Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = piezoelectric nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 19225 KiB  
Review
Recent Progress in Flexible Wearable Sensors Utilizing Conductive Hydrogels for Sports Applications: Characteristics, Mechanisms, and Modification Strategies
by Jie Wu, Jingya Hong, Xing Gao, Yutong Wang, Wenyan Wang, Hongchao Zhang, Jaeyoung Park, Weiquan Shi and Wei Guo
Gels 2025, 11(8), 589; https://doi.org/10.3390/gels11080589 - 30 Jul 2025
Viewed by 183
Abstract
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently [...] Read more.
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently required to resolve. Consequently, this paper comprehensively reviews the recent advancements in conductive hydrogel-based flexible wearable sensors for sports applications. The paper examines the conductivity, self-adhesion, self-repair, and biocompatibility of conductive hydrogels, along with detailed analyses of their working principles in resistance, capacitance, piezoelectric, and battery-based sensing mechanisms. Additionally, the paper summarizes innovative strategies to enhance sensor performance through polymer blending, polyelectrolyte doping, inorganic salt doping, and nanomaterial integration. Furthermore, the paper highlights the latest applications of conductive hydrogel flexible wearable sensors in human motion monitoring, electrophysiological signal detection, and electrochemical biosignal monitoring. Finally, the paper provides an in-depth discussion of the advantages and limitations of existing technologies, offering valuable insights and new perspectives for future research directions. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

27 pages, 3540 KiB  
Article
Multi-Objective Optimization of IME-Based Acoustic Tweezers for Mitigating Node Displacements
by Hanjui Chang, Yue Sun, Fei Long and Jiaquan Li
Polymers 2025, 17(15), 2018; https://doi.org/10.3390/polym17152018 - 24 Jul 2025
Viewed by 265
Abstract
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded [...] Read more.
Acoustic tweezers, as advanced micro/nano manipulation tools, play a pivotal role in biomedical engineering, microfluidics, and precision manufacturing. However, piezoelectric-based acoustic tweezers face performance limitations due to multi-physical coupling effects during microfabrication. This study proposes a novel approach using injection molding with embedded electronics (IMEs) technology to fabricate piezoelectric micro-ultrasonic transducers with micron-scale precision, addressing the critical issue of acoustic node displacement caused by thermal–mechanical coupling in injection molding—a problem that impairs wave transmission efficiency and operational stability. To optimize the IME process parameters, a hybrid multi-objective optimization framework integrating NSGA-II and MOPSO is developed, aiming to simultaneously minimize acoustic node displacement, volumetric shrinkage, and residual stress distribution. Key process variables—packing pressure (80–120 MPa), melt temperature (230–280 °C), and packing time (15–30 s)—are analyzed via finite element modeling (FEM) and validated through in situ tie bar elongation measurements. The results show a 27.3% reduction in node displacement amplitude and a 19.6% improvement in wave transmission uniformity compared to conventional methods. This methodology enhances acoustic tweezers’ operational stability and provides a generalizable framework for multi-physics optimization in MEMS manufacturing, laying a foundation for next-generation applications in single-cell manipulation, lab-on-a-chip systems, and nanomaterial assembly. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

12 pages, 3755 KiB  
Article
Effects of Processing Parameters on the Structure and Mechanical Property of PVDF/BN Nanofiber Yarns
by Jincheng Gui, Xu Liu and Hao Dou
Polymers 2025, 17(14), 1931; https://doi.org/10.3390/polym17141931 - 13 Jul 2025
Viewed by 352
Abstract
The increasing demand for light and comfort smart wearable devices has promoted the cross-integration of textile technology with nanomaterials and nanotechnology. As a potential candidate with excellent piezoelectricity, PVDF has been processed into different forms used for flexible sensors but shows limited practicality [...] Read more.
The increasing demand for light and comfort smart wearable devices has promoted the cross-integration of textile technology with nanomaterials and nanotechnology. As a potential candidate with excellent piezoelectricity, PVDF has been processed into different forms used for flexible sensors but shows limited practicality due to their discomfort and stiffness from non-yarn level. In this study, PVDF/BN nanofiber yarns (NFYs) were successfully fabricated via conjugated electrospinning. The effects of BN concentration, stretching temperature, and stretching ratio on the structural morphology and mechanical performance of the NFYs were systematically investigated. The results show that under the stretching temperature of 140 °C and stretching ratios of 3.5, smooth 1% PVDF/BN NFYs with highly oriented inner nanofibers can be successfully fabricated, and the breaking strength and elongation of composite NFYs reached 129.5 ± 8.1 MPa and 22.4 ± 3.8%, respectively, 667% higher than the breaking strength of pure PVDF nanoyarns. Hence, with the selection of appropriate nanofiller amounts and optimized post-treatment process, the structure and mechanical property of PVDF NFYs can be significantly improved, and this study provides an effective strategy to fabricate high-performance nanoyarns, which is favorable to potential applications in wearable electronic devices and flexible piezoelectric sensors. Full article
(This article belongs to the Special Issue Electrospinning Techniques and Advanced Polymer Textile Products)
Show Figures

