Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = piezoresistive nanocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5907 KB  
Article
Electrical Percolation and Piezoresistive Response of Vulcanized Natural Rubber/MWCNT Nanocomposites
by Diego Silva Melo, Nuelson Carlitos Gomes, Jeferson Shiguemi Mukuno, Carlos Toshiyuki Hiranobe, José Antônio Malmonge, Renivaldo José dos Santos, Alex Otávio Sanches, Vinicius Dias Silva, Leandro Ferreira Pinto and Michael Jones Silva
J. Compos. Sci. 2026, 10(1), 56; https://doi.org/10.3390/jcs10010056 - 20 Jan 2026
Abstract
A flexible piezoresistive material based on vulcanized natural rubber (VNR) and multiwalled carbon nanotubes (MWCNTs) was developed and systematically investigated for strain sensing applications. The nanocomposites were prepared by melting and vulcanizing MWCNT, while keeping the rubber composition constant to isolate the effect [...] Read more.
A flexible piezoresistive material based on vulcanized natural rubber (VNR) and multiwalled carbon nanotubes (MWCNTs) was developed and systematically investigated for strain sensing applications. The nanocomposites were prepared by melting and vulcanizing MWCNT, while keeping the rubber composition constant to isolate the effect of the conductive nanofiller. By scanning electron microscopy, morphological analyses indicated that MWCNTs were dispersed throughout the rubber matrix, with localized agglomerations becoming more evident at higher loadings. In mechanical tests, MWCNT incorporation increases the tensile strength of VNR, increasing the stress at break from 8.84 MPa for neat VNR to approximately 10.5 MPa at low MWCNT loadings. According to the electrical characterization, VNR-MWCNT nanocomposite exhibits a strong insulator–conductor transition, with the electrical percolation threshold occurring between 2 and 4 phr. The dc electrical conductivity increased sharply from values on the order of 10−14 S·m−1 for neat VNR to approximately 10−3 S·m−1 for nanocomposites containing 7 phr of MWCNT. Impedance spectroscopy revealed frequency-independent conductivity plateaus above the percolation threshold, indicating continuous conductive pathways, while dielectric analysis revealed strong interfacial polarization effects at the MWCNT–VNR interfaces. The piezoresistive response of samples containing MWCNT exhibited a stable, reversible, and nearly linear response under cyclic tensile deformation (10% strain). VNR/MWCNT nanocomposites demonstrate mechanical compliance and tunable electrical sensitivity, making them promising candidates for flexible and low-cost piezoresistive sensors. Full article
Show Figures

Figure 1

42 pages, 4878 KB  
Review
Carbon Nanotubes and Graphene in Polymer Composites for Strain Sensors: Synthesis, Functionalization, and Application
by Aleksei V. Shchegolkov, Alexandr V. Shchegolkov and Vladimir V. Kaminskii
J. Compos. Sci. 2026, 10(1), 43; https://doi.org/10.3390/jcs10010043 - 13 Jan 2026
Viewed by 222
Abstract
This review provides a comprehensive analysis of modern strategies for the synthesis, functionalization, and application of carbon nanotubes (CNTs) and graphene for the development of high-performance polymer composites in the field of strain sensing. The paper systematically organizes key synthesis methods for CNTs [...] Read more.
This review provides a comprehensive analysis of modern strategies for the synthesis, functionalization, and application of carbon nanotubes (CNTs) and graphene for the development of high-performance polymer composites in the field of strain sensing. The paper systematically organizes key synthesis methods for CNTs and graphene (chemical vapor deposition (CVD), such as arc discharge, laser ablation, microwave synthesis, and flame synthesis, as well as approaches to their chemical and physical modification aimed at enhancing dispersion within polymer matrices and strengthening interfacial adhesion. A detailed examination is presented on the structural features of the nanofillers, such as the CNT aspect ratio, graphene oxide modification, and the formation of hybrid 3D networks and processing techniques, which enable the targeted control of the nanocomposite’s electrical conductivity, mechanical strength, and flexibility. Central focus is placed on the fundamental mechanisms of the piezoresistive response, analyzing the role of percolation thresholds, quantum tunneling effects, and the reconfiguration of conductive networks under mechanical load. The review summarizes the latest advancements in flexible and stretchable sensors capable of detecting both micro- and macro-strains for structural health monitoring, highlighting the achieved improvements in sensitivity, operational range, and durability of the composites. Ultimately, this analysis clarifies the interrelationship between nanofiller structure (CNTs and graphene), processing conditions, and sensor functionality, highlighting key avenues for future innovation in smart materials and wearable devices. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

