Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (490)

Search Parameters:
Keywords = physical remediation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6025 KiB  
Article
Solar-Activated Titanium-Based Cu4O3/ZrO2/TiO2 Ternary Nano-Heterojunction for Rapid Photocatalytic Degradation of the Textile Dye Everzol Yellow 3RS
by Saira, Wesam Abd El-Fattah, Muhammad Shahid, Sufyan Ashraf, Zeshan Ali Sandhu, Ahlem Guesmi, Naoufel Ben Hamadi, Mohd Farhan and Muhammad Asam Raza
Catalysts 2025, 15(8), 751; https://doi.org/10.3390/catal15080751 - 6 Aug 2025
Abstract
Persistent reactive azo dyes released from textile finishing are a serious threat to water systems, but effective methods using sunlight to break them down are still limited. Everzol Yellow 3RS (EY-3RS) is particularly recalcitrant: past studies have relied almost exclusively on physical adsorption [...] Read more.
Persistent reactive azo dyes released from textile finishing are a serious threat to water systems, but effective methods using sunlight to break them down are still limited. Everzol Yellow 3RS (EY-3RS) is particularly recalcitrant: past studies have relied almost exclusively on physical adsorption onto natural or modified clays and zeolites, and no photocatalytic pathway employing engineered nanomaterials has been documented to date. This study reports the synthesis, characterization, and performance of a visible-active ternary nanocomposite, Cu4O3/ZrO2/TiO2, prepared hydrothermally alongside its binary (Cu4O3/ZrO2) and rutile TiO2 counterparts. XRD, FT-IR, SEM-EDX, UV-Vis, and PL analyses confirm a heterostructured architecture with a narrowed optical bandgap of 2.91 eV, efficient charge separation, and a mesoporous nanosphere-in-matrix morphology. Photocatalytic tests conducted under midsummer sunlight reveal that the ternary catalyst removes 91.41% of 40 ppm EY-3RS within 100 min, markedly surpassing the binary catalyst (86.65%) and TiO2 (81.48%). Activity trends persist across a wide range of operational variables, including dye concentrations (20–100 ppm), catalyst dosages (10–40 mg), pH levels (3–11), and irradiation times (up to 100 min). The material retains ≈ 93% of its initial efficiency after four consecutive cycles, evidencing good reusability. This work introduces the first nanophotocatalytic strategy for EY-3RS degradation and underscores the promise of multi-oxide heterojunctions for solar-driven remediation of colored effluents. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

43 pages, 1241 KiB  
Review
A Comprehensive Review of Agricultural Residue-Derived Bioadsorbents for Emerging Contaminant Removal
by Janaína Oliveira Gonçalves, André Rodríguez Leones, Bruna Silva de Farias, Mariele Dalmolin da Silva, Débora Pez Jaeschke, Sibele Santos Fernandes, Anelise Christ Ribeiro, Tito Roberto Santanna Cadaval and Luiz Antonio de Almeida Pinto
Water 2025, 17(14), 2141; https://doi.org/10.3390/w17142141 - 18 Jul 2025
Viewed by 519
Abstract
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the [...] Read more.
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the development of efficient bioadsorbents. Based on a wide range of recent studies, this work presents various types of materials, such as rice husks, sugarcane bagasse, and açaí seeds, that can be transformed through thermal and chemical treatments into advanced bioadsorbents capable of removing pharmaceuticals, pesticides, dyes, and in some cases, even addressing highly persistent pollutants such as PFASs. The main objectives of this review are to (1) assess agricultural-residue-derived bioadsorbents for the removal of ECs; (2) examine physical and chemical modification techniques that enhance adsorption performance; (3) evaluate their scalability and applicability in real-world treatment systems. The review also highlights key adsorption mechanisms—such as π–π interactions, hydrogen bonding, and ion exchange—alongside the influence of parameters like pH and ionic strength. The review also explores the kinetic, isothermal, and thermodynamic aspects of the adsorption processes, highlighting both the efficiency and reusability potential of these materials. This work uniquely integrates microwave-assisted pyrolysis, magnetic functionalization, and hybrid systems, offering a roadmap for sustainable water remediation. Finally, comparative performance analyses, applications using real wastewater, regeneration strategies, and the integration of these bioadsorbents into continuous treatment systems are presented, reinforcing their promising role in advancing sustainable water remediation technologies. Full article
Show Figures