Figure 1

38 pages, 2989 KiB  
Review
Electroactive Polymers for Self-Powered Actuators and Biosensors: Advancing Biomedical Diagnostics Through Energy Harvesting Mechanisms
by Nargish Parvin, Sang Woo Joo, Jae Hak Jung and Tapas Kumar Mandal
Actuators 2025, 14(6), 257; https://doi.org/10.3390/act14060257 - 23 May 2025
Viewed by 1292
Abstract
Electroactive polymers (EAPs) have emerged as versatile materials for self-powered actuators and biosensors, revolutionizing biomedical diagnostics and healthcare technologies. These materials harness various energy harvesting mechanisms, including piezoelectricity, triboelectricity, and ionic conductivity, to enable real-time, energy-efficient, and autonomous sensing and actuation without external [...] Read more.
Electroactive polymers (EAPs) have emerged as versatile materials for self-powered actuators and biosensors, revolutionizing biomedical diagnostics and healthcare technologies. These materials harness various energy harvesting mechanisms, including piezoelectricity, triboelectricity, and ionic conductivity, to enable real-time, energy-efficient, and autonomous sensing and actuation without external power sources. This review explores recent advancements in EAP-based self-powered systems, focusing on their applications in biosensing, soft robotics, and biomedical actuation. The integration of nanomaterials, flexible electronics, and wireless communication technologies has significantly enhanced their sensitivity, durability, and multifunctionality, making them ideal for next-generation wearable and implantable medical devices. Additionally, this review discusses key challenges, including material stability, biocompatibility, and optimization strategies for enhanced performance. Future perspectives on the clinical translation of EAP-based actuators and biosensors are also highlighted, emphasizing their potential to transform smart healthcare and bioelectronic applications. Full article
(This article belongs to the Special Issue Electroactive Polymer (EAP) for Actuators and Sensors Applications)
Show Figures

Figure 1

30 pages, 4468 KiB  
Review
Piezoelectric Nanomaterials for Cancer Therapy: Current Research and Future Perspectives on Glioblastoma
by Zayne Knight, Amalia Ruiz and Jacobo Elies
J. Funct. Biomater. 2025, 16(4), 114; https://doi.org/10.3390/jfb16040114 - 24 Mar 2025
Cited by 4 | Viewed by 1739
Abstract
Cancer significantly impacts human quality of life and life expectancy, with an estimated 20 million new cases and 10 million cancer-related deaths worldwide every year. Standard treatments including chemotherapy, radiotherapy, and surgical removal, for aggressive cancers, such as glioblastoma, are often ineffective in [...] Read more.
Cancer significantly impacts human quality of life and life expectancy, with an estimated 20 million new cases and 10 million cancer-related deaths worldwide every year. Standard treatments including chemotherapy, radiotherapy, and surgical removal, for aggressive cancers, such as glioblastoma, are often ineffective in late stages. Glioblastoma, for example, is known for its poor prognosis post-diagnosis, with a median survival time of approximately 15 months. Novel therapies using local electric fields have shown anti-tumour effects in glioblastoma by disrupting mitotic spindle assembly and inhibiting cell growth. However, constant application poses risks like patient burns. Wireless stimulation via piezoelectric nanomaterials offers a safer alternative, requiring ultrasound activation to induce therapeutic effects, such as altering voltage-gated ion channel conductance by depolarising membrane potentials. This review highlights the piezoelectric mechanism, drug delivery, ion channel activation, and current technologies in cancer therapy, emphasising the need for further research to address limitations like biocompatibility in whole systems. The goal is to underscore these areas to inspire new avenues of research and overcome barriers to developing piezoelectric nanoparticle-based cancer therapies. Full article
(This article belongs to the Special Issue Medical Application of Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

