Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (421)

Search Parameters:
Keywords = piezoelectric vibration energy harvesters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2756 KB  
Article
Triboelectric-Enhanced Piezoelectric Nanogenerator with Pressure-Processed Multi-Electrospun Fiber-Based Polymeric Layer for Wearable and Flexible Electronics
by Inkyum Kim, Jonghyeon Yun, Geunchul Kim and Daewon Kim
Polymers 2025, 17(17), 2295; https://doi.org/10.3390/polym17172295 (registering DOI) - 25 Aug 2025
Abstract
A triboelectricity-enhanced piezoelectric nanogenerator (PENG) based on pressure-processed multi-electrospun polymeric layers is herein developed for efficient vibrational energy harvesting. The hybridization of piezoelectric and triboelectric mechanisms through electrospinning has been utilized to enhance electrical output by increasing contact areas and promoting alignment within [...] Read more.
A triboelectricity-enhanced piezoelectric nanogenerator (PENG) based on pressure-processed multi-electrospun polymeric layers is herein developed for efficient vibrational energy harvesting. The hybridization of piezoelectric and triboelectric mechanisms through electrospinning has been utilized to enhance electrical output by increasing contact areas and promoting alignment within piezoelectric materials. A multi-layer structure comprising alternating poly (vinylidene fluoride) (PVDF) and poly (hexamethylene adipamide) (PA 6/6) exhibits superior electrical performance. A lateral Janus configuration, providing distinct positive and negative triboelectric polarities, has further optimized device efficiency. This approach introduces a novel operational mechanism, enabling superior performance compared to conventional methods. The fiber-based architecture ensures exceptional flexibility, low weight, and a high surface-to-volume ratio, enabling enhanced energy harvesting. Experimentally, the PENG achieved an open-circuit voltage of 14.59 V, a short-circuit current of 205.7 nA, and a power density of 7.5 mW m−2 at a resistance of 30 MΩ with a five-layer structure subjected to post-processing under pressure. A theoretical model has mathematically elucidated the output results. Long-term durability (over 345,600 cycles) has confirmed its robustness. Demonstrations of practical applications include monitoring human joint motion and respiratory activity. These results highlight the potential of the proposed triboelectricity-enhanced PENG for vibrational energy harvesting in flexible and wearable electronic systems. Full article
(This article belongs to the Special Issue Advances in Polymer Composites for Nanogenerator Applications)
Show Figures

Figure 1

22 pages, 5990 KB  
Article
An Integrated Quasi-Zero-Stiffness Mechanism with Arrayed Piezoelectric Cantilevers for Low-Frequency Vibration Isolation and Broadband Energy Harvesting
by Kangkang Guo, Anjie Sun and Junhai He
Sensors 2025, 25(16), 5180; https://doi.org/10.3390/s25165180 - 20 Aug 2025
Viewed by 277
Abstract
To address the collaborative demand for low-frequency vibration control and energy recovery, this paper proposes a dual-functional structure integrating low-frequency vibration isolation and broadband energy harvesting. The structure consists of two core components: one is a quasi-zero stiffness (QZS) vibration isolation module composed [...] Read more.
To address the collaborative demand for low-frequency vibration control and energy recovery, this paper proposes a dual-functional structure integrating low-frequency vibration isolation and broadband energy harvesting. The structure consists of two core components: one is a quasi-zero stiffness (QZS) vibration isolation module composed of a linkage-horizontal spring (negative stiffness) and a vertical spring; the other is an energy-harvesting component with an array of parameter-differentiated piezoelectric cantilever beams. Aiming at the conflict between the structural dynamic stiffness approaching zero and broadening the effective working range, this paper establishes a dual-objective optimization function based on the Pareto principle on the basis of static analysis and uses the grid search method combined with actual working conditions to determine the optimal parameter combination. By establishing a multi-degree-of-freedom electromechanical coupling model, the harmonic balance method is used to derive analytical solutions, which are then verified by numerical simulations. The influence laws of external excitations and system parameters on vibration isolation and energy-harvesting performance are quantitatively analyzed. The results show that the optimized structure has an initial vibration isolation frequency below 2 Hz, with a vibration isolation rate exceeding 60% in the 3 to 5 Hz ultra-low frequency range and a minimum transmissibility of the order of 10−2 (vibration isolation rate > 98%). The parameter-differentiated piezoelectric array effectively broadens the energy-harvesting frequency band, which coincides with the vibration isolation range. Synergistic optimization of both performances can be achieved by adjusting system damping, parameters of piezoelectric vibrators, and load resistance. This study provides a theoretical reference for the integrated design of low-frequency vibration control and energy recovery, and its engineering implementation requires further experimental verification. Full article
(This article belongs to the Special Issue Wireless Sensor Networks with Energy Harvesting)
Show Figures