19 pages, 4542 KB  
Article
Synergetic Effect of Fullerene and Fullerenol/Carbon Nanotubes in Cellulose-Based Composites for Electromechanical and Thermoresistive Applications
by Ane Martín-Ayerdi, Timur Tropin, Nikola Peřinka, José Luis Vilas-Vilela, Pedro Costa, Vasil M. Garamus, Dmytro Soloviov, Viktor Petrenko and Senentxu Lanceros-Méndez
Polymers 2025, 17(24), 3259; https://doi.org/10.3390/polym17243259 - 7 Dec 2025
Viewed by 554
Abstract
A water-soluble hydroxypropyl cellulose (HPC) polymer matrix has been filled with different weight percentages (wt.%) of multiwalled carbon nanotubes (MWCNTs), fullerenes C60, fullerenols C60(OH)24, and their combinations. We study the potential of the 0D nanoparticles for improving electrical [...] Read more.
A water-soluble hydroxypropyl cellulose (HPC) polymer matrix has been filled with different weight percentages (wt.%) of multiwalled carbon nanotubes (MWCNTs), fullerenes C60, fullerenols C60(OH)24, and their combinations. We study the potential of the 0D nanoparticles for improving electrical properties of the conductive MWCNT network in a biocompatible matrix. Physicochemical effects of fillers content, both individually and in combinations (MWCNTs/C60 and MWCNTs/C60(OH)24), for these composite systems, have been investigated. The performed SAXS analysis shows improved nanofiller dispersion for films with two fillers. The electrical percolation threshold (Pc) in MWCNTs composites occurs at ≈1.0 wt.%. A synergistic effect for binary filler composites on the electrical conductivity has been evaluated by keeping a constant amount of 0.5 wt.% MWCNTs (σ ≈ 3 × 10−9 S·m−1) and increasing the amount of C60 or C60(OH)24. A large increase in the electrical conductivity is obtained for the bifiller composites with 0.5 wt.% MWCNTs and 1.5 wt.% of C60(OH)24, reaching σ ≈ 0.008 S·m−1. Further, the sensing properties of 4.0/1.0 MWCNT/C60 nanocomposites were demonstrated by measuring both piezoresistive (PR) and thermoresistive (TR) responses. The combination of semiconductive fullerene/fullerenols combined with MWCNTs allows obtaining more homogeneous composites in comparison to single MWCNTs composites and also gives possibilities for tuning the electrical conductivity of the system. Overall, it is demonstrated that the use of bifillers with a water soluble biopolymeric matrix allows the development of eco-friendly high-performance electroactive materials for sustainable digitalization. Full article
(This article belongs to the Special Issue Conductive and Magnetic Properties of Polymer Nanocomposites)
Show Figures