39 pages, 2817 KiB  
Review
Advances in Biosensor Applications of Metal/Metal-Oxide Nanoscale Materials
by Md Abdus Subhan, Newton Neogi, Kristi Priya Choudhury and Mohammed M. Rahman
Chemosensors 2025, 13(2), 49; https://doi.org/10.3390/chemosensors13020049 - 3 Feb 2025
Cited by 4 | Viewed by 3059
Abstract
Biosensing shows promise in detecting cancer, renal disease, and other illnesses. Depending on their transducing processes, varieties of biosensors can be divided into electrochemical, optical, piezoelectric, and thermal biosensors. Advancements in material production techniques, enzyme/protein designing, and immobilization/conjugation approaches can yield novel nanoparticles [...] Read more.
Biosensing shows promise in detecting cancer, renal disease, and other illnesses. Depending on their transducing processes, varieties of biosensors can be divided into electrochemical, optical, piezoelectric, and thermal biosensors. Advancements in material production techniques, enzyme/protein designing, and immobilization/conjugation approaches can yield novel nanoparticles with further developed functionality. Research in cutting-edge biosensing with multifunctional nanomaterials, and the advancement of practical biochip plans utilizing nano-based sensing material, are of current interest. The miniaturization of electronic devices has enabled the growth of ultracompact, compassionate, rapid, and low-cost sensing technologies. Some sensors can recognize analytes at the molecule, particle, and single biological cell levels. Nanomaterial-based sensors, which can be used for biosensing quickly and precisely, can replace toxic materials in real-time diagnostics. Many metal-based NPs and nanocomposites are favorable for biosensing. Through direct and indirect labeling, metal-oxide NPs are extensively employed in detecting metabolic disorders, such as cancer, diabetes, and kidney-disease biomarkers based on electrochemical, optical, and magnetic readouts. The present review focused on recent developments across multiple biosensing modalities using metal/metal-oxide-based NPs; in particular, we highlighted the specific advancements of biosensing of key nanomaterials like ZnO, CeO2, and TiO2 and their applications in disease diagnostics and environmental monitoring. For example, ZnO-based biosensors recognize uric acid, glucose, cholesterol, dopamine, and DNA; TiO2 is utilized for SARS-CoV-19; and CeO2 for glucose detection. Full article
Show Figures

Figure 1

26 pages, 949 KiB  
Review
Biosensors for Detecting Food Contaminants—An Overview
by António Inês and Fernanda Cosme
Processes 2025, 13(2), 380; https://doi.org/10.3390/pr13020380 - 30 Jan 2025
Cited by 7 | Viewed by 4144
Abstract
Food safety is a pressing global concern due to the risks posed by contaminants such as pesticide residues, heavy metals, allergens, mycotoxins, and pathogenic microorganisms. While accurate, traditional detection methods like ELISA, HPLC, and mass spectrometry are often time-consuming and resource-intensive, highlighting the [...] Read more.
Food safety is a pressing global concern due to the risks posed by contaminants such as pesticide residues, heavy metals, allergens, mycotoxins, and pathogenic microorganisms. While accurate, traditional detection methods like ELISA, HPLC, and mass spectrometry are often time-consuming and resource-intensive, highlighting the need for innovative alternatives. Biosensors based on biological recognition elements such as enzymes, antibodies, and aptamers, offer fast, sensitive, and cost-effective solutions. Using transduction mechanisms like electrochemical, optical, piezoelectric, and thermal systems, biosensors provide versatile tools for detecting contaminants. Advances in DNAzyme- and aptamer-based technologies enable the precise detection of heavy metals, while enzyme- and protein-based biosensors monitor metal-induced changes in biological activity. Innovations like microbial biosensors and DNA-modified electrodes enhance detection accuracy. Biosensors are also highly effective in identifying pesticide residues, allergens, mycotoxins, and pathogens through immunological, enzymatic, and nucleic acid-based techniques. The integration of nanomaterials and bioelectronics has significantly improved the sensitivity and performance of biosensors. By facilitating real-time, on-site monitoring, these devices address the limitations of conventional methods to ensure food quality and regulatory compliance. This review highlights the transformative role of biosensors and how biosensors are improved by emerging technologies in food contamination detection, emphasizing their potential to mitigate public health risks and enhance food safety throughout the supply chain. Full article
Show Figures

