficial genera (Streptococcus and Ligilactobacillus) and decreased pathogenic Escherichia-Shigella. These results demonstrate that CMCTs mitigate PEDV infection by enhancing anti-inflammation, antioxidation, and intestinal barrier function, as well as modulating gut microbiota composition. This study improves the understanding of the pathogenesis of PEDV and highlights CMCTs as a promising therapeutic candidate for PED. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 2600 KiB  
Article
SADS-CoV nsp5 Inhibits Interferon Production by Targeting Kinase IKKε
by Gaoli She, Chunhui Zhong, Yue Pan, Zexin Chen, Jingmin Li, Mingchong Li, Yufang Liu, Yongchang Cao, Xiaona Wei and Chunyi Xue
Microorganisms 2025, 13(7), 1494; https://doi.org/10.3390/microorganisms13071494 - 26 Jun 2025
Viewed by 383
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV), initially identified in China in February 2017, severely impacts the swine industry by causing lethal watery diarrhea in neonatal piglets. Understanding the molecular mechanism employed by SADS-CoV to evade the host’s immune defenses is of utmost importance. [...] Read more.
Swine acute diarrhea syndrome coronavirus (SADS-CoV), initially identified in China in February 2017, severely impacts the swine industry by causing lethal watery diarrhea in neonatal piglets. Understanding the molecular mechanism employed by SADS-CoV to evade the host’s immune defenses is of utmost importance. In this study, using the porcine ileum epithelial cell line IPI-FX as an in vitro model, we investigated the highly pathogenic SADS-CoV GDS04 strain and its nonstructural protein 5 (nsp5) for their roles in inhibiting interferon-beta (IFN-β) production. Our findings indicated that GDS04 inhibited poly(I:C)-induced IFN-β production by impeding the promoter activities of IRF3 and NF-κB. As a 3C-like protease, SADS-CoV nsp5 functioned as an interferon inhibitor by interacting with IKKε, reducing its protein abundance, and inhibiting its phosphorylation. This study enhances our understanding of the interaction between coronaviruses and their hosts, providing novel insights into the evasion of the immune system by coronaviruses. Full article
(This article belongs to the Special Issue Research on Swine Virus Infection and Immunity)
Show Figures

Figure 1

19 pages, 2535 KiB  
Article
The Effects of Recombinant pBD2 on the Growth Performance, Antioxidant Capacity, Immune Function, Intestinal Barrier, and Microbiota of Weaned Piglets
by Zhanwei Teng, Qing Meng, Mengting Ren, Bingke Lv, Liping Yuan, Ningning Zhang, Qinghua Wang, Kun Zhang and Chunli Li
Microorganisms 2025, 13(7), 1443; https://doi.org/10.3390/microorganisms13071443 - 20 Jun 2025
Viewed by 574
Abstract
Defensins, one of the members of the antimicrobial peptide family, play a vital role in resisting microbial invasion and immune regulation. Porcine β-defensin 2 possesses excellent stability, making it an ideal antibiotic alternative for feed additives. In this study, a total of 15 [...] Read more.
Defensins, one of the members of the antimicrobial peptide family, play a vital role in resisting microbial invasion and immune regulation. Porcine β-defensin 2 possesses excellent stability, making it an ideal antibiotic alternative for feed additives. In this study, a total of 15 piglets were used to investigate the effects of supplementing diets with 2.5 mg/kg (LP group) and 5 mg/kg (HP group) of pBD2 to weaned piglets. The results revealed that pBD2 significantly increased the total weight gain and average daily weight gain (p < 0.05), the contents of T-AOC, SOD, IgM, and IL-10 in serum (p < 0.05), the villus-to-crypt ratios, and the expression of tight-junction proteins ZO-1 and claudin-1 (p < 0.05) in the small intestine. Furthermore, pBD2 increased the abundance of beneficial bacteria related to nutrient and energy metabolism while decreasing the abundance of harmful bacteria associated with intestinal inflammation and diarrhea. Alterations in the gut microbiota were closely associated with the levels of T-AOC, SOD, IgM, and IL-10 in serum. pBD2 primarily enhanced the health of weaned piglets by influencing antioxidant capacity, intestinal barrier function, and the intestinal microbiota. Our research provides a novel perspective for addressing the issue of antibiotic residues in feed. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Graphical abstract