Figure 1

17 pages, 5923 KB  
Article
Study of an Ultra-Low-Frequency Inertial Vibration Energy Harvester with a Frequency Up-Conversion Approach
by Jun Chen, Jieliang Xu, Mingjie Guan, Ziqiao Shen and Zilong Cheng
Micromachines 2025, 16(8), 942; https://doi.org/10.3390/mi16080942 - 16 Aug 2025
Viewed by 312
Abstract
For ultra-low-frequency vibration applications, this study focuses on a piezoelectric energy harvesting system with a spring mass system, utilizing magnetic plucking to up-convert the frequency. The proposed spring mass system includes a spring, a magnet mass with a guide rail, and a fixed [...] Read more.
For ultra-low-frequency vibration applications, this study focuses on a piezoelectric energy harvesting system with a spring mass system, utilizing magnetic plucking to up-convert the frequency. The proposed spring mass system includes a spring, a magnet mass with a guide rail, and a fixed pulley. The spring mass system responds to external ultra-low-frequency excitation and transfers the vibration to the piezoelectric cantilever beam through the magnets, achieving frequency up-conversion. The theoretical model of the designed piezoelectric energy harvesting system is established, and the effects of magnetic forces and potential energy between the magnets are analyzed. Numerical analysis and experimental studies demonstrate that the proposed piezoelectric energy harvesting system can efficiently achieve frequency up-conversion and generate a higher output power under the conditions of sinusoidal excitation at a frequency of 1 Hz and an amplitude of 40 mm. The system exhibits its highest power output with a magnetic distance of 15 mm, resulting in a maximum output power of 57.35 μW. Finally, to verify the performance of the designed energy harvester in low-velocity water flow, a series of underwater experiments were carried out. The results show that the designed harvester can generate an output power of 23.73 μW with optimal resistance of 250 kΩ at a flow rate of 0.371 m/s. The designed structure is well suited for energy harvesting in flow-induced vibration in low-velocity water flow. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

15 pages, 9509 KB  
Article
A Raindrop Energy Harvester for Application to Microrobots
by Xibin Li, Lianjian Luo, Chenghua Tian, Chuan Zhou, Bo Huang, Rujun Song and Junlong Guo
Energies 2025, 18(16), 4233; https://doi.org/10.3390/en18164233 - 8 Aug 2025
Viewed by 261
Abstract
The limitations of traditional fossil fuels have prompted researchers to develop new renewable energy technologies. Raindrop impact energy has become a research hotspot in the field of energy harvesting due to its wide distribution and renewability, especially in the self-energy supply of microrobots. [...] Read more.
The limitations of traditional fossil fuels have prompted researchers to develop new renewable energy technologies. Raindrop impact energy has become a research hotspot in the field of energy harvesting due to its wide distribution and renewability, especially in the self-energy supply of microrobots. The energy harvester is installed on the robot, utilizing piezoelectric-energy-harvesting technology to achieve self-energy supply for the robot, but the efficiency of existing raindrop energy harvesters is unsatisfactory. In order to better collect the impact energy of raindrops and broaden the application of piezoelectric energy harvesters in the field of autonomous energy supply of robots, inspired by the vibration generated by raindrop excitation of plant leaves in nature, a raindrop energy harvester for autonomous energy supply for robots was proposed through the bionic leaf design, a mathematical model was established for numerical simulation analysis, and the effects of excitation position, excitation height, petiole length and excitation rate on the output performance of the harvester were analyzed. Numerical simulation and experimental test results show that the piezoelectric energy harvester has a higher output at the excitation position at the tip. The higher the excitation height of the water droplet, the higher the output voltage. Increasing the length of the petiole can significantly improve its performance output, and at the same time, the raindrop excitation rate will also affect its output to a certain extent. Full article
(This article belongs to the Special Issue Innovations and Applications in Piezoelectric Energy Harvesting)
Show Figures