Figure 1

15 pages, 1006 KiB  
Review
Multifunctional Applications of Biofloc Technology (BFT) in Sustainable Aquaculture: A Review
by Changwei Li and Limin Dai
Fishes 2025, 10(7), 353; https://doi.org/10.3390/fishes10070353 - 17 Jul 2025
Viewed by 392
Abstract
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant [...] Read more.
Biofloc technology (BFT), traditionally centered on feed supplementation and water purification in aquaculture, harbors untapped multifunctional potential as a sustainable resource management platform. This review systematically explores beyond conventional applications. BFT leverages microbial consortia to drive resource recovery, yielding bioactive compounds with antibacterial/antioxidant properties, microbial proteins for efficient feed production, and algae biomass for nutrient recycling and bioenergy. In environmental remediation, its porous microbial aggregates remove microplastics and heavy metals through integrated physical, chemical, and biological mechanisms, addressing critical aquatic pollution challenges. Agri-aquatic integration systems create symbiotic loops where nutrient-rich aquaculture effluents fertilize plant cultures, while plants act as natural filters to stabilize water quality, reducing freshwater dependence and enhancing resource efficiency. Emerging applications, including pigment extraction for ornamental fish and the anaerobic fermentation of biofloc waste into organic amendments, further demonstrate its alignment with circular economy principles. While technical advancements highlight its capacity to balance productivity and ecological stewardship, challenges in large-scale optimization, long-term system stability, and economic viability necessitate interdisciplinary research. By shifting focus to its underexplored functionalities, this review positions BFT as a transformative technology capable of addressing interconnected global challenges in food security, pollution mitigation, and sustainable resource use, offering a scalable framework for the future of aquaculture and beyond. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Graphical abstract

15 pages, 2953 KiB  
Article
Water Retention Measures as a Remediation Technique for CSO-Affected Watercourses
by Michaela Červeňanská, Jakub Mydla, Andrej Šoltész, Martin Orfánus, Peter Šulek, Jaroslav Hrudka, Réka Wittmanová and Richard Honti
Sustainability 2025, 17(14), 6280; https://doi.org/10.3390/su17146280 - 9 Jul 2025
Viewed by 279
Abstract
During heavy rainfalls, overflowing sewage water flows from the Combined Sewer Overflow (CSO) chambers and pollutes the Trnávka River in Trnava, Slovakia. This paper aims to propose water retention measures for the Trnávka River as a remediation technique for CSO-affected watercourses, which can [...] Read more.
During heavy rainfalls, overflowing sewage water flows from the Combined Sewer Overflow (CSO) chambers and pollutes the Trnávka River in Trnava, Slovakia. This paper aims to propose water retention measures for the Trnávka River as a remediation technique for CSO-affected watercourses, which can contribute to the ‘flushing’ of the riverbed. During heavy rainfalls, the Trnávka River is polluted by solid, non-soluble materials, which produce unpleasant odors and are the subject of numerous complaints by citizens, particularly during low water levels. Three inflatable rubber weirs were designed, and their design was verified using a 1D numerical model of the Trnávka River. The simulations of the proposed measures performed in the HEC-RAS 5.0 software excluded the adverse effect of the backwater on the functioning of the CSO chambers in the city of Trnava during normal flow rates and confirmed that, even after installation of the weirs, the transition of the flood wave will pass in the riverbed, not causing the flooding of the adjacent area. The chemical–physical study of the Trnávka River confirmed our assumption that higher flow rates, which can be secured by the regulation of the proposed weirs, can contribute to the purity of the watercourse in the city of Trnava. Full article
Show Figures