13 pages, 2123 KiB  
Article
CRISPR-Cas12a/RPA Dual-Readout Assay for Rapid Field Detection of Porcine Rotavirus with Visualization
by Xinjie Jiang, Yun Huang, Yi Jiang, Guang Yang, Xiaocong Zheng and Shuai Gao
Viruses 2025, 17(7), 872; https://doi.org/10.3390/v17070872 - 20 Jun 2025
Viewed by 561
Abstract
PoRV is a significant etiological agent of neonatal diarrhea in piglets, resulting in substantial economic losses within the global swine industry due to elevated mortality rates and reduced productivity. To address the urgent need for accessible and rapid diagnostics in resource-limited settings, we [...] Read more.
PoRV is a significant etiological agent of neonatal diarrhea in piglets, resulting in substantial economic losses within the global swine industry due to elevated mortality rates and reduced productivity. To address the urgent need for accessible and rapid diagnostics in resource-limited settings, we have developed a CRISPR/Cas12a-based assay integrated with recombinase polymerase amplification (RPA) for the visual detection of PoRV. This platform specifically targets the conserved VP6 gene using optimized RPA primers and crRNA, harnessing Cas12a’s collateral cleavage activity to enable dual-readout via fluorescence or lateral flow dipsticks (LFDs). The assay demonstrates a detection limit of 102 copies/μL within 1 h, exhibiting no cross-reactivity with phylogenetically related pathogens such as Transmissible Gastroenteritis Virus (TGEV). By eliminating reliance on thermal cyclers or specialized equipment, this method is fully deployable in swine farms, veterinary clinics, or field environments. The lateral flow format provides immediate colorimetric results that require minimal technical expertise, while the fluorescence mode allows for semi-quantitative analysis. This study presents a robust and cost-effective platform for decentralized PoRV surveillance in swine populations, addressing the critical need for portable diagnostics in resource-limited settings and enhancing veterinary health management. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

15 pages, 3514 KiB  
Article
Seroprevalence, Genetic Characteristics, and Pathogenicity of Korean Porcine Sapeloviruses
by Song-Yi Kim, Choi-Kyu Park, Gyu-Nam Park, SeEun Choe, Min-Kyung Jang, Young-Hyeon Lee, Yun Sang Cho and Dong-Jun An
Viruses 2025, 17(7), 870; https://doi.org/10.3390/v17070870 - 20 Jun 2025
Viewed by 450
Abstract
Although porcine sapelovirus (PSV) is generally subclinical, it can cause a wide range of clinical signs in some individuals, including respiratory distress, acute diarrhea, pneumonia, skin lesions, reproductive failure, and neurological diseases. In this study, we investigated the prevalence and genotype of PSV [...] Read more.
Although porcine sapelovirus (PSV) is generally subclinical, it can cause a wide range of clinical signs in some individuals, including respiratory distress, acute diarrhea, pneumonia, skin lesions, reproductive failure, and neurological diseases. In this study, we investigated the prevalence and genotype of PSV isolated from domestic pigs and wild boars in Korea. We also analyzed potential recombination events, and assessed the pathogenicity of the virus through animal experiments. In wild boars, the prevalence of PSV antibodies decreased slightly (by 1.8%) over 5 years (from 2019 to 2024); however, prevalence increased significantly (by 17.8%) in breeding sows. In samples from animals with diarrhea and respiratory clinical signs, the prevalence of PSV alone was 21.1%, whereas the prevalence of PSV mixed with other pathogens was also 21.1%. The whole genome of the PSV/Goryeong/KR-2019 strain isolated from a piglet with diarrhea was closely related to the Jpsv447 strain isolated in Japan in 2009, and recombination analysis predicted that the PSV/Goryeong/KR-2019 strain was generated by genetic recombination between the KS05151 strain and the Jpsv447 strain. However, when the PSV/Goryeong/KR-2019 strain was orally administered to 5-day-old suckling pigs, diarrhea clinical signs were mild, and no significant changes were observed in villus height and ridge depth in the duodenum, jejunum, or ileum. In addition, no neurological clinical signs were observed when the isolated virus was administered to 130-day-old pigs, and no specific lesions were found upon histopathological examination of brain tissue. In conclusion, PSV/Goryeong/KR-2019 appears to be a weakly pathogenic virus that does not cause severe diarrhea in suckling pigs, and does not cause neurological clinical signs in fattening pigs. Therefore, it is presumed that most PSVs detected in Korean pig farms are weakly pathogenic strains. Full article
(This article belongs to the Special Issue Porcine Viruses 2025)
Show Figures

