Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = pier geometries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8432 KiB  
Article
Experimental Analysis of Sound Propagation and Room Acoustics in Airport Terminal Piers
by Xi Li and Yuezhe Zhao
Buildings 2025, 15(6), 915; https://doi.org/10.3390/buildings15060915 - 14 Mar 2025
Viewed by 597
Abstract
With the rapid expansion of the aviation industry, pier-style departure lounges have become increasingly prevalent in modern airport terminals. Unlike traditional long enclosures—such as corridors, tunnels, and subway stations—airport terminal piers feature unique geometries, volumes, and interior finishes which complicate sound propagation. To [...] Read more.
With the rapid expansion of the aviation industry, pier-style departure lounges have become increasingly prevalent in modern airport terminals. Unlike traditional long enclosures—such as corridors, tunnels, and subway stations—airport terminal piers feature unique geometries, volumes, and interior finishes which complicate sound propagation. To address the paucity of objective acoustic data in these expansive environments, this study performed in situ measurements of impulse responses and sound pressure levels in two piers with distinct shapes and volumes within the same terminal. Key acoustic parameters, including the A-weighted equivalent continuous sound pressure level (LAeq), early decay time (EDT), reverberation time (T30), definition (D50), and speech transmission index (STI), were analyzed. The results reveal that EDT and T30 increase significantly with distance from the sound source, while D50 and STI decrease correspondingly. Specifically, compared to Pier B, which has a smaller cross-sectional area and a single-sided layout, Pier A, characterized by a larger cross-sectional area and a double-sided layout, exhibits a faster sound attenuation when the receiver is positioned closer to the source and a longer reverberation time when the receiver is farther from the source. Notably, STI does not differ significantly between the two piers. These findings enhance the understanding of acoustic behavior in large-span, elongated airport piers and provide valuable guidance for optimizing the acoustic environment of departure lounges to improve passenger comfort. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 8306 KiB  
Article
Evaluation of Proximity Sensors Applied to Local Pier Scouring Experiments
by Pao-Ya Wu, Dong-Sin Shih and Keh-Chia Yeh
Water 2024, 16(24), 3659; https://doi.org/10.3390/w16243659 - 19 Dec 2024
Viewed by 792
Abstract
Most pier scour monitoring methods cannot be carried out during floods, and data cannot be recorded in real-time. Since scour holes are often refilled by sediment after floods, the maximum scour depth may not be accurately recorded, making it difficult to derive the [...] Read more.
Most pier scour monitoring methods cannot be carried out during floods, and data cannot be recorded in real-time. Since scour holes are often refilled by sediment after floods, the maximum scour depth may not be accurately recorded, making it difficult to derive the equilibrium scour depth. This study proposes a novel approach using 16 proximity sensors (VCNL4200), which are low-cost (less than USD 3 each) and low-power (380 µA in standby current mode), to monitor and record the pier scour depth at eight different positions in a flume as it varies with water flow rate. Based on the regression relationship between PS data and distance, the scour trend related to the equilibrium scour depth can be derived. Through the results of 13 local live-bed sediment scour experiments, this PS module was able to record not only the scour depth, but also the development and geometry of the scour under different water flows. Additionally, based on PS data readings, changes in the topography of the scour hole throughout the entire scouring process can be observed and recorded. Since the maximum scour depth can be accurately recorded and the scour trend can be used to estimate the equilibrium scour depth, observations from the experimental results suggest that the critical velocity derived by Melville and Coleman (2000) may have been underestimated. The experimental results have verified that, beyond achieving centimeter-level accuracy, this method also leverages the Internet of Things (IoT) for the long-term real-time observation, measurement, and recording of the formation, changes, and size of scour pits. In addition to further exploring scouring behavior in laboratory studies, this method is feasible and highly promising for future applications in on-site scour monitoring due to its simplicity and low cost. In future on-site applications, it is believed that the safety of bridge piers can be assessed more economically, precisely, and effectively. Full article
Show Figures