Figure 1

22 pages, 4058 KB  
Article
Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite
by Francesca Aliberti, Luigi Vertuccio, Raffaele Longo, Andrea Sorrentino, Roberto Pantani, Liberata Guadagno and Marialuigia Raimondo
Nanomaterials 2025, 15(13), 994; https://doi.org/10.3390/nano15130994 - 26 Jun 2025
Cited by 4 | Viewed by 1090
Abstract
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) [...] Read more.
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) were added to the EMAA thermoplastic matrix, and the relative electrical percolation thresholds (EPTs) were determined. The effect of filler concentration on thermo-oxidative degradation and the EMAA crystallinity was investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. Dynamic mechanical analysis (DMA) demonstrated that both fillers enhance the Young’s and storage moduli, as well as the glass transition temperature, with a greater improvement for the bidimensional nanofiller, most likely due to the cumulative effect of more extensive EG-matrix interactions. In tensile tests, a very relevant difference was detected in the Gauge Factor (G.F.) and the elongation at break of the two typologies of nanocomposites. The G.F. of EMAA 10% CNT and EMAA 15% EG were found to be 0.5 ± 0.08 and 165 ± 14, respectively, while elongation at break was about 68% for EMAA 10% CNT and 8% for EMAA 15% EG. Emission Scanning Electron Microscopy (FESEM) and Tunneling Atomic Force Microscopy (TUNA) have contributed to explaining the differences between EG- and CNT-based nanocomposites from a morphological point of view, underlying the pivotal role of the filler aspect ratio and its structural features in determining different mechanical and piezoresistive performance. The comprehensive analysis of EMAA-EG and EMAA-CNT nanocomposites provides a guide for selecting the best self-sensing system for the specific application. More specifically, EMAA-CNT nanocomposites with high elongation at break and lower sensitivity to small strains are suitable for movement sensors in the soft robotic field, where high deformation has to be detected. On the other hand, the high sensitivity at a low strain of EMAA-EG systems makes them suitable for integrated sensors in more rigid composite structures, such as aeronautical and automotive components or wind turbines. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Graphical abstract

21 pages, 3618 KB  
Article
Ternary Restoration Binders as Piezoresistive Sensors: The Effect of Superplasticizer and Graphene Nanoplatelets’ Addition
by Maria-Evangelia Stogia, Ermioni D. Pasiou, Zoi S. Metaxa, Stavros K. Kourkoulis and Nikolaos D. Alexopoulos
Nanomaterials 2025, 15(7), 538; https://doi.org/10.3390/nano15070538 - 2 Apr 2025
Cited by 1 | Viewed by 912
Abstract
The present article investigates the effect of superplasticizer and graphene nanoplatelet addition on the flexural and electrical behaviour of nanocomposites for applications related to the restoration/conservation of Cultural Heritage Monuments in laboratory scale. Graphene nanoplatelets’ addition is used to transform the matrix into [...] Read more.
The present article investigates the effect of superplasticizer and graphene nanoplatelet addition on the flexural and electrical behaviour of nanocomposites for applications related to the restoration/conservation of Cultural Heritage Monuments in laboratory scale. Graphene nanoplatelets’ addition is used to transform the matrix into a piezo-resistive self-sensor by efficiently dispersing electrically conductive graphene nanoplatelets (GnPs) in the material matrix to create electrically conductive paths. Nevertheless, the appropriate dispersion is difficult to be achieved as the GnPs tend to agglomerate due to Van der Waals forces. To this end, the effect of the addition of carboxyl-based superplasticizer (SP) is proposed in the present investigation to efficiently disperse the GnPs in the water mix of the binders. Five (5) different ratios of SP per GnPs addition were examined. The GnPs concentration was chosen to be within the range of 0.05 to 1.50 wt.% of the binder. The same ultrasonic energy was applied in all of the suspensions to further aid the dispersion process. The incorporation of graphene nanoplatelets at low concentrations (0.15 wt.%) significantly increases flexural strength when added in equal quantity to superplasticizer (SP1 series). The SP addition at higher concentrations does not enhance the mechanical properties through effective dispersion of the GnPs. Additionally, a correlation was established between the electrical resistivity (ρ) values of the produced nanocomposites and the modulus of elasticity as a function of the GnPs concentration. The functional correlation between these parameters was also confirmed by linear regression analysis, resulting from the experimental data fitting. Finally, the acoustic emission (AE) can effectively capture damage evolution in such lime-based composites, while the emitted cumulative energy rises as the GnPs concentration is increased. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