Figure 1

21 pages, 7609 KiB  
Article
Dietary Bacillus velezensis Improves Piglet Intestinal Health and Antioxidant Capacity via Regulating the Gut Microbiota
by Linbao Ji, Jiakun Shen, Chunchen Liu, Junshu Yan and Xi Ma
Int. J. Mol. Sci. 2025, 26(12), 5875; https://doi.org/10.3390/ijms26125875 - 19 Jun 2025
Viewed by 343
Abstract
Piglet diarrhea caused by weaning stress will increase the mortality rate and seriously affect swine industry production efficiency. Probiotic supplementation has been reported to effectively alleviate weaning diarrhea by inhibiting the colonization of pathogenic microorganisms; however, the underlying mechanisms remain unclear. In this [...] Read more.
Piglet diarrhea caused by weaning stress will increase the mortality rate and seriously affect swine industry production efficiency. Probiotic supplementation has been reported to effectively alleviate weaning diarrhea by inhibiting the colonization of pathogenic microorganisms; however, the underlying mechanisms remain unclear. In this study, we isolated a strain of Bacillus velezensis and conducted a series of in vivo and in vitro experiments to explore its effects on weaned piglets. The piglets were fed for a 28-day period, and the results showed that dietary supplementation of B. velezensis 411 significantly alleviated weaning diarrhea (p = 0.019) and improved the average daily gain (ADG) of piglets throughout the experimental period (p = 0.004). The intestinal antioxidant capacity of piglets was also significantly enhanced. Whole-genome sequencing revealed that B. velezensis 411 contains a protein-encoding circular chromosome, which is involved in biological processes such as sporulation and antibiotic secretion. Supplementation with B. velezensis 411 significantly increased the abundance of Akkermansia in intestine samples and significantly decreased the abundance of pathogenic bacteria, including Escherichia coli and Staphylococcus aureus, in piglets (p < 0.05). The transcriptomic results suggest that B. velezensis 411 supplementation may alter the composition of intestinal microorganisms through regulating the expression of MPEG1. Collectively, dietary B. velezensis can relieve diarrhea in piglets and improve their production performance by influencing the antioxidant capacity of the intestines and the balance of the intestinal flora. This study provides valuable insights into the potential application of Bacillus velezensis in mitigating weaning-associated issues in piglets. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 2636 KiB  
Article
Effect of Potassium–Magnesium Sulfate on Intestinal Dissociation and Absorption Rate, Immune Function, and Expression of NLRP3 Inflammasome, Aquaporins and Ion Channels in Weaned Piglets
by Cui Zhu, Kaiyong Huang, Xiaolu Wen, Kaiguo Gao, Xuefen Yang, Zongyong Jiang, Shuting Cao and Li Wang
Animals 2025, 15(12), 1751; https://doi.org/10.3390/ani15121751 - 13 Jun 2025
Viewed by 452
Abstract
This study investigated the effects of potassium magnesium sulfate (PMS) on intestinal dissociation and absorption rate, immune function, and expression of the NOD-like receptor thermal domain-associated protein 3 (NLRP3) inflammasome, aquaporins (AQPs), and potassium and magnesium ion channels in weaned piglets. Experiment 1 [...] Read more.
This study investigated the effects of potassium magnesium sulfate (PMS) on intestinal dissociation and absorption rate, immune function, and expression of the NOD-like receptor thermal domain-associated protein 3 (NLRP3) inflammasome, aquaporins (AQPs), and potassium and magnesium ion channels in weaned piglets. Experiment 1 involved the assessment of the dissociation rate of PMS in pig digestive fluid and the absorption rate of PMS in the small intestine using an Ussing chamber in vitro. In Experiment 2, 216 healthy 21-day-old weaned piglets were selected and randomly assigned to six groups (0%, 0.15%, 0.30%, 0.45%, 0.60%, and 0.75% PMS), with each group 6 replicates of six piglets per replicate. The in vitro Ussing chamber results indicated that the absorption of K+ and Mg2+ in the jejunum and ileum was significantly higher than that in the duodenum (p < 0.05). The in vivo study demonstrated that the addition of PMS resulted in a linear increase in serum K+, IgG, and interleukin (IL)-2 levels while simultaneously reducing serum IL-1β levels (p < 0.05). Dietary PMS significantly elevated serum IL-10 and Mg2+ levels in feces (p < 0.05). Furthermore, supplementation with 0.60% or 0.75% PMS significantly downregulated the mRNA expression of NLRP3 in the jejunum (p < 0.05). Dietary PMS supplementation linearly reduced the mRNA expression levels of cysteine protease 1 (Caspase-1) and IL-1β in both the jejunum and colon as well as the mRNA expression levels of two-pore domain channel subfamily K member 5 (KCNK5) in these regions (p < 0.05). Notably, supplementation with 0.15% PMS significantly decreased the mRNA expression of transient receptor potential channel 6 (TRPM6) in the jejunum and significantly increased the expression of TRPM6 in the colon (p < 0.05). Dietary addition of 0.45% and 0.60% PMS significantly increased the mRNA expression of aquaporin 3 (AQP3) in the colon (p < 0.05), whereas 0.75% PMS significantly increased the mRNA expression of aquaporin 8 (AQP8) in both the jejunum and colon. Moreover, the expression levels of AQP3 and AQP8 were significantly negatively correlated with the diarrhea rate observed between days 29 and 42. In conclusion, dietary PMS supplementation improved immune function, inhibited the activation of intestinal NLRP3, and modulated the expression of water and ion channels in weaned piglets, thereby contributing to the maintenance of intestinal water and ion homeostasis, which could potentially alleviate post-weaning diarrhea in piglets. The recommended supplemental level of PMS in the corn-soybean basal diet for weaned piglets is 0.30%. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