Figure 1

18 pages, 10702 KiB  
Article
Prediction of Scour Depth for Diverse Pier Shapes Utilizing Two-Dimensional Hydraulic Engineering Center’s River Analysis System Sediment Model
by Muhanad Al-Jubouri, Richard P. Ray and Ethar H. Abbas
Fluids 2024, 9(11), 247; https://doi.org/10.3390/fluids9110247 - 25 Oct 2024
Cited by 3 | Viewed by 1707
Abstract
Examining scouring around bridge piers is crucial for ensuring water-related infrastructure’s long-term safety and stability. Accurate forecasting models are essential for addressing scour, especially in complex water systems where traditional methods fall short. This study investigates the application of the HEC-RAS 2D sedimentation [...] Read more.
Examining scouring around bridge piers is crucial for ensuring water-related infrastructure’s long-term safety and stability. Accurate forecasting models are essential for addressing scour, especially in complex water systems where traditional methods fall short. This study investigates the application of the HEC-RAS 2D sedimentation model, which has recently become available for detailed sediment analysis, to evaluate its effectiveness in predicting scoring around various pier shapes and under different water conditions. This study offers a comprehensive assessment of the model’s predictive capabilities by focusing on variables such as water velocity, shear stress, and riverbed changes. Particular attention was paid to the influence of factors like floating debris and different pier geometries on scour predictions. The results demonstrate that while the HEC-RAS 2D model generally provides accurate predictions for simpler pier shapes—achieving up to 85% precision—it shows varied performance for more complex designs and debris-influenced scenarios. Specifically, the model overpredicted scouring depths by approximately 20% for diamond-shaped piers and underpredicted by 15% for square piers in debris conditions. Elliptical piers, in contrast, experienced significantly less erosion, with scour depths up to 30% shallower compared to other shapes. This study highlights the novel application of the HEC-RAS 2D model in this context and underscores its strengths and limitations. Identified issues include difficulties in modeling water flow and debris-induced bottlenecks. This research points to the improved calibration of sediment movement parameters and the development of advanced computational techniques to enhance scour prediction accuracy in complex environments. This work contributes valuable insights for future research and practical applications in civil engineering, especially where traditional scour mitigation methods, such as apron coverings, are not feasible. Full article
Show Figures

Figure 1

26 pages, 11662 KiB  
Article
Advanced Numerical Simulation of Scour around Bridge Piers: Effects of Pier Geometry and Debris on Scour Depth
by Muhanad Al-Jubouri, Richard P. Ray and Ethar H. Abbas
J. Mar. Sci. Eng. 2024, 12(9), 1637; https://doi.org/10.3390/jmse12091637 - 13 Sep 2024
Cited by 5 | Viewed by 2426
Abstract
Investigating different pier shapes and debris Finteractions in scour patterns is vital for understanding the risks to bridge stability. This study investigates the impact of different shapes of pier and debris interactions on scour patterns using numerical simulations with flow-3D and controlled laboratory [...] Read more.
Investigating different pier shapes and debris Finteractions in scour patterns is vital for understanding the risks to bridge stability. This study investigates the impact of different shapes of pier and debris interactions on scour patterns using numerical simulations with flow-3D and controlled laboratory experiments. The model setup is rigorously calibrated against a physical flume experiment, incorporating a steady-state flow as the initial condition for sediment transport simulations. The Fractional Area/Volume Obstacle Representation (FAVOR) technique and the renormalized group (RNG) turbulence model enhance the simulation’s precision. The numerical results indicate that pier geometry is a critical factor influencing the scour depth. Among the tested shapes, square piers exhibit the most severe scour, with depths reaching 5.8 cm, while lenticular piers show the least scour, with a maximum depth of 2.5 cm. The study also highlights the role of horseshoe, wake, and shear layer vortices in determining scour locations, with varying impacts across different pier shapes. The Q-criterion study identified debris-induced vortex generation and intensification. The debris amount, thickness, and pier diameter (T/Y) significantly affect the scouring patterns. When dealing with high wedge (HW) debris, square piers have the largest scour depth at T/Y = 0.25, while lenticular piers exhibit a lower scour. When debris is present, the scour depth rises at T/Y = 0.5. Depending on the form of the debris, a significant fluctuation of up to 5 cm was reported. There are difficulties in precisely estimating the scour depth under complicated circumstances because of the disparity between numerical simulations and actual data, which varies from 6% for square piers with a debris relative thickness T/Y = 0.25 to 32% for cylindrical piers with T/Y = 0.5. The study demonstrates that while flow-3D simulations align reasonably well with the experimental data under a low debris impact, discrepancies increase with more complex debris interactions and higher submersion depths, particularly for cylindrical piers. The novelty of this work lies in its comprehensive approach to evaluating the effects of different pier shapes and debris interactions on scour patterns, offering new insights into the effectiveness of flow-3D simulations in predicting the scour patterns under varying conditions. Full article
Show Figures