Figure 1

17 pages, 4675 KiB  
Article
Piezoelectric-Driven Fenton System Based on Bismuth Ferrite Nanosheets for Removal of N-Acetyl-para-aminophenol in Aqueous Environments
by Chi Zhou, Shenglong Jing, Teng Miao, Nianlai Zhou, Hang Zhang, Yi Zhang, Lin Ge, Wencheng Liu and Zixin Yang
Catalysts 2025, 15(2), 126; https://doi.org/10.3390/catal15020126 - 27 Jan 2025
Viewed by 1064
Abstract
Emerging pollutants, such as N-acetyl-para-aminophenol, pose significant challenges to environmental sustainability, and Bi2Fe2O2 (BFO) nanomaterials are an emerging class of piezoelectric materials. This study presents a novel piezoelectric-driven Fenton system based on Bi2Fe4O [...] Read more.
Emerging pollutants, such as N-acetyl-para-aminophenol, pose significant challenges to environmental sustainability, and Bi2Fe2O2 (BFO) nanomaterials are an emerging class of piezoelectric materials. This study presents a novel piezoelectric-driven Fenton system based on Bi2Fe4O9 nanosheets for the efficient degradation of organic pollutants. BFO nanosheets with varying thicknesses were synthesized, and their piezoelectric properties were confirmed through piezoresponse force microscopy and heavy metal ion reduction experiments. The piezoelectric electrons generated within the BFO nanosheets facilitate the in situ production of hydrogen peroxide, which in turn drives the Fenton-like reaction. Furthermore, the piezoelectric electrons enhance the redox cycling of iron in the Fenton process, boosting the overall catalytic efficiency. The energy band structure of BFO nanosheets is well-suited for this process, enabling efficient hydrogen peroxide generation and promoting Fe3+ reduction. The findings demonstrate that thinner BFO nanosheets exhibit superior piezoelectric activity, leading to enhanced catalytic performance. Additionally, the incorporation of gold nanodots onto BFO nanosheets further boosts their piezocatalytic efficiency, particularly in the reduction of Cr (VI). The system exhibited robust oxidative capacity, stability, and recyclability, with reactive oxygen species (ROS) verified via electron paramagnetic resonance spectroscopy. Overall, BFO nanosheets, with their optimal energy band structure, self-supplied hydrogen peroxide, and enhanced Fe3+ reduction, represent a promising, sustainable solution for advanced oxidation processes in wastewater treatment and other applications. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

32 pages, 6343 KiB  
Review
A Survey of Advanced Materials and Technologies for Energy Harvesting from Roadways
by Yuan Shen Chua, Yongmin Kim, Minghui Li, Gerarldo Davin Aventian and Alfrendo Satyanaga
Electronics 2024, 13(24), 4946; https://doi.org/10.3390/electronics13244946 - 16 Dec 2024
Cited by 2 | Viewed by 2237
Abstract
The reduction in the supply of fossil fuel available, combined with global warming’s effects on the atmosphere, has led to the discovery of employing sustainable energy for everyday activities. Road energy harvesting is one example of sustainable energy that can be used, as [...] Read more.
The reduction in the supply of fossil fuel available, combined with global warming’s effects on the atmosphere, has led to the discovery of employing sustainable energy for everyday activities. Road energy harvesting is one example of sustainable energy that can be used, as the majority of people spend a substantial amount of their daily activities commuting from one location to another, and numerous types of transportation generate heat that can be converted into energy. This alternative energy source can be implemented on the road, considering that roads are critical infrastructure that has a significant effect on a country’s economy. Furthermore, road infrastructure has been contributing towards the affordability of urbanization and migration, whether locally or internationally. Currently, researchers are working towards integrating road energy harvesting around the world by incorporating various types of materials and technology connected via a sensing system. Many materials have been attempted, including ceramics, polymers, lead-free, nanomaterials, single crystals, and composites. Other possible sources to generate energy from roadways, such as solar power, thermal energy, and kinetic energy, have been investigated as well. However, many studies available only focused on the disclosure of novel materials or the review of technologies produced for road energy harvesting. There have been limited studies that focused on a comprehensive review of various materials and technologies and their implications for the performance of road energy harvesting. Hence, the main objective of this research is to undertake a thorough and in-depth review in order to identify the best materials and technologies for certain types of application in road energy harvesting. The paper discusses energy-harvesting technology, sensing systems, and the potential network based on them. Comprehensive analyses were conducted to evaluate in-depth comparisons between different materials and technologies used for road energy harvesting. The novelty of this study is related to the appropriate efficient, durable, and sustainable materials and technologies for their relevant potential application. The results of this review paper are original since it is the first of its kind, and, to the best knowledge of the authors’ knowledge, a similar study is not available in the open literature. Full article
Show Figures