30 pages, 13451 KB  
Article
Nanocomposites Based on Disentangled Ultra-High Molecular Weight Polyethylene: Aspects and Specifics of Solid-State Processing
by Oleg V. Lebedev, Ekaterina P. Tikunova, Tikhon S. Kurkin, Evgeny K. Golubev and Alexander N. Ozerin
Polymers 2024, 16(23), 3423; https://doi.org/10.3390/polym16233423 - 5 Dec 2024
Cited by 3 | Viewed by 1392
Abstract
The stages of solid-state processing of nanocomposites, based on nascent disentangled ultra-high-molecular-weight polyethylene (d-UHMWPE) reactor powders (RPs) and carbon nanoparticles (NPs) of various types, were meticulously investigated. The potential for optimizing the filler distribution through variation of the processing parameters, and the impact [...] Read more.
The stages of solid-state processing of nanocomposites, based on nascent disentangled ultra-high-molecular-weight polyethylene (d-UHMWPE) reactor powders (RPs) and carbon nanoparticles (NPs) of various types, were meticulously investigated. The potential for optimizing the filler distribution through variation of the processing parameters, and the impact of the d-UHMWPE RP and nanofiller type on the electrical conductivity of the resulting composites were discussed. The specifics of the dependences of conductivity and tensile strength on the deformation ratio for the composites, oriented under homogeneous shear conditions, were investigated. The obtained results and the results on piezoresistivity and temperature dependency of conductivity in the oriented and compacted composites demonstrated the independence of the UHMWPE matrix orientational strengthening on the filling. The interchangeability of high-temperature uniaxial deformation and deformation under homogeneous conditions for orientational strengthening and electrical conductivity changes in the preliminary oriented composite samples was confirmed. The potential for simultaneously achieving high strength and conductivity in composite tapes and the possibility of directly processing d-UHMWPE RP and NPs mixtures into oriented composite tapes were demonstrated. The overall results suggest that the studied composites may serve as a viable model system for investigating the deformational behavior of conductive networks comprising NPs of varying types and contents. Full article
Show Figures

Figure 1

21 pages, 9027 KB  
Article
Tailoring Piezoresistive Performance in 3D-Printed Nanocomposite Sensors Through Cellular Geometries
by Md Ibrahim Khalil Tanim and Anahita Emami
Appl. Nano 2024, 5(4), 258-278; https://doi.org/10.3390/applnano5040017 - 26 Nov 2024
Cited by 2 | Viewed by 2683
Abstract
Flexible nanocomposite sensors hold significant promise in various applications, such as wearable electronics and medical devices. This research aims to tailor the flexibility and sensitivity of 3D-printed piezoresistive nanocomposite pressure sensors through geometric design, by exploring various simple cellular structures. The geometric designs [...] Read more.
Flexible nanocomposite sensors hold significant promise in various applications, such as wearable electronics and medical devices. This research aims to tailor the flexibility and sensitivity of 3D-printed piezoresistive nanocomposite pressure sensors through geometric design, by exploring various simple cellular structures. The geometric designs were specifically selected to be 3D printable with a flexible material, allowing evaluation of the impact of different structures on sensor performance. In this study, we used both experimental and finite element (FE) methods to investigate the effect of geometric design on piezoresistive sensors. We fabricated the sensors using a flexible resin mixed with conductive nanoparticles via a Stereolithography (SLA) additive manufacturing technique. Electromechanical testing was carried out to evaluate the performance of four different sensor designs. Finite element (FE) models were developed, and their results were compared with experimental data to validate the simulations. The results demonstrated that auxetic structure exhibited the highest sensitivity and lowest stiffness both in experimental and FE analysis, highlighting its potential for applications requiring highly responsive materials. The validated FE model was further used for a parametric study of one of the promising simple designs, revealing that variations in geometric parameters significantly impact piezoresistive sensitivity. These findings provide valuable insights for advancing the development of pressure sensors with tailored sensitivity characteristics. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