Figure 1

17 pages, 11589 KiB  
Article
Numerical Analysis of Flow Structure Evolution during Scour Hole Development: A Case Study of a Pile-Supported Pier with Partially Buried Pile Cap
by Mahdi Alemi, João Pedro Pêgo, Saeid Okhravi and Rodrigo Maia
Modelling 2024, 5(3), 884-900; https://doi.org/10.3390/modelling5030046 - 29 Jul 2024
Cited by 1 | Viewed by 1247
Abstract
This study numerically investigates a pile-supported pier, which comprises a column with a partially buried pile cap and a group of piles, recognizing that partially buried pile caps lead to the highest scour depth. Most research has focused on equilibrium scour conditions in [...] Read more.
This study numerically investigates a pile-supported pier, which comprises a column with a partially buried pile cap and a group of piles, recognizing that partially buried pile caps lead to the highest scour depth. Most research has focused on equilibrium scour conditions in laboratory settings, overlooking the detailed dynamics of horseshoe vortices around pile groups. This study aims to clarify the flow structure and vortex dynamics at a pile-supported pier during local scour hole development stages using an in-house developed numerical model. The model’s accuracy is validated against flat-channel and compound pier reference cases. For the pile-supported pier, fixed bed geometry was used in flow simulations at selected scouring stages. Results show significant changes in flow structure and vortex formation with scour hole time development, particularly as the bed surface moves away from the pile cap. The study reveals variations in vortex size, number, and positioning, alongside turbulent kinetic energy and Reynolds shear stress distributions over time. High positive Reynolds shear stress near the bed during intermediate scouring stages highlights the complex interactions within the flow field. This research provides the first detailed visualization of flow structure evolution within a scour hole at a pile-supported pier. Full article
Show Figures