Figure 1

23 pages, 11560 KB  
Article
An N-Shaped Beam Symmetrical Vibration Energy Harvester for Structural Health Monitoring of Aviation Pipelines
by Xutao Lu, Yingwei Qin, Zihao Jiang and Jing Li
Micromachines 2025, 16(8), 858; https://doi.org/10.3390/mi16080858 - 25 Jul 2025
Viewed by 321
Abstract
Wireless sensor networks provide a solution for structural health monitoring of aviation pipelines. In the installation environment of aviation pipelines, widespread vibrations can be utilized to extract energy through vibration energy harvesting technology to achieve self-powering of sensors. This study analyzed the vibration [...] Read more.
Wireless sensor networks provide a solution for structural health monitoring of aviation pipelines. In the installation environment of aviation pipelines, widespread vibrations can be utilized to extract energy through vibration energy harvesting technology to achieve self-powering of sensors. This study analyzed the vibration characteristics of aviation pipeline structures. The vibration characteristics and influencing factors of typical aviation pipeline structures were obtained through simulations and experiments. An N-shaped symmetric vibration energy harvester was designed considering the limited space in aviation pipeline structures. To improve the efficiency of electrical energy extraction from the vibration energy harvester, expand its operating frequency band, and achieve efficient vibration energy harvesting, this study first analyzed its natural frequency characteristics through theoretical analysis. Finite element simulation software was then used to analyze the effects of the external excitation acceleration direction, mass and combination of counterweights, piezoelectric sheet length, and piezoelectric material placement on the output power of the energy harvester. The structural parameters of the vibration energy harvester were optimized, and the optimal working conditions were determined. The experimental results indicate that the N-shaped symmetric vibration energy harvester designed and optimized in this study improves the efficiency of vibration energy harvesting and can be arranged in the limited space of aviation pipeline structures. It achieves efficient energy harvesting under multi-modal conditions, different excitation directions, and a wide operating frequency band, thus meeting the practical application requirement and engineering feasibility of aircraft design. Full article
(This article belongs to the Special Issue Micro-Energy Harvesting Technologies and Self-Powered Sensing Systems)
Show Figures

Figure 1

19 pages, 474 KB  
Review
A Review on the Technologies and Efficiency of Harvesting Energy from Pavements
by Shijing Chen, Luxi Wei, Chan Huang and Yinghong Qin
Energies 2025, 18(15), 3959; https://doi.org/10.3390/en18153959 - 24 Jul 2025
Viewed by 759
Abstract
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) [...] Read more.
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) systems, vibration-based harvesting, thermoelectric generators (TEGs)—focusing on their principles, efficiencies, and urban applications. ASCs achieve up to 30% efficiency with a 150–300 W/m2 output, reducing pavement temperatures by 0.5–3.2 °C, while PV pavements yield 42–49% efficiency, generating 245 kWh/m2 and lowering temperatures by an average of 6.4 °C. Piezoelectric transducers produce 50.41 mW under traffic loads, and TEGs deliver 0.3–5.0 W with a 23 °C gradient. Applications include powering sensors, streetlights, and de-icing systems, with ASCs extending pavement life by 3 years. Hybrid systems, like PV/T, achieve 37.31% efficiency, enhancing UHI mitigation and emissions reduction. Economically, ASCs offer a 5-year payback period with a USD 3000 net present value, though PV and piezoelectric systems face cost and durability challenges. Environmental benefits include 30–40% heat retention for winter use and 17% increased PV self-use with EV integration. Despite significant potential, high costs and scalability issues hinder adoption. Future research should optimize designs, develop adaptive materials, and validate systems under real-world conditions to advance sustainable urban infrastructure. Full article
Show Figures