12 pages, 408 KiB  
Article
Effects of Alpha-Ketoglutarate Supplementation on Growth Performance, Diarrhea Incidence, Plasma Amino Acid, and Nutrient Digestibility in Weaned Piglets
by Weiyan Sun, Ruyi Han, Hongbo Xi, Wenning Chen, Yanpin Li, Qingchao Zhou, Xilong Li, Kaikun Huang, Valentino Bontempo, Xu Gu and Xianren Jiang
Animals 2025, 15(12), 1723; https://doi.org/10.3390/ani15121723 - 11 Jun 2025
Viewed by 808
Abstract
Alpha-ketoglutaric acid (AKG) is a key intermediate in the tricarboxylic acid cycle and plays a crucial role in energy production and amino acid metabolism. This study aimed to evaluate the effects of AKG on growth performance, nutrient digestibility, plasma biochemical parameters, and plasma [...] Read more.
Alpha-ketoglutaric acid (AKG) is a key intermediate in the tricarboxylic acid cycle and plays a crucial role in energy production and amino acid metabolism. This study aimed to evaluate the effects of AKG on growth performance, nutrient digestibility, plasma biochemical parameters, and plasma amino acid profiles in weaned piglets. A total of 72 weaned piglets with an average weight of 7.33 kg (±0.50 kg) and an average age of 28 (±2 days) were randomly assigned to 3 dietary treatments with 6 replicates per group in a 42-day trial. The treatments included a basal diet (CT), a basal diet with 500 g/t AKG (AKG1), and a basal diet with 1000 g/t AKG (AKG2). Blood samples were collected on days 14 and 42, and fecal samples were collected on day 42. The results showed that diets including 500 g/t and 1000 g/t AKG significantly reduced diarrhea incidence in piglets compared to the CT group (p < 0.01). Moreover, diets including 1000 g/t AKG enhanced fecal dry matter digestibility, plasma albumin (ALB), and glucose (GLU) concentrations on day 42 compared to the AKG1 group (p < 0.05). In conclusion, diets including AKG reduced diarrhea incidence in weaned piglets, potentially through improved nutrient digestibility and enhanced systemic health. The 1000 g/t level exhibited greater beneficial effects than 500 g/t. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

Back to TopTop