Figure 1

26 pages, 23326 KiB  
Article
Fatigue Consideration for Tension Flange over Intermediate Support in Skewed Continuous Steel I-Girder Bridges
by Dariya Tabiatnejad, Seyed Saman Khedmatgozar Dolati, Armin Mehrabi and Todd A. Helwig
Infrastructures 2024, 9(7), 99; https://doi.org/10.3390/infrastructures9070099 - 26 Jun 2024
Cited by 5 | Viewed by 2482
Abstract
Skewed supports complicate load paths in continuous steel I-girder bridges, causing secondary stresses and differential deformations. For a continuous bridge where tensile stresses are developed in the top flange of the steel girders over the intermediate supports, these effects may exacerbate potential fatigue [...] Read more.
Skewed supports complicate load paths in continuous steel I-girder bridges, causing secondary stresses and differential deformations. For a continuous bridge where tensile stresses are developed in the top flange of the steel girders over the intermediate supports, these effects may exacerbate potential fatigue issues for the top flanges. There is a gap in knowledge regarding the level of stress one can expect at these locations, and the stress level can render the problem either serious or trivial. This paper has been successful in providing this information, which was not available before. The study examines the fatigue performance of the top flange in girders over skewed supports. Results are presented from a detailed investigation consisting of 3D finite element modeling to evaluate 26 skewed bridges in the State of Florida that represent the wide range of geometries found in practice. The analysis focused on stress ranges in the top flanges and axial demands on end cross-frame members under fatigue truck loading. A preliminary analysis helped to select the appropriate element type and support conditions. The maximum factored stress range of 3.63 ksi obtained for the selected group of bridges remains below the 10 ksi fatigue threshold for an AASHTO Category C connection, alleviating the concerns about the fatigue performance of the continuous girder top flange over the intermediate pier. Hence, fatigue is unlikely to be a concern in the flanges at this location. Statistics on computed stress ranges and cross-frame forces that provide an understanding of the expected values and guidance for detailing practices are also presented. A limited comparative refined FE analysis on two different types of end cross-frame to girder connections also provided useful insight into the fatigue sensitivities of the skew connections. Half-Round Bearing Stiffener (HRBS) connections performed better than the customary bent plate connections. The HRBS connection reduces girder flange stress concentration range by at least 18% compared to the bent plate connection. The maximum stress concentration range in bent plate components is significantly higher than in the HRBS connection components. The work documented in this paper is important for understanding the fatigue performance of the cross-frames and girders in support regions in the upcoming 10th edition of the AASHTO Bridge Design Specifications that may include plate stiffeners oriented either normally or skewed to the girder web, or Half-Round Bearing Stiffeners. Full article
Show Figures

Figure 1

21 pages, 7928 KiB  
Article
Seismic Risk Analysis of Existing Link Slab Bridges Using Novel Fragility Functions
by Fabrizio Scozzese and Lucia Minnucci
Appl. Sci. 2024, 14(1), 112; https://doi.org/10.3390/app14010112 - 22 Dec 2023
Cited by 6 | Viewed by 1446
Abstract
In this paper, a comprehensive probabilistic framework is proposed and adopted to perform seismic reliability and risk analysis of existing link slab (LS) bridges, representing a widely diffused structural typology within the infrastructural networks of many countries worldwide. Unlike classic risk analysis methods, [...] Read more.
In this paper, a comprehensive probabilistic framework is proposed and adopted to perform seismic reliability and risk analysis of existing link slab (LS) bridges, representing a widely diffused structural typology within the infrastructural networks of many countries worldwide. Unlike classic risk analysis methods, innovative fragility functions are used in this work to retrieve more specific and detailed information on the possible failure modes, without limiting the analysis to the global failure conditions but also considering several intermediate damage scenarios (including one or more damage mechanisms), and providing insights on the numerosity of elements involved within a given damage scenario. Reliability analyses are performed on a set of LS bridges with different geometries (total lengths and pier heights) designed according to the Italian codes enforced in the 1970s. Accurate numerical models are developed in OpenSees and Multiple-Stripe nonlinear time–history analyses are carried out to build proper demand models, from which fragility functions are determined according to two limit states: damage onset and near-collapse. Mean annual rates of exceeding are thus estimated through the convolution between the hazard and the fragility. The results shed light on the main failure mechanisms characterizing this bridge typology, highlighting how different levels of risk (hence safety margins) can be associated with failure scenarios that differ in terms of elements/mechanisms involved and damage extension. Such a higher level of detail in the risk analysis may be useful to better quantify post-earthquake consequences (e.g., costs and losses) and define more tailored retrofit interventions. A comparison of the reliability levels associated with bridges of the same class with different geometries is finally presented. Full article
(This article belongs to the Special Issue Existing Bridges: From Inspection to Structural Rehabilitation)
Show Figures