Figure 1

22 pages, 4216 KiB  
Article
The Comprehensive Quantification and Characterization of Oak Biochar Produced via a Gasification Process Using a Downdraft Reactor
by Paul C. Ani, Hayder Alhameedi, Hasan J. Al-Abedi, Haider Al-Rubaye, Zeyad Zeitoun, Ugochukwu Ewuzie and Joseph D. Smith
Fuels 2025, 6(3), 51; https://doi.org/10.3390/fuels6030051 - 1 Jul 2025
Viewed by 422
Abstract
This study presents a comprehensive characterization of oak biochar produced via downdraft gasification at 850 °C. The research employs a wide range of advanced analytical techniques to examine the biochar’s physical, chemical, and structural properties. Scanning electron microscopy (SEM) revealed a mesoporous structure, [...] Read more.
This study presents a comprehensive characterization of oak biochar produced via downdraft gasification at 850 °C. The research employs a wide range of advanced analytical techniques to examine the biochar’s physical, chemical, and structural properties. Scanning electron microscopy (SEM) revealed a mesoporous structure, while Brunauer–Emmett–Teller (BET) analysis showed a surface area of 88.97 m2/g. Thermogravimetric analysis (TGA) demonstrated high thermal stability and carbon content (78.7%). X-ray photoelectron spectroscopy (XPS) and ultimate analysis confirmed the high degree of carbonization, with low O/C (0.178) and H/C (0.368) ratios indicating high aromaticity. Fourier transform infrared spectroscopy (FTIR) identified functional groups suggesting potential for CO2 adsorption. The biochar exhibited a negative zeta potential (−31.5 mV), indicating colloidal stability and potential for soil amendment applications. X-ray diffraction (XRD) and Raman spectroscopy provided insights into the biochar’s crystalline structure and graphitization degree. These findings highlight the oak biochar’s suitability for diverse applications, including soil improvement, carbon sequestration, and environmental remediation. By filling knowledge gaps in oak-specific biochar research, this study underscores the benefits of optimized downdraft gasification and sets a foundation for future advancements in sustainable biochar applications. Full article
Show Figures

Figure 1

31 pages, 3056 KiB  
Review
A Review of Key Challenges and Evaluation of Well Integrity in CO2 Storage: Insights from Texas Potential CCS Fields
by Bassel Eissa, Marshall Watson, Nachiket Arbad, Hossein Emadi, Sugan Thiyagarajan, Abdel Rehman Baig, Abdulrahman Shahin and Mahmoud Abdellatif
Sustainability 2025, 17(13), 5911; https://doi.org/10.3390/su17135911 - 26 Jun 2025
Viewed by 793
Abstract
Increasing concern over climate change has made Carbon Capture and Storage (CCS) an important tool. Operators use deep geologic reservoirs as a form of favorable geological storage for long-term CO2 sequestration. However, the success of CCS hinges on the integrity of wells [...] Read more.
Increasing concern over climate change has made Carbon Capture and Storage (CCS) an important tool. Operators use deep geologic reservoirs as a form of favorable geological storage for long-term CO2 sequestration. However, the success of CCS hinges on the integrity of wells penetrating these formations, particularly legacy wells, which often exhibit significant uncertainties regarding cement tops in the annular space between the casing and formation, especially around or below the primary seal. Misalignment of cement plugs with the primary seal increases the risk of CO2 migrating beyond the seal, potentially creating pathways for fluid flow into upper formations, including underground sources of drinking water (USDW). These wells may not be leaking but might fail to meet the legal requirements of some federal and state agencies such as the Environmental Protection Agency (EPA), Railroad Commission of Texas (RRC), California CalGEM, and Pennsylvania DEP. This review evaluates the impact of CO2 exposure on cement and casing integrity including the fluid transport mechanisms, fracture behaviors, and operational stresses such as cyclic loading. Findings revealed that slow fluid circulation and confining pressure, primarily from overburden stress, promote self-sealing through mineral precipitation and elastic crack closure, enhancing well integrity. Sustained casing pressure can be a good indicator of well integrity status. While full-physics models provide accurate leakage prediction, surrogate models offer faster results as risk assessment tools. Comprehensive data collection on wellbore conditions, cement and casing properties, and environmental factors is essential to enhance predictive models, refine risk assessments, and develop effective remediation strategies for the long-term success of CCS projects. Full article
Show Figures