Figure 1

11 pages, 3090 KiB  
Article
Energy Harvesting Using Optimized ZnO Polymer Nanocomposite-Based 3D-Printed Lattice Structure
by Muni Raj Maurya, Mazen Alhamdi, Fawziya Al-Darwish, Faisal Sadek, Yousef Douglas, Nawar Karabili, Allaa Eltayeb, Roohollah Bagherzadeh, Shabi Abbas Zaidi and Kishor Kumar Sadasivuni
Polymers 2024, 16(21), 2967; https://doi.org/10.3390/polym16212967 - 23 Oct 2024
Cited by 1 | Viewed by 1326
Abstract
A 3D-printable polymer can provide an effective solution for developing piezoelectric structures. However, their nanocomposite formulation and 3D printing processability must be optimized for fabricating complex geometries with high printability. In the present study, we optimized the 3D-printable piezoelectric composite formulation for developing [...] Read more.
A 3D-printable polymer can provide an effective solution for developing piezoelectric structures. However, their nanocomposite formulation and 3D printing processability must be optimized for fabricating complex geometries with high printability. In the present study, we optimized the 3D-printable piezoelectric composite formulation for developing complex geometries by an additive manufacturing approach. The zinc oxide (ZnO) nanomaterial was synthesized by the hydrothermal method. The ZnO loading in the 3D-printed flexible resin was optimized to exhibit good interfacial adhesion and enable 3D printing. The lattice structure was fabricated to improve the piezoelectric response compared with the solid structure. The lattice structure block printed with 10 wt% ZnO showed a good piezoelectric response, with a linear increase in the generated output voltage for an increase in force. The maximum power density of 0.065 μW/cm2 was obtained under 12 N force at 1 Hz. The fabricated structure generated a peak–peak voltage of ~3 V with a foot heel strike. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

11 pages, 2015 KiB  
Article
Engineering of LiTaO3 Nanoparticles by Flame Spray Pyrolysis: Understanding In Situ Li-Incorporation into the Ta2O5 Lattice
by Pavlos Psathas, Areti Zindrou, Anastasia V. Spyrou and Yiannis Deligiannakis
Nanomaterials 2024, 14(15), 1257; https://doi.org/10.3390/nano14151257 - 27 Jul 2024
Cited by 2 | Viewed by 1904
Abstract
Lithium tantalate (LiTaO3) perovskite finds wide use in pyroelectric detectors, optical waveguides and piezoelectric transducers, stemming from its good mechanical and chemical stability and optical transparency. Herein, we present a method for synthesis of LiTaO3 nanoparticles using a scalable Flame [...] Read more.
Lithium tantalate (LiTaO3) perovskite finds wide use in pyroelectric detectors, optical waveguides and piezoelectric transducers, stemming from its good mechanical and chemical stability and optical transparency. Herein, we present a method for synthesis of LiTaO3 nanoparticles using a scalable Flame Spray Pyrolysis (FSP) technology, that allows the formation of LiTaO3 nanomaterials in a single step. Raman, XRD and TEM studies allow for comprehension of the formation mechanism of the LiTaO3 nanophases, with particular emphasis on the penetration of Li atoms into the Ta-oxide lattice. We show that, control of the High-Temperature Particle Residence Time (HTPRT) in the FSP flame, is the key-parameter that allows successful penetration of the -otherwise amorphous- Li phase into the Ta2O5 nanophase. In this way, via control of the HTPRT in the FSP process, we synthesized a series of nanostructured LiTaO3 particles of varying phase composition from {amorphous Li/Ta2O5/LiTaO3} to {pure LiTaO3, 15–25 nm}. Finally, the photophysical activity of the FSP-made LiTaO3 was validated for photocatalytic H2 production from H2O. These data are discussed in conjunction with the role of the phase composition of the LiTaO3 nanoparticles. More generally, the present work allows a better understanding of the mechanism of ABO3 perovskite formation that requires the incorporation of two cations, A and B, into the nanolattice. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