Figure 1

23 pages, 5303 KiB  
Article
Unraveling Debris-Enhanced Local Scour Patterns around Non-Cylindrical Bridge Piers: Experimental Insights and Innovative Modeling
by Muhanad Al-Jubouri, Richard P. Ray and Mahmoud Saleh Al-Khafaji
Sustainability 2023, 15(22), 15910; https://doi.org/10.3390/su152215910 - 14 Nov 2023
Cited by 5 | Viewed by 1491
Abstract
Bridge structures face a critical threat from localized scour-induced damage, prompting urgent attention to civil infrastructure resilience. Prior research has primarily focused on the influence of pier shapes on scour patterns. However, the exploration of the combined effects of various debris shapes, each [...] Read more.
Bridge structures face a critical threat from localized scour-induced damage, prompting urgent attention to civil infrastructure resilience. Prior research has primarily focused on the influence of pier shapes on scour patterns. However, the exploration of the combined effects of various debris shapes, each possessing distinct properties, on predictive scour depth models around the non-cylindrical pier has hitherto remained less researched. This study explored the complex dynamics governing local scour around bridge piers, focusing on the influence of surface and near-surface debris. This research shed light on changes in scour depth by investigating factors like pier geometries, debris arrangements, and submersion depths. The experiments and analysis revealed the effects of various pier shapes—cylindrical, square, rectangular, oblong, oval, and lenticular—on scour patterns. Different geometries influenced primary scour zones and affected areas, with square piers causing the deepest scour and lenticular ones showing shallower instances. Scour depths typically peaked upstream across geometries, but ogival and lenticular shapes exhibited unique patterns. The research also introduced a formula that integrated debris attributes into predictive scour depth modeling, validated with favorable accuracy. Ultimately, this predictive model advances scour prediction, particularly in debris-laden flows, offering valuable insights for engineering and management practices in understanding real-world scour mechanisms and hydraulic dynamics. Full article
Show Figures

Figure 1

15 pages, 1698 KiB  
Article
Wind Forces on Medium-Span Bridges: A Comparison of Eurocode 1 Part 4 and Computational Fluid Dynamics
by Niamh Moore and Jennifer Keenahan
CivilEng 2022, 3(3), 794-808; https://doi.org/10.3390/civileng3030046 - 9 Sep 2022
Cited by 1 | Viewed by 3301
Abstract
Bridges often have complicated geometries in complex terrain where they can be exposed to high wind loading. Current practice in designing for wind can be conservative. The drive for more lean construction motivates the study of computational modelling as an alternative to traditional [...] Read more.
Bridges often have complicated geometries in complex terrain where they can be exposed to high wind loading. Current practice in designing for wind can be conservative. The drive for more lean construction motivates the study of computational modelling as an alternative to traditional methods of determining these wind loads. This paper compares wind forces determined using Eurocode 1 Part 4 with those determined by CFD modelling for a given bridge geometry, taking variations in altitude, location, wind speed and wind direction into account. Results indicate that the exposure factors used in Eurocode 1 Part 4 inflate the net wind force values. It was also found that the directional factor is conservative for wind forces on bridge decks but ineffective for wind forces on bridge piers in the x-direction. Furthermore, the Reynolds-Averaged Navier–Stokes equations (CFD) appear to produce smaller values of net wind force than Bernoulli’s equation (Eurocode). Bernoulli’s equation can only be applied to an ideal fluid, and Reynolds-Averaged Navier–Stokes equations can be applied to any viscous fluid—a further concern with the current practice. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Graphical abstract