14 pages, 3225 KB  
Article
Effects of Geometry and Supporting Silicone Layers on the Performance of Conductive Composite High-Deflection Strain Gauges
by Hailey E. Jones, Spencer A. Baker, Jadyn J. Christensen, Tyler Hutchinson, Heather A. Leany, Ulrike H. Mitchell, Anton E. Bowden and David T. Fullwood
J. Compos. Sci. 2024, 8(11), 467; https://doi.org/10.3390/jcs8110467 - 11 Nov 2024
Cited by 1 | Viewed by 1529
Abstract
Piezoresistive sensors composed of nickel nanostrands, nickel-coated carbon fibers, and silicone can be used to measure large physical deflections but exhibit viscoelastic properties and creep, leading to a complex and nonlinear electrical response that is difficult to interpret. This study considers the impact [...] Read more.
Piezoresistive sensors composed of nickel nanostrands, nickel-coated carbon fibers, and silicone can be used to measure large physical deflections but exhibit viscoelastic properties and creep, leading to a complex and nonlinear electrical response that is difficult to interpret. This study considers the impact of modifying the geometry and architecture of the sensors on their mechanical and electrical performance. Varying the sensor thickness leads to potentially significant differences in conductive fiber alignment, while adding external layers of pure silicone provides elastic support for the sensors, potentially reducing their extreme viscoelastic nature. The impact of such modifications on both mechanical and electrical behavior was assessed by analyzing strain to failure, the magnitude of hysteresis with cycling, the repeatability of the electro-mechanical response, the strain level at which resistance begins to monotonically decrease, and the drift in electrical response with cycling. The results indicate that thicker single-layer sensors have less electrical drift. Sensors with a multilayered architecture exhibit several improvements in behavior, such as increasing the range of the monotonic region by approximately 52%. These improvements become more significant as the thickness of the pure silicone layers increases. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

21 pages, 19527 KB  
Article
Three-Dimensional Printed Nanocomposites with Tunable Piezoresistive Response
by Francesca Aliberti, Liberata Guadagno, Raffaele Longo, Marialuigia Raimondo, Roberto Pantani, Andrea Sorrentino, Michelina Catauro and Luigi Vertuccio
Nanomaterials 2024, 14(21), 1761; https://doi.org/10.3390/nano14211761 - 2 Nov 2024
Cited by 8 | Viewed by 2243
Abstract
This study explores a novel approach to obtaining 3D printed strain sensors, focusing on how changing the printing conditions can produce a different piezoresistive response. Acrylonitrile butadiene styrene (ABS) filled with different weight concentrations of carbon nanotubes (CNTs) was printed in the form [...] Read more.
This study explores a novel approach to obtaining 3D printed strain sensors, focusing on how changing the printing conditions can produce a different piezoresistive response. Acrylonitrile butadiene styrene (ABS) filled with different weight concentrations of carbon nanotubes (CNTs) was printed in the form of dog bones via fused filament fabrication (FFF) using two different raster angles (0–90°). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) in TUNA mode (TUNA-AFM) were used to study the morphological features and the electrical properties of the 3D printed samples. Tensile tests revealed that sensitivity, measured by the gauge factor (G.F.), decreased with increasing filler content for both raster angles. Notably, the 90° orientation consistently showed higher sensitivity than the 0° orientation for the same filler concentration. Creep and fatigue tests identified permanent damage through residual electrical resistance values. Additionally, a cross-shaped sensor was designed to measure two-dimensional deformations simultaneously, which is applicable in the robotic field. This sensor can monitor small and large deformations in perpendicular directions by tracking electrical resistance variations in its arms, significantly expanding its measuring range. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