Figure 1

28 pages, 3506 KB  
Review
A Review of Electromagnetic Wind Energy Harvesters Based on Flow-Induced Vibrations
by Yidan Zhang, Shen Li, Weilong Wang, Pengfei Zen, Chunlong Li, Yizhou Ye and Xuefeng He
Energies 2025, 18(14), 3835; https://doi.org/10.3390/en18143835 - 18 Jul 2025
Viewed by 399
Abstract
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based [...] Read more.
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based wind energy harvesting has emerged as a promising approach. Electromagnetic FIV wind energy harvesters (WEHs) show great potential for realistic applications due to their excellent durability and stability. However, electromagnetic WEHs remain less studied than piezoelectric WEHs, with few dedicated review articles available. This review analyzes the working principle, device structure, and performance characteristics of electromagnetic WEHs based on vortex-induced vibration, galloping, flutter, wake galloping vibration, and Helmholtz resonator. The methods to improve the output power, broaden the operational wind speed range, broaden the operational wind direction range, and enhance the durability are then discussed, providing some suggestions for the development of high-performance electromagnetic FIV WEHs. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

33 pages, 4996 KB  
Article
Rain-Induced Vibration Energy Harvesting Using Nonlinear Plates with Piezoelectric Integration and Power Management
by Yi-Ren Wang, Wei Ting Lin and Bo-Jang Huang
Sensors 2025, 25(14), 4347; https://doi.org/10.3390/s25144347 - 11 Jul 2025
Viewed by 486
Abstract
Vibration energy offers promising potential for renewable energy harvesting, especially in conditions where conventional sources such as solar power may be limited or intermittent. This study proposes a rain energy harvester (REH) that converts the kinetic energy of raindrops into electrical energy using [...] Read more.
Vibration energy offers promising potential for renewable energy harvesting, especially in conditions where conventional sources such as solar power may be limited or intermittent. This study proposes a rain energy harvester (REH) that converts the kinetic energy of raindrops into electrical energy using nonlinear thin plates, integrated with piezoelectric elements. Two plate configurations—fully hinged (H-H-H-H) and clamped–hinged–free–hinged (C-H-F-H)—are investigated. Theoretical modeling and simulation results are compared with experimental data, with special attention paid to the role of slapping forces in improving prediction accuracy. A power management system is also introduced to stabilize and regulate the harvested voltage. Results confirm the feasibility of rain-induced energy harvesting, showing potential for application in rain-prone areas and integration with existing infrastructure such as solar panels, tents, or canopies. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting and Sensor Systems)
Show Figures

Figure 1

21 pages, 1070 KB  
Article
Modeling Hysteretically Nonlinear Piezoelectric Composite Beams
by Abdulaziz H. Alazemi and Andrew J. Kurdila
Vibration 2025, 8(3), 37; https://doi.org/10.3390/vibration8030037 - 6 Jul 2025
Viewed by 295
Abstract
This paper presents a modeling framework for hysteretically nonlinear piezoelectric composite beams using functional differential equations (FDEs). While linear piezoelectric models are well established, they fail to capture the complex nonlinear behaviors that emerge at higher electric field strengths, particularly history-dependent hysteresis effects. [...] Read more.
This paper presents a modeling framework for hysteretically nonlinear piezoelectric composite beams using functional differential equations (FDEs). While linear piezoelectric models are well established, they fail to capture the complex nonlinear behaviors that emerge at higher electric field strengths, particularly history-dependent hysteresis effects. This paper develops a cascade model that integrates a high-dimensional linear piezoelectric composite beam representation with a nonlinear Krasnosel’skii–Pokrovskii (KP) hysteresis operator. The resulting system is formulated using a state-space model where the input voltage undergoes a history-dependent transformation. Through modal expansion and discretization of the Preisach plane, we derive a tractable numerical implementation that preserves essential nonlinear phenomena. Numerical investigations demonstrate how system parameters, including the input voltage amplitude, and hysteresis parameters significantly influence the dynamic response, particularly the shape and amplitude of limit cycles. The results reveal that while the model accurately captures memory-dependent nonlinearities, it depends on numerous real and distributed parameters, highlighting the need for efficient reduced-order modeling approaches. This work provides a foundation for understanding and predicting the complex behavior of piezoelectric systems with hysteresis, with potential applications in vibration control, energy harvesting, and precision actuation. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