18 pages, 25688 KiB  
Technical Note
Submesoscale Currents from UAV: An Experiment over Small-Scale Eddies in the Coastal Black Sea
by Yury Yu. Yurovsky, Arseny A. Kubryakov, Evgeny V. Plotnikov and Pavel N. Lishaev
Remote Sens. 2022, 14(14), 3364; https://doi.org/10.3390/rs14143364 - 13 Jul 2022
Cited by 8 | Viewed by 2387
Abstract
A commercial unmanned aerial vehicle (UAV) is used for coastal submesoscale current estimation. The measurements were conducted in the Black Sea coastal area with a DJI Mavic quadcopter operated in self-stabilized mode at different look geometry (200–500-m altitude, 0–30 incidence angle). The [...] Read more.
A commercial unmanned aerial vehicle (UAV) is used for coastal submesoscale current estimation. The measurements were conducted in the Black Sea coastal area with a DJI Mavic quadcopter operated in self-stabilized mode at different look geometry (200–500-m altitude, 0–30 incidence angle). The results of four flights during 2020–2021 are reported. Some scenes captured a train of or individual eddies, generated by a current flowing around a topographic obstacle (pier). The eddies were optically visible due to the mixing of clear and turbid waters in the experiment area. Wave dispersion analysis (WDA), based on dispersion shell signature recognition, is used to estimate the sea surface current in the upper 0.5-m-thick layer. The WDA-derived current maps are consistent with visible eddy manifestations. The alternative method, based on 4D-variational assimilation (4DVAR), agrees well with WDA and can complement it in calm wind conditions when waves are too short to be resolved by the UAV sensor. The error of reconstructed velocity due to the uncontrolled UAV motions is assessed from referencing to static land control points. At a 500-m altitude and 7–10 m s1 wind speed (reported by a local weather station for 10-m height), the UAV drift velocity, or the bias of the current velocity estimate, is about 0.1 m s1, but can be reduced to 0.05 m s1 if the first 10 s of the UAV self-stabilization period are excluded from the analysis. The observed anticyclonic eddies (200–400 m in diameter with 0.15–0.30 m s1 orbital velocity) have an unexpectedly high Rossby number, Ro∼15, suggesting the importance of nonlinear centrifugal force for such eddies and their significant role in coastal vertical transport. Full article
(This article belongs to the Special Issue Remote Sensing for Wind Speed and Ocean Currents)
Show Figures

Graphical abstract

19 pages, 6881 KiB  
Article
Using a Bed Sill as a Countermeasure for Clear-Water Scour at a Complex Pier with Inclined Columns Footed on Capped Piles
by Mahdi Esmaeili Varaki, Negar Tavazo and Alessio Radice
Hydrology 2022, 9(4), 65; https://doi.org/10.3390/hydrology9040065 - 16 Apr 2022
Cited by 6 | Viewed by 3027
Abstract
River bridge piers may collapse due to the local scour around their foundations. It is known that local scour is an effect of the three-dimensional flow field that develops near the pier and that the geometric complexity of a non-cylindrical pier may, correspondingly, [...] Read more.
River bridge piers may collapse due to the local scour around their foundations. It is known that local scour is an effect of the three-dimensional flow field that develops near the pier and that the geometric complexity of a non-cylindrical pier may, correspondingly, increase the complexity of the process. It is also known that various devices may be used as scour countermeasures. This manuscript explores the use of a bed sill as a countermeasure for local scour at a complex bridge pier compound of an array of piles, a pile cap, and two inclined columns with the rectangular sections above the cap. This pier geometry, never studied before in combination with a scour countermeasure, was stimulated by an existing bridge. Different sill placements were tested (at the upstream or downstream edges of the pier, or in an intermediate position) for various values of the pile diameter and number, cap thickness and cap elevation. The results of a wide experimental campaign consistently showed that the most effective placement of the transverse sill was at the upstream edge of the pier, for which scour reductions of up to 30–40% could be obtained for the long-term scour depth. The countermeasure performance decreased to about 10% when the sill was placed at the downstream edge of the pier. Furthermore, the installation of a transverse sill upstream of the pier also changed the shape of the scour hole because the pier was then located in an area prone to sill scour; however, for the present experiments, the combination of the effects was beneficial in terms of the resulting scour depth. Although the investigation of a single hydro-dynamic condition prevents the experimental findings from being generalized, the promising results stimulate further consideration of a transverse sill as a countermeasure for local scour at a complex pier. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