17 pages, 7769 KB  
Article
Smart Carbon Fiber-Reinforced Polymer Composites for Damage Sensing and On-Line Structural Health Monitoring Applications
by Cláudia Lopes, Andreia Araújo, Fernando Silva, Panagiotis-Nektarios Pappas, Stefania Termine, Aikaterini-Flora A. Trompeta, Costas A. Charitidis, Carla Martins, Sacha T. Mould and Raquel M. Santos
Polymers 2024, 16(19), 2698; https://doi.org/10.3390/polym16192698 - 24 Sep 2024
Cited by 7 | Viewed by 4520
Abstract
High electrical conductivity, along with high piezoresistive sensitivity and stretchability, are crucial for designing and developing nanocomposite strain sensors for damage sensing and on-line structural health monitoring of smart carbon fiber-reinforced polymer (CFRP) composites. In this study, the influence of the geometric features [...] Read more.
High electrical conductivity, along with high piezoresistive sensitivity and stretchability, are crucial for designing and developing nanocomposite strain sensors for damage sensing and on-line structural health monitoring of smart carbon fiber-reinforced polymer (CFRP) composites. In this study, the influence of the geometric features and loadings of carbon-based nanomaterials, including reduced graphene oxide (rGO) or carbon nanofibers (CNFs), on the tunable strain-sensing capabilities of epoxy-based nanocomposites was investigated. This work revealed distinct strain-sensing behavior and sensitivities (gauge factor, GF) depending on both factors. The highest GF values were attained with 0.13 wt.% of rGO at various strains. The stability and reproducibility of the most promising self-sensing nanocomposites were also evaluated through ten stretching/relaxing cycles, and a distinct behavior was observed. While the deformation of the conductive network formed by rGO proved to be predominantly elastic and reversible, nanocomposite sensors containing 0.714 wt.% of CNFs showed that new conductive pathways were established between neighboring CNFs. Based on the best results, formulations were selected for the manufacturing of pre-impregnated materials and related smart CFRP composites. Digital image correlation was synchronized with electrical resistance variation to study the strain-sensing capabilities of modified CFRP composites (at 90° orientation). Promising results were achieved through the incorporation of CNFs since they are able to form new conductive pathways and penetrate between micrometer-sized fibers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 5968 KB  
Article
Infrared Light Annealing Effect on Pressure Sensor Fabrication Using Graphene/Polyvinylidene Fluoride Nanocomposite
by Victor K. Samoei, Katsuhiko Takeda, Keiichiro Sano, Angshuman Bharadwaz, Ambalangodage C. Jayasuriya and Ahalapitiya H. Jayatissa
Inorganics 2024, 12(8), 228; https://doi.org/10.3390/inorganics12080228 - 21 Aug 2024
Cited by 2 | Viewed by 2038
Abstract
This paper reports the designing and testing, as well as the processing and testing, of a flexible piezoresistive sensor for pressure-sensing applications, utilizing a composite film of graphene/polyvinylidene fluoride (Gr/PVDF). Graphene serves as the conductive matrix, while PVDF acts as both the binder [...] Read more.
This paper reports the designing and testing, as well as the processing and testing, of a flexible piezoresistive sensor for pressure-sensing applications, utilizing a composite film of graphene/polyvinylidene fluoride (Gr/PVDF). Graphene serves as the conductive matrix, while PVDF acts as both the binder and a flexible polymer matrix. The composite film was fabricated using the solution casting technique on a flexible polyethylene substrate. We investigated the impact of post-infrared annealing on the pressure response of the Gr/PVDF films. The experimental results indicated that the films IR-annealed for 2 min exhibited improved pressure sensitivity compared with the as-deposited films. The stability and durability of the sensors were assessed through the application of pressure over more than 1000 cycles. The mechanical properties of the films were examined using a universal tensile testing machine (UTM) for scenarios both with and without infrared light annealing. Raman spectroscopy was employed to analyze the quality and characteristics of the prepared nanocomposites. This study enhances our understanding of the interplay between the Gr/PVDF composite, the IR annealing effect, and the hysteresis effect in the pressure-sensing mechanism, thereby improving the piezoresistance of the Gr/PVDF nanocomposite through the infrared annealing process. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Advanced Technology)
Show Figures