9 pages, 5195 KiB  
Article
Advancing Atomic Force Microscopy: Design of Innovative IP-Dip Polymer Cantilevers and Their Exemplary Fabrication via 3D Laser Microprinting
by Peter Gaso, Daniel Jandura, Sergii Bulatov, Dusan Pudis and Matej Goraus
Coatings 2024, 14(7), 841; https://doi.org/10.3390/coatings14070841 - 4 Jul 2024
Cited by 2 | Viewed by 1796
Abstract
This paper presents the design and fabrication of new types of polymer-based cantilevers for atomic force microscopy. The design and fabrication are aimed at the capability of 3D laser microprinting technology based on two-photon polymerization on a standard silicon substrate. IP-Dip commercial material [...] Read more.
This paper presents the design and fabrication of new types of polymer-based cantilevers for atomic force microscopy. The design and fabrication are aimed at the capability of 3D laser microprinting technology based on two-photon polymerization on a standard silicon substrate. IP-Dip commercial material from the Nanoscribe company was used for the fabrication of the designed cantilevers. The fabricated microprinted cantilevers facilitate precise manipulation at the nanoscopic scale, which is essential for studying nanomaterials’ mechanical, electrical, and optical properties. The cantilevers’ flexibility allows for the integration of functional elements such as piezoelectric layers and optical fibers, enabling combined measurements of multiple physical parameters. Various cantilever geometries, including rectangular and V-shaped, are examined, and their resonance frequencies are calculated. The experimental process involves preparing the cantilevers on a silicon substrate and coating them with aluminum for enhanced reflectivity and conductivity. Scanning electron microscope analysis documents the precise form of prepared polymer cantilevers. The functionality of the probes is validated by scanning a step-height standard grating. This study demonstrates the versatility and precision of the fabricated cantilevers, showcasing their potential for large-area scans, living cell investigation, and diverse nanotechnology applications. Full article
Show Figures

Figure 1

26 pages, 7011 KiB  
Review
A Review of Polymer-Based Environment-Induced Nanogenerators: Power Generation Performance and Polymer Material Manipulations
by Shuanghong Xie, Huping Yan and Ronghui Qi
Polymers 2024, 16(4), 555; https://doi.org/10.3390/polym16040555 - 18 Feb 2024
Cited by 3 | Viewed by 3360
Abstract
Natural environment hosts a considerable amount of accessible energy, comprising mechanical, thermal, and chemical potentials. Environment-induced nanogenerators are nanomaterial-based electronic chips that capture environmental energy and convert it into electricity in an environmentally friendly way. Polymers, characterized by their superior flexibility, lightweight, and [...] Read more.
Natural environment hosts a considerable amount of accessible energy, comprising mechanical, thermal, and chemical potentials. Environment-induced nanogenerators are nanomaterial-based electronic chips that capture environmental energy and convert it into electricity in an environmentally friendly way. Polymers, characterized by their superior flexibility, lightweight, and ease of processing, are considered viable materials. In this paper, a thorough review and comparison of various polymer-based nanogenerators were provided, focusing on their power generation principles, key materials, power density and stability, and performance modulation methods. The latest developed nanogenerators mainly include triboelectric nanogenerators (TriboENG), piezoelectric nanogenerators (PENG), thermoelectric nanogenerators (ThermoENG), osmotic power nanogenerator (OPNG), and moist-electric generators (MENG). Potential practical applications of polymer-based nanogenerator were also summarized. The review found that polymer nanogenerators can harness a variety of energy sources, with the basic power generation mechanism centered on displacement/conduction currents induced by dipole/ion polarization, due to the non-uniform distribution of physical fields within the polymers. The performance enhancement should mainly start from strengthening the ion mobility and positive/negative ion separation in polymer materials. The development of ionic hydrogel and hydrogel matrix composites is promising for future nanogenerators and can also enable multi-energy collaborative power generation. In addition, enhancing the uneven distribution of temperature, concentration, and pressure induced by surrounding environment within polymer materials can also effectively improve output performance. Finally, the challenges faced by polymer-based nanogenerators and directions for future development were prospected. Full article
(This article belongs to the Special Issue High Performance Polymer Membranes II)
Show Figures