Figure 1

24 pages, 1164 KiB  
Article
A Community-Based Assessment of Attitudes, Health Impacts and Protective Actions During the 24-Day Hangar Fire in Tustin, California
by Shahir Masri, Alana M. W. LeBrón, Annie Zhang, Lisa B. Jones, Oladele A. Ogunseitan and Jun Wu
Int. J. Environ. Res. Public Health 2025, 22(7), 1003; https://doi.org/10.3390/ijerph22071003 - 26 Jun 2025
Viewed by 1052
Abstract
Fire events can impact physical and mental health through smoke exposure, evacuation, property loss, and/or other environmental stressors. In this study, we developed community-driven, cross-sectional online surveys to assess public attitudes, health impacts, and protective actions of residents affected by the Tustin hangar [...] Read more.
Fire events can impact physical and mental health through smoke exposure, evacuation, property loss, and/or other environmental stressors. In this study, we developed community-driven, cross-sectional online surveys to assess public attitudes, health impacts, and protective actions of residents affected by the Tustin hangar fire that burned for 24 days in southern California. Results showed the most frequently reported fire-related exposure concerns (93%) to be asbestos and general air pollution and the most commonly reported mental health impacts to be anxiety (41%), physical fatigue (37%), headaches (33%), and stress (26%). Nose/sinus irritation was the most commonly reported (26.0%) respiratory symptom, while skin- and eye-related conditions were reported by 63.0% and 72.2% of the survey population, respectively. The most commonly reported health-protective actions taken by residents included staying indoors and/or closing doors and windows (67%), followed by wearing face masks (37%) and the indoor use of air purifiers (35%). A higher proportion of low-income residents had to spend money on remediation or other health-protective actions compared to high-income residents. Participants overwhelmingly reported disapproval of their city’s and/or government’s response to the fire disaster. Findings from this study underscore the potential impacts of major pollution events on neighboring communities and offer critical insights to better position government agencies to respond during future disasters while effectively communicating with the public and addressing community needs. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

43 pages, 2607 KiB  
Review
Cutting-Edge Solutions for Soil and Sediment Remediation in Shipyard Environments
by Jae Ho Jung, Md Akhte Khirul, Dohyoung Kang, Hobin Jee, Chanwoo Park, Yudam Jung, Seunghyun Song and Euntae Yang
Processes 2025, 13(7), 2010; https://doi.org/10.3390/pr13072010 - 25 Jun 2025
Viewed by 619
Abstract
Shipyards are significant industrial sources of environmental pollution, releasing substantial amounts of heavy metals, petroleum hydrocarbons, and organic solvents into soil and groundwater during shipbuilding and maintenance operations. Such contamination not only affects the shipyard premises but also poses serious environmental threats to [...] Read more.
Shipyards are significant industrial sources of environmental pollution, releasing substantial amounts of heavy metals, petroleum hydrocarbons, and organic solvents into soil and groundwater during shipbuilding and maintenance operations. Such contamination not only affects the shipyard premises but also poses serious environmental threats to nearby communities, raising concerns about the long-term sustainability of the shipbuilding industry. Given the increasing global emphasis on sustainable industrial practices, addressing shipyard-related pollution has become a critical environmental challenge. This review aims to provide a comprehensive understanding of the pollution issues associated with shipyards and explore effective remediation strategies. It focuses on contamination in both soil and groundwater, and covers pollution generated throughout the shipbuilding and maintenance lifecycle. First, it examines previous studies to identify the major contaminants and pollution sources typically found at shipyard sites. Next, the paper reviews recent advances in soil and groundwater remediation technologies, including physical, chemical, and biological methods tailored to the unique challenges of shipyard environments. Finally, the review discusses current limitations in remediation practices and outlines potential directions for future research and technological development. Full article
(This article belongs to the Special Issue State-of-the-Art Wastewater Treatment Techniques)
Show Figures

Figure 1

17 pages, 3918 KiB  
Article
One-Step Synthesis of Polymeric Carbon Nitride Films for Photoelectrochemical Applications
by Alberto Gasparotto, Davide Barreca, Chiara Maccato, Ermanno Pierobon and Gian Andrea Rizzi
Nanomaterials 2025, 15(13), 960; https://doi.org/10.3390/nano15130960 - 21 Jun 2025
Viewed by 464
Abstract
Over the last decade, polymeric carbon nitrides (PCNs) have received exponentially growing attention as metal-free photocatalytic platforms for green energy generation and environmental remediation. Although PCNs can be easily synthesized from abundant precursors in a powdered form, progress in the field of photoelectrochemical [...] Read more.
Over the last decade, polymeric carbon nitrides (PCNs) have received exponentially growing attention as metal-free photocatalytic platforms for green energy generation and environmental remediation. Although PCNs can be easily synthesized from abundant precursors in a powdered form, progress in the field of photoelectrochemical applications requires effective methods for the fabrication of PCN films endowed with suitable mechanical stability and modular chemico-physical properties. In this context, as a proof-of-concept, we report herein on a simple and versatile chemical vapor infiltration (CVI) strategy for one-step PCN growth on porous Ni foam substrates, starting from melamine as a precursor compound. Interestingly, tailoring the reaction temperature enabled to control the condensation degree of PCN films from melem/melon hybrids to melon-like materials, whereas the use of different precursor amounts directly affected the mass and morphology of the obtained deposits. Altogether, such features had a remarkable influence on PCN electrochemical performances towards the oxygen evolution reaction (OER), yielding, for the best performing systems, Tafel slopes as low as ≈65 mV/dec and photocurrent density values of ≈1 mA/cm2 at 1.6 V vs. the reversible hydrogen electrode (RHE). Full article
Show Figures