Figure 1

17 pages, 4958 KB  
Article
Characterizing the Sensing Response of Carbon Nanocomposite-Based Wearable Sensors on Elbow Joint Using an End Point Robot and Virtual Reality
by Amit Chaudhari, Rakshith Lokesh, Vuthea Chheang, Sagar M. Doshi, Roghayeh Leila Barmaki, Joshua G. A. Cashaback and Erik T. Thostenson
Sensors 2024, 24(15), 4894; https://doi.org/10.3390/s24154894 - 28 Jul 2024
Cited by 1 | Viewed by 2391
Abstract
Physical therapy is often essential for complete recovery after injury. However, a significant population of patients fail to adhere to prescribed exercise regimens. Lack of motivation and inconsistent in-person visits to physical therapy are major contributing factors to suboptimal exercise adherence, slowing the [...] Read more.
Physical therapy is often essential for complete recovery after injury. However, a significant population of patients fail to adhere to prescribed exercise regimens. Lack of motivation and inconsistent in-person visits to physical therapy are major contributing factors to suboptimal exercise adherence, slowing the recovery process. With the advancement of virtual reality (VR), researchers have developed remote virtual rehabilitation systems with sensors such as inertial measurement units. A functional garment with an integrated wearable sensor can also be used for real-time sensory feedback in VR-based therapeutic exercise and offers affordable remote rehabilitation to patients. Sensors integrated into wearable garments offer the potential for a quantitative range of motion measurements during VR rehabilitation. In this research, we developed and validated a carbon nanocomposite-coated knit fabric-based sensor worn on a compression sleeve that can be integrated with upper-extremity virtual rehabilitation systems. The sensor was created by coating a commercially available weft knitted fabric consisting of polyester, nylon, and elastane fibers. A thin carbon nanotube composite coating applied to the fibers makes the fabric electrically conductive and functions as a piezoresistive sensor. The nanocomposite sensor, which is soft to the touch and breathable, demonstrated high sensitivity to stretching deformations, with an average gauge factor of ~35 in the warp direction of the fabric sensor. Multiple tests are performed with a Kinarm end point robot to validate the sensor for repeatable response with a change in elbow joint angle. A task was also created in a VR environment and replicated by the Kinarm. The wearable sensor can measure the change in elbow angle with more than 90% accuracy while performing these tasks, and the sensor shows a proportional resistance change with varying joint angles while performing different exercises. The potential use of wearable sensors in at-home virtual therapy/exercise was demonstrated using a Meta Quest 2 VR system with a virtual exercise program to show the potential for at-home measurements. Full article
(This article belongs to the Special Issue Advances in Sensor Technologies for Wearable Applications)
Show Figures

Figure 1

3 pages, 3477 KB  
Abstract
Mechanochemical Approach to Carbon Nanotubes-Based Piezoresistive Sensors’ Fabrication
by Elisabetta Primiceri, Anna Grazia Monteduro, Francesco Montagna, Maria Serena Chiriacò, Francesco Ferrara, Mariaenrica Frigione, Giuseppe Maruccio and Antonio Turco
Proceedings 2024, 97(1), 218; https://doi.org/10.3390/proceedings2024097218 - 27 May 2024
Viewed by 1168
Abstract
The development of 3D porous nanocarbon composites has improved the performance of piezoresistive sensors. However, the functionalization and surface distribution of nanocarbon may limit conductivity and mechanical stability. In this study, a mechanochemical approach was developed to create an elastomeric/CNTs 3D porous nanocomposite. [...] Read more.
The development of 3D porous nanocarbon composites has improved the performance of piezoresistive sensors. However, the functionalization and surface distribution of nanocarbon may limit conductivity and mechanical stability. In this study, a mechanochemical approach was developed to create an elastomeric/CNTs 3D porous nanocomposite. By changing parameters such as CNT length and polymer amount, different composites with improved piezoresistive properties can be produced for wearables or fluidic devices. The material can withstand compressive stress up to 150 Kpa and has a sensitivity of up to 330 Kpa−1 and a limit of detection of 0.2 Pa and 50 nm for pressure and extension, respectively. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