22 pages, 5129 KB  
Article
A Dynamic Analysis of a Cantilever Piezoelectric Vibration Energy Harvester with Maximized Electric Polarization Due to the Optimal Shape of the Thickness for First Eigen Frequency
by Paulius Skėrys and Rimvydas Gaidys
Appl. Sci. 2025, 15(13), 7525; https://doi.org/10.3390/app15137525 - 4 Jul 2025
Viewed by 413
Abstract
This study presents an analytical and experimental approach to enhance cantilever-based piezoelectric energy harvesters by optimizing thickness distribution. Using a gradient projection algorithm within a state-space framework, the unimorph beam’s geometry is tailored while constraining the first natural frequency. The objective is to [...] Read more.
This study presents an analytical and experimental approach to enhance cantilever-based piezoelectric energy harvesters by optimizing thickness distribution. Using a gradient projection algorithm within a state-space framework, the unimorph beam’s geometry is tailored while constraining the first natural frequency. The objective is to amplify axial strain within the piezoelectric layers, thereby increasing electric polarization and maximizing the conversion efficiency of mechanical vibrations into electrical energy. The steady-state response under harmonic base excitation at resonance was modeled to evaluate the harvester’s dynamic behavior against uniform-thickness counterparts. Results show that the optimized beam achieves significantly higher output voltage and energy harvesting efficiency. Simulations reveal effective strain concentration in regions of high piezoelectric sensitivity, enhancing power generation under resonant conditions. Two independent experimental setups were employed for empirical validation: a non-contact laser vibrometry system (Polytec 3D) and a first resonant base excitation setup. Eigenfrequencies matched within 5% using a Polytec multipath interferometry system, and constant excitation tests showed approximately 30% higher in optimal shapes electrical potential value generation. The outcome of this study highlights the efficacy of geometric tailoring—specifically, non-linear thickness shaping—as a key strategy in achieving enhanced energy output from piezoelectric harvesters operating at their fundamental frequency. This work establishes a practical route for optimizing unimorph structures in real-world applications requiring efficient energy capture from low-frequency ambient vibrations. Full article
Show Figures

Figure 1

16 pages, 3309 KB  
Article
Experimental Study on Multi-Directional Hybrid Energy Harvesting of a Two-Degree-of-Freedom Cantilever Beam
by Minglei Han, Zhiqi Xing, Shuangbin Liu and Xu Yang
Sensors 2025, 25(13), 4033; https://doi.org/10.3390/s25134033 - 28 Jun 2025
Viewed by 2808
Abstract
Based on the research of the directional self-adaptive piezoelectric energy harvester (DSPEH), a structural design scheme of a multi-directional hybrid energy harvester (MHEH) is put forward. The working principle of the MHEH is experimentally studied. A prototype is designed and manufactured, and the [...] Read more.
Based on the research of the directional self-adaptive piezoelectric energy harvester (DSPEH), a structural design scheme of a multi-directional hybrid energy harvester (MHEH) is put forward. The working principle of the MHEH is experimentally studied. A prototype is designed and manufactured, and the output characteristics of the MHEH in vibrational degree of freedom (DOF) and rotational DOF are experimentally studied. Compared with the DSPEH, after adding the electromagnetic energy harvesting module, the MHEH effectively uses the rotational energy in the rotational DOF, achieves simultaneous energy harvesting from one excitation through two mechanisms, and the output power of the electromagnetic module reaches 61 μW. The total power of the system is increased by 10 times, the power density is increased by 500%, and the MHEH has high voltage output characteristics in multiple directions. Compared with traditional multi-directional and self-adaptive energy harvesters, the MHEH utilizes a reverse-thinking method to generate continuous rotational motion of the cantilever beam, thus eliminating the influence of external excitation direction on the normal vibration of the cantilever beam. In addition, the MHEH has achieved hybrid energy harvesting with a single cantilever beam and multiple mechanisms, providing new ideas for multi-directional energy harvesting. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