Graphical abstract

18 pages, 1995 KiB  
Article
Enhancing Electrokinetic Remediation of Cu- and Pb-Contaminated Loess Using Irregular Electrode Configurations: A Numerical Investigation of Transport and Remediation Mechanisms
by Xinwen Wang and Wenle Hu
Processes 2025, 13(7), 1948; https://doi.org/10.3390/pr13071948 - 20 Jun 2025
Viewed by 359
Abstract
The strong adsorption capacity of loess poses a significant limitation to the electrokinetic (EK) remediation process. Modified EK technologies, such as graphene oxide-alginate composite hydrogel (GOCH) electrodes, are increasingly employed for the remediation of heavy metal-contaminated loess. However, the complex interactions among multiple [...] Read more.
The strong adsorption capacity of loess poses a significant limitation to the electrokinetic (EK) remediation process. Modified EK technologies, such as graphene oxide-alginate composite hydrogel (GOCH) electrodes, are increasingly employed for the remediation of heavy metal-contaminated loess. However, the complex interactions among multiple physical fields within these modified systems remain poorly understood. This study utilizes COMSOL Multiphysics version 6.0 to simulate diffusion, electromigration, electroosmotic flow, adsorption, and chemical reactions in loess contaminated with copper (Cu) and lead (Pb). A chemical precipitation and ion transport model, governed by the Nernst–Planck equation, was validated through a comparison of simulation results with experimental data. The investigation examines the effects of electrode placement and size on EK efficiency, revealing that diagonally placed irregular electrodes optimize the electric field, minimize ineffective regions, and enhance ion migration. Larger electrodes enhance current density, whereas smaller electrodes mitigate edge shielding effects. This research offers strategic insights into electrode configuration for improved EK remediation of Cu-Pb-contaminated loess, achieving greater efficiency than traditional systems. Full article
Show Figures

Figure 1

22 pages, 2877 KiB  
Review
Research Progress of Mine Ecological Restoration Technology
by Yue Xiang, Jiayi Gong, Liyong Zhang, Minghai Zhang, Jia Chen, Hui Liang, Yonghua Chen, Xiaohua Fu, Rongkui Su and Yiting Luo
Resources 2025, 14(6), 100; https://doi.org/10.3390/resources14060100 - 16 Jun 2025
Cited by 1 | Viewed by 1067
Abstract
This article provides a systematic review of the current research status and latest progress in the field of mine ecological restoration. Using the SCI literature indexed by the Web of Science database as the data source, the research status and hotspots in the [...] Read more.
This article provides a systematic review of the current research status and latest progress in the field of mine ecological restoration. Using the SCI literature indexed by the Web of Science database as the data source, the research status and hotspots in the field of mine ecological restoration are displayed through the visual analysis of CiteSpace and the progress of mine ecological restoration technology this year is systematically summarized. Through a comprehensive review of existing technological methods, it is found that whether it is physical, chemical, biological restoration, or combined restoration technology, there are respective advantages, disadvantages, and application limitations. Physical remediation is a pretreatment, chemical remediation is prone to secondary pollution, while the sustainability shown by bioremediation makes it dominant in the of mine ecological remediation, but it has a long cycle and there is a risk of heavy metals that are accumulated by plants re-entering the biosphere through the food chain. Combined remediation can integrate the advantages of different restoration technologies and is the trend for the future development of mine ecological restoration. In the future, we should further promote technological innovation, perfect monitoring and evaluation technology, and promote informatization, scientization, and the effective implementation of mine ecological restoration, to achieve the ecological restoration and sustainable development of the mine area. Full article
(This article belongs to the Special Issue Mine Ecological Restoration)
Show Figures