Figure 1

8 pages, 722 KiB  
Proceeding Paper
Investigation of Nano-Composite Dampers Using Different Nanomaterials in Civil Engineering Structures: A Review
by Sandhya. R. Jalgar, Anand M. Hunashyal, Roopa A. Kuri, Madhumati. S. Dhaduti and Shridhar N. Mathad
Eng. Proc. 2023, 59(1), 188; https://doi.org/10.3390/engproc2023059188 - 17 Jan 2024
Cited by 1 | Viewed by 1906
Abstract
Civil engineering structures need to be protected from earthquakes, representing a new area of research that is growing continuously and very rapidly. Design engineers are always searching for lightweight, stronger, and stiffer materials to be applied as vibration-damping materials. Stability in dynamics necessitates [...] Read more.
Civil engineering structures need to be protected from earthquakes, representing a new area of research that is growing continuously and very rapidly. Design engineers are always searching for lightweight, stronger, and stiffer materials to be applied as vibration-damping materials. Stability in dynamics necessitates an active, robust, and convenient mechanism that can absorb the kinetic energy of vibration to prevent the structural system from resonance. Recently, many researchers have successfully used nanomaterials to develop energy-absorbing materials that are lightweight and cost-effective. Traditional damping treatments are based on combinations of viscoelastic, elastomeric, magnetic, and piezoelectric materials. In this paper, a review of various damping techniques for composites made of cement modified by various nanomaterials like Nano Al2O3 (Aluminum Dioxide), Nano SiO2 (Silicon Dioxide), Nano TiO2 (Titanium Dioxide), Graphene, and CNTs (Carbon Nanotubes) is presented. The designs of various nano-composite dampers are presented to strengthen the information progress in this field. The current study’s goal is to discover how nanoparticles impact the cement-based material’s damping properties. The study examined several nanomaterials in cement composites at differing concentrations. With the help of the Dynamic Mechanical Analysis (DMA) method and the Logarithmic Decrement approach, the damping properties of these composites were examined. Scanning Electron Microscopy (SEM) was used to examine the effects of nanomaterials on the microstructure and pore size distribution of the composite. Increasing the quantity of nanoparticles in cement paste may improve its capacity to lessen vibration. The experiments also showed that certain nanomaterials may improve load transmission inside the cement matrix and connect neighboring hydration products, helping to reduce energy loss during the loading process. These nanoparticles will eventually replace the large machinery employed to dampen vibrations in buildings due to their small weight, increased mechanical strength, and effective damping properties. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

29 pages, 2619 KiB  
Review
Review of Piezoelectric Properties and Power Output of PVDF and Copolymer-Based Piezoelectric Nanogenerators
by Neelesh Bhadwal, Ridha Ben Mrad and Kamran Behdinan
Nanomaterials 2023, 13(24), 3170; https://doi.org/10.3390/nano13243170 - 18 Dec 2023
Cited by 19 | Viewed by 4929
Abstract
The highest energy conversion efficiencies are typically shown by lead-containing piezoelectric materials, but the harmful environmental impacts of lead and its toxicity limit future use. At the bulk scale, lead-based piezoelectric materials have significantly higher piezoelectric properties when compared to lead-free piezoelectric materials. [...] Read more.
The highest energy conversion efficiencies are typically shown by lead-containing piezoelectric materials, but the harmful environmental impacts of lead and its toxicity limit future use. At the bulk scale, lead-based piezoelectric materials have significantly higher piezoelectric properties when compared to lead-free piezoelectric materials. However, at the nanoscale, the piezoelectric properties of lead-free piezoelectric material can be significantly larger than the bulk scale. The piezoelectric properties of Poly(vinylidene fluoride) (PVDF) and Poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) lead-free piezoelectric nanomaterials are reviewed and their suitability for use in piezoelectric nanogenerators (PENGs) is determined. The impact of different PVDF/PVDF-TrFE composite structures on power output is explained. Strategies to improve the power output are given. Overall, this review finds that PVDF/PVDF-TrFE can have significantly increased piezoelectric properties at the nanoscale. However, these values are still lower than lead-free ceramics at the nanoscale. If the sole goal in developing a lead-free PENG is to maximize output power, lead-free ceramics at the nanoscale should be considered. However, lead-free ceramics are brittle, and thus encapsulation of lead-free ceramics in PVDF is a way to increase the flexibility of these PENGs. PVDF/PVDF-TrFE offers the advantage of being nontoxic and biocompatible, which is useful for many applications. Full article
Show Figures

Figure 1

Back to TopTop