13 pages, 3050 KiB  
Article
A Hydraulic Analysis of Shock Wave Generation Mechanism on Flat Spillway Chutes through Physical Modeling
by Muhammad Kaleem Sarwar, Muhammad Atiq Ur Rehman Tariq, Rashid Farooq, Hafiz Kamran Jaleel Abbasi, Faraz Ul Haq, Ijaz Ahmad, Muhammad Izhar Shah, Anne. W. M. Ng and Nitin Muttil
Hydrology 2021, 8(4), 186; https://doi.org/10.3390/hydrology8040186 - 17 Dec 2021
Cited by 4 | Viewed by 3390
Abstract
Shock waves are generated downstream of spillways during flood operations, which have adverse effects on spillway operations. This paper presents the physical model study of shock waves at the Mohmand Dam Spillway project, Pakistan. In this study, hydraulic analysis of shock waves was [...] Read more.
Shock waves are generated downstream of spillways during flood operations, which have adverse effects on spillway operations. This paper presents the physical model study of shock waves at the Mohmand Dam Spillway project, Pakistan. In this study, hydraulic analysis of shock waves was carried out to investigate its generation mechanism. Different experiments were performed to analyze the rooster tail on a flat spillway chute and to examine the factors affecting the characteristics of the rooster tail. The study results show that shock wave height is influenced by spillway chute slope, pier shape, and flow depth. Moreover, the height of the shock wave can be minimized by installing a semi-elliptical pier on the tail part of the main pier. Further modifications in the geometry of the extended tail part of the pier are recommended for the elimination of the shock wave. Based on observed data collected from the model study, an empirical equation was developed to estimate the shock wave height generated on the flat slope spillway chutes (5° to 10°). Full article
Show Figures

Figure 1

25 pages, 4669 KiB  
Article
Nonlinear Dynamic Analysis of a Masonry Arch Bridge Accounting for Damage Evolution
by Daniela Addessi, Cristina Gatta, Mariacarla Nocera and Domenico Liberatore
Geosciences 2021, 11(8), 343; https://doi.org/10.3390/geosciences11080343 - 16 Aug 2021
Cited by 17 | Viewed by 3286
Abstract
This study investigates the nonlinear dynamic response of the masonry bridge ‘Ponte delle Torri’ in Spoleto, aiming at assessing the seismic performance of the structure and evaluating the occurring damaging mechanisms. A 3D Finite Element (FE) macromechanical procedure implemented in the FE program [...] Read more.
This study investigates the nonlinear dynamic response of the masonry bridge ‘Ponte delle Torri’ in Spoleto, aiming at assessing the seismic performance of the structure and evaluating the occurring damaging mechanisms. A 3D Finite Element (FE) macromechanical procedure implemented in the FE program FEAP is adopted to model the bridge. To reproduce the typical nonlinear microcracking process evolving in masonry material when subjected to external loads, an isotropic damage model is used. This is based on a scalar damage variable introduced in the stress-strain constitutive law and equally degrading all the components of the elastic constitutive operator. A nonlocal integral definition of the damage associated variable, that is the equivalent strain measure governing its evolution, is adopted to overcome the mesh dependency problems of the FE solution typically occurring in the presence of strain softening behavior. Based on the results of a recent study by some of the authors, a single equivalent pier is analyzed, whose geometry and boundary conditions are selected so that its response can provide useful information on the out-of-plane dynamic behavior of the overall bridge. To perform the seismic assessment, a set of recorded accelerograms is properly selected to simulate the seismic history of the Spoleto site. The nonlinear dynamic response of the structure is evaluated and monitored in terms of top displacement time history, evolution of the global damage index, and distribution of the damage variable. First, a set of analyses is performed by imposing the selected ground motions one by one on the initial undamaged configuration for the structure with the aim of emphasizing the damaging effects on its dynamic response. Then, the accelerograms are arranged in sequence to reproduce the seismic history of the site and analyze the influence of accumulated damage on the dynamic amplification of the response. A critical comparison of the bridge response to the sequence of accelerograms and the single records is made, and the interaction between the damaged structure dynamic response and the signal characteristic is highlighted, as well. Full article
Show Figures