37 pages, 16852 KB  
Review
Advances in Interface Circuits for Self-Powered Piezoelectric Energy Harvesting Systems: A Comprehensive Review
by Abdallah Al Ghazi, Achour Ouslimani and Abed-Elhak Kasbari
Sensors 2025, 25(13), 4029; https://doi.org/10.3390/s25134029 - 28 Jun 2025
Viewed by 913
Abstract
This paper presents a comprehensive summary of recent advances in circuit topologies for piezoelectric energy harvesting, leading to self-powered systems (SPSs), covering the full-bridge rectifier (FBR) and half-bridge rectifier (HBR), AC-DC converters, and maximum power point tracking (MPPT) techniques. These approaches are analyzed [...] Read more.
This paper presents a comprehensive summary of recent advances in circuit topologies for piezoelectric energy harvesting, leading to self-powered systems (SPSs), covering the full-bridge rectifier (FBR) and half-bridge rectifier (HBR), AC-DC converters, and maximum power point tracking (MPPT) techniques. These approaches are analyzed with respect to their advantages, limitations, and overall impact on energy harvesting efficiency. Th work explores alternative methods that leverage phase shifting between voltage and current waveform components to enhance conversion performance. Additionally, it provides detailed insights into advanced design strategies, including adaptive power management algorithms, low-power control techniques, and complex impedance matching. The paper also addresses the fundamental principles and challenges of converting mechanical vibrations into electrical energy. Experimental results and performance metrics are reviewed, particularly in relation to hybrid approaches, load impedance, vibration frequency, and power conditioning requirements in energy harvesting systems. This review aims to provide researchers and engineers with a critical understanding of the current state of the art, key challenges, and emerging opportunities in piezoelectric energy harvesting. By examining recent developments, it offers valuable insights into optimizing interface circuit design for the development of efficient and self-sustaining piezoelectric energy harvesting systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 2046 KB  
Article
An Analytical Solution for Energy Harvesting Using a High-Order Shear Deformation Model in Functionally Graded Beams Subjected to Concentrated Moving Loads
by Sy-Dan Dao, Dang-Diem Nguyen, Trong-Hiep Nguyen and Ngoc-Lam Nguyen
Modelling 2025, 6(3), 55; https://doi.org/10.3390/modelling6030055 - 25 Jun 2025
Viewed by 385
Abstract
This study presents a high-order shear deformation theory (HSDT)-based model for evaluating the energy harvesting performance of functionally graded material (FGM) beams integrated with a piezoelectric layer and subjected to a moving concentrated load at constant velocity. The governing equations are derived using [...] Read more.
This study presents a high-order shear deformation theory (HSDT)-based model for evaluating the energy harvesting performance of functionally graded material (FGM) beams integrated with a piezoelectric layer and subjected to a moving concentrated load at constant velocity. The governing equations are derived using Hamilton’s principle, and the dynamic response is obtained through the State Function Method with trigonometric mode shapes. The output voltage and harvested power are calculated based on piezoelectric constitutive relations. A comparative analysis with homogeneous isotropic beams demonstrates that HSDT yields more accurate predictions than the Classical Beam Theory (CBT), especially for thick beams; for instance, at a span-to-thickness ratio of h/L = 12.5, HSDT predicts increases of approximately 6%, 7%, and 12% in displacement, voltage, and harvested power, respectively, compared to CBT. Parametric studies further reveal that increasing the load velocity significantly enhances the strain rate in the piezoelectric layer, resulting in higher voltage and power output, with the latter exhibiting quadratic growth. Moreover, increasing the material gradation index n reduces the beam’s effective stiffness, which amplifies vibration amplitudes and improves energy conversion efficiency. These findings underscore the importance of incorporating shear deformation and material gradation effects in the design and optimization of piezoelectric energy harvesting systems using FGM beams subjected to dynamic loading. Full article
Show Figures