15 pages, 7286 KB  
Article
Improvement of the Piezoresistive Behavior of Poly (vinylidene fluoride)/Carbon Nanotube Composites by the Addition of Inorganic Semiconductor Nanoparticles
by Müslüm Kaplan, Emre Alp, Beate Krause and Petra Pötschke
Materials 2024, 17(4), 774; https://doi.org/10.3390/ma17040774 - 6 Feb 2024
Cited by 4 | Viewed by 2383
Abstract
Conductive polymer composites (CPCs), obtained by incorporating conductive fillers into a polymer matrix, are suitable for producing strain sensors for structural health monitoring (SHM) in infrastructure. Here, the effect of the addition of inorganic semiconductor nanoparticles (INPs) to a poly (vinylidene fluoride) (PVDF) [...] Read more.
Conductive polymer composites (CPCs), obtained by incorporating conductive fillers into a polymer matrix, are suitable for producing strain sensors for structural health monitoring (SHM) in infrastructure. Here, the effect of the addition of inorganic semiconductor nanoparticles (INPs) to a poly (vinylidene fluoride) (PVDF) composite filled with multi-walled carbon nanotubes (MWCNTs) on the piezoresistive behavior is investigated. INPs with different morphologies and sizes are synthesized by a hydrothermal method. The added inorganic oxide semiconductors showed two distinct morphologies, including different phases. While particles with flower-like plate morphology contain phases of orth-ZnSnO3 and SnO, the cauliflower-like nanoparticles contain these metal oxides and ZnO. The nanoparticles are characterized by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), and the nanocomposites by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Cyclic tensile testing is applied to determine the strain-sensing behavior of PVDF/1 wt% MWCNT nanocomposites with 0–10 wt% inorganic nanoparticles. Compared to the PVDF/1 wt% MWCNT nanocomposite, the piezoresistive sensitivity is higher after the addition of both types of nanoparticles and increases with their amount. Thereby, nanoparticles with flower-like plate structures improve strain sensing behavior slightly more than nanoparticles with cauliflower-like structures. The thermogravimetric analysis results showed that the morphology of the semiconductor nanoparticles added to the PVDF/MWCNT matrix influences the changes in thermal properties. Full article
(This article belongs to the Special Issue Sensing and Monitoring Technologies in Composite Materials)
Show Figures

Graphical abstract

13 pages, 4473 KB  
Article
Knittle Pressure Sensor Based on Graphene/Polyvinylidene Fluoride Nanocomposite Coated on Polyester Fabric
by Surendra Maharjan, Victor K. Samoei, Ahalapitiya H. Jayatissa, Joo-Hyong Noh and Keiichiro Sano
Materials 2023, 16(22), 7087; https://doi.org/10.3390/ma16227087 - 8 Nov 2023
Cited by 5 | Viewed by 1616
Abstract
In this paper, a knittle pressure sensor was designed and fabricated by coating graphene/Polyvinylidene Fluoride nanocomposite on the knitted polyester substrate. The coating was carried out by a dip-coating method in a nanocomposite solution. The microstructure, surface properties and electrical properties of coated [...] Read more.
In this paper, a knittle pressure sensor was designed and fabricated by coating graphene/Polyvinylidene Fluoride nanocomposite on the knitted polyester substrate. The coating was carried out by a dip-coating method in a nanocomposite solution. The microstructure, surface properties and electrical properties of coated layers were investigated. The sensors were tested under the application of different pressures, and the corresponding sensor signals were analyzed in terms of resistance change. It was observed that the change in resistance was 55% kPa−1 with a sensitivity limit of 0.25 kPa. The sensor model was created and simulated using COMSOL Multiphysics software, and the model data were favorably compared with the experimental results. This investigation suggests that graphene-based nanocomposites can be used in knittle pressure sensor applications. Full article
Show Figures

Figure 1

Back to TopTop