Figure 1

23 pages, 11968 KiB  
Article
Three-Dimensional Numerical Investigations of the Flow Pattern and Evolution of the Horseshoe Vortex at a Circular Pier during the Development of a Scour Hole
by Ahmed M. Helmi and Ahmed H. Shehata
Appl. Sci. 2021, 11(15), 6898; https://doi.org/10.3390/app11156898 - 27 Jul 2021
Cited by 5 | Viewed by 2658
Abstract
In the current study, a three-dimensional CFD model is utilized to investigate the variation of the flow structure and bed shear stress at a single cylindrical pier during scour development. The scour development is presented by seven solidified geometries of the scour hole, [...] Read more.
In the current study, a three-dimensional CFD model is utilized to investigate the variation of the flow structure and bed shear stress at a single cylindrical pier during scour development. The scour development is presented by seven solidified geometries of the scour hole, collected during previous experimental work at different scour stages. Different turbulence models are evaluated and the (k-ω) model is chosen due to its relative accuracy in capturing the flow oscillation and vortex shedding at the pier downstream side with personal computer computational and storage resources. The numerical results are verified against dimensionless parameters from different previous experimental works. This research describes in detail the flow structure and bed shear stress variations through seven stages of the scour hole development. The dimensionless area-averaged circulation coefficient i) is developed to evaluate the changes in the vortex strength through the scouring process by eliminating the calculation area effect. It was concluded that the circulation in the (Y) direction is the main driving factor in the development of the scour hole more than the circulation in the (X) direction. The ratio between the horseshoe vortex (HV) mean size and the scouring depth (DV/dS) in addition to the location of the maximum bed shear stress are investigated during different stages of the scour development. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics for Future Energies)
Show Figures

Figure 1

20 pages, 8035 KiB  
Article
Improving the 2D Numerical Simulations on Local Scour Hole around Spur Dikes
by Chung-Ta Liao, Keh-Chia Yeh, Yin-Chi Lan, Ren-Kai Jhong and Yafei Jia
Water 2021, 13(11), 1462; https://doi.org/10.3390/w13111462 - 23 May 2021
Cited by 4 | Viewed by 3162
Abstract
Local scour is a common threat to structures such as bridge piers, abutments, and dikes that are constructed on natural rivers. To reduce the risk of foundation failure, the understanding of local scour phenomenon around hydraulic structures is important. The well-predicted scour depth [...] Read more.
Local scour is a common threat to structures such as bridge piers, abutments, and dikes that are constructed on natural rivers. To reduce the risk of foundation failure, the understanding of local scour phenomenon around hydraulic structures is important. The well-predicted scour depth can be used as a reference for structural foundation design and river management. Numerical simulation is relatively efficient at studying these issues. Currently, two-dimensional (2D) mobile-bed models are widely used for river engineering. However, a common 2D model is inadequate for solving the three-dimensional (3D) flow field and local scour phenomenon because of the depth-averaged hypothesis. This causes the predicted scour depth to often be underestimated. In this study, a repose angle formula and bed geometry adjustment mechanism are integrated into a 2D mobile-bed model to improve the numerical simulation of local scour holes around structures. Comparison of the calculated and measured bed variation data reveals that a numerical model involving the improvement technique can predict the geometry of a local scour hole around spur dikes with reasonable accuracy and reliability. Full article
(This article belongs to the Special Issue Research on Hydraulics and River Dynamics)
Show Figures

Figure 1

Back to TopTop