Figure 1

19 pages, 2403 KB  
Article
Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester
by Ivo Yotov, Georgi Todorov, Todor Gavrilov and Todor Todorov
Energies 2025, 18(13), 3341; https://doi.org/10.3390/en18133341 - 25 Jun 2025
Viewed by 309
Abstract
This study examines how the frequency of an innovative energy harvester is tuned and how it behaves. This harvester transforms thermal energy into mechanical oscillations of two polyvinylidene fluoride (PVDF) piezoelectric beams, which produce electrical energy via a shape memory alloy (SMA) thread. [...] Read more.
This study examines how the frequency of an innovative energy harvester is tuned and how it behaves. This harvester transforms thermal energy into mechanical oscillations of two polyvinylidene fluoride (PVDF) piezoelectric beams, which produce electrical energy via a shape memory alloy (SMA) thread. The oscillation frequency is modified by two magnetic weights that are positioned symmetrically on the SMA thread and interact with stationary NdFeB permanent magnets. The SMA thread shifts laterally due to longitudinal thermal contraction and expansion induced by a constant-temperature heater. Temperature gradients above the heater trigger cyclical variations in the length of the SMA thread, leading to autonomous vibrations of the masses in both the vertical and horizontal planes. An experimental apparatus was constructed to analyze the harvester by tracking the motions of the masses and the voltages produced by the piezoelectric beams. Information was gathered regarding the correlation between output voltage and power with the consumer’s load resistance. These outcomes were confirmed using a multiphysics dynamic simulation that incorporated the interconnections among mechanical, thermal, magnetic, and electrical systems. The findings indicate that the use of permanent magnets increases the bending vibration frequency from 8.3 Hz to 9.2 Hz. For a heater maintained at 70 °C, this boosts the output power from 1.9 µW to 8.18 µW. A notable property of the considered energy harvester configuration is its ability to operate at cryogenic temperatures. Full article
Show Figures

Figure 1

21 pages, 2977 KB  
Article
Performance Analysis of Piezoelectric Energy Harvesting System Under Varying Bluff Body Masses and Diameters—Experimental Study and Validation with 0–1 Test
by Paweł Karpiński, Bartłomiej Ambrożkiewicz, Zbigniew Czyż and Grzegorz Litak
Appl. Sci. 2025, 15(13), 6972; https://doi.org/10.3390/app15136972 - 20 Jun 2025
Viewed by 619
Abstract
This study presents the experimental results of an energy harvesting system comprising a cylindrical bluff body coupled with a cantilever beam. A piezoelectric sensor was installed on the beam to generate electrical voltage during the object’s vibrations at the beam’s free end. The [...] Read more.
This study presents the experimental results of an energy harvesting system comprising a cylindrical bluff body coupled with a cantilever beam. A piezoelectric sensor was installed on the beam to generate electrical voltage during the object’s vibrations at the beam’s free end. The research aimed to evaluate the impact of the bluff body’s mass and diameter on the efficiency of the piezoelectric energy harvesting system. Vibrations of the test object were induced by airflow within a chamber of a closed-loop wind tunnel. Five different bluff body masses were analyzed for each of three cylindrical diameters across an airflow velocity range of 1 m/s to 10 m/s. These experiments allowed for the recording of a series of voltage signals over time. The signals were then subjected to Fast Fourier Transform (FFT) analysis. Subsequently, the relationship between vibration frequency and airflow velocity was examined. The peak-to-peak voltage value was also analyzed to provide an overall assessment of the energy harvesting efficiency of the system under investigation. Finally, the 0–1 test for chaos was additionally employed as a diagnostic tool to assess the complexity of system dynamics based on time series data. This test allowed for distinguishing between oscillatory behavior and cases where the system became trapped in a potential well, revealing key transitions in dynamic regimes. Full article
(This article belongs to the Special Issue Nonlinear Vibration Analysis of Smart Materials)
Show Figures

Figure 1

Back to TopTop