Figure 1

31 pages, 2910 KiB  
Review
Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches
by Jie Kang, Xintong Liu, Bing Dai, Tianhao Liu, Fasih Ullah Haider, Peng Zhang, Habiba and Jian Cai
Sustainability 2025, 17(12), 5433; https://doi.org/10.3390/su17125433 - 12 Jun 2025
Viewed by 1211
Abstract
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, [...] Read more.
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, stormwater runoff, and sedimentation to contaminate air, water, and soil. TWPs are composed of synthetic rubber polymers, reinforcing fillers, and chemical additives, including heavy metals such as zinc (Zn) and copper (Cu) and organic compounds like polycyclic aromatic hydrocarbons (PAHs) and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD). These constituents confer persistence and bioaccumulative potential. While TWP toxicity in aquatic systems is well-documented, its ecological impacts on terrestrial environments, particularly in agricultural soils, remain less understood despite global soil loading rates exceeding 6.1 million metric tons annually. This review synthesizes global research on TWP sources, environmental fate, and ecotoxicological effects, with a focus on soil–plant systems. TWPs have been shown to alter key soil properties, including a 25% reduction in porosity and a 20–35% decrease in organic matter decomposition, disrupt microbial communities (with a 40–60% reduction in nitrogen-fixing bacteria), and induce phytotoxicity through both physical blockage of roots and Zn-induced oxidative stress. Human exposure occurs through inhalation (estimated at 3200 particles per day in urban areas), ingestion, and dermal contact, with epidemiological evidence linking TWPs to increased risks of respiratory, cardiovascular, and developmental disorders. Emerging remediation strategies are critically evaluated across three tiers: (1) source reduction using advanced tyre materials (up to 40% wear reduction in laboratory tests); (2) environmental interception through bioengineered filtration systems (60–80% capture efficiency in pilot trials); and (3) contaminant degradation via novel bioremediation techniques (up to 85% removal in recent studies). Key research gaps remain, including the need for long-term field studies, standardized mitigation protocols, and integrated risk assessments. This review emphasizes the importance of interdisciplinary collaboration in addressing TWP pollution and offers guidance on sustainable solutions to protect ecosystems and public health through science-driven policy recommendations. Full article
Show Figures

Figure 1

23 pages, 4528 KiB  
Article
Exploring Photocatalytic, Antimicrobial and Antioxidant Efficacy of Green-Synthesized Zinc Oxide Nanoparticles
by Sabina Shrestha, Laxmi Tiwari, Sujan Dhungana, Jasana Maharjan, Devendra Khadka, Allison A. Kim, Megh Raj Pokhrel, Janaki Baral, Mira Park and Bhoj Raj Poudel
Nanomaterials 2025, 15(11), 858; https://doi.org/10.3390/nano15110858 - 3 Jun 2025
Cited by 1 | Viewed by 1970
Abstract
Aloe vera is effectively utilized to synthesize zinc oxide nanoparticles (Av-ZnO NPs), providing an alternative to traditional chemical and physical methods. This sustainable approach minimizes the environmental impacts and enhances their compatibility with herbal ecosystems. We comprehensively analyzed the optical, structural, morphological, and [...] Read more.
Aloe vera is effectively utilized to synthesize zinc oxide nanoparticles (Av-ZnO NPs), providing an alternative to traditional chemical and physical methods. This sustainable approach minimizes the environmental impacts and enhances their compatibility with herbal ecosystems. We comprehensively analyzed the optical, structural, morphological, and catalytic properties of Av-ZnO NPs using various analytical methods. The results indicated that the nanoparticles primarily exhibited a spherical shape. X-ray diffraction (XRD) revealed the successful formation of a highly crystalline hexagonal wurtzite structure, with an average size estimated at 12.2 nm. The antimicrobial properties of the Av-ZnO NPs indicated moderate antibacterial effectiveness. Using the DPPH free radical scavenging method, we evaluated the antioxidant properties, where the Av-ZnO NPs exhibited improved the radical scavenging efficiency, reflected by a lower IC50 value compared to the plant extract. Additionally, we assessed the photocatalytic functionality through the degradation of methylene blue (MB) dye, finding that the Av-ZnO NPs achieved approximately 82.43% degradation in 210 min, demonstrating their potential for environmental remediation. These findings suggest that green-synthesized ZnO NPs could play a noteworthy role in various nanotechnology applications and biomedical fields, while also promoting environmental sustainability. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

27 pages, 11083 KiB  
Article
Biodegradation of Phenanthrene by Mycobacterium sp. TJFP1: Genetic Basis and Environmental Validation
by Shuyun Li, Jiazhen Liu and Ping Fang
Microorganisms 2025, 13(5), 1171; https://doi.org/10.3390/microorganisms13051171 - 21 May 2025
Viewed by 567
Abstract
The development of efficient bioremediation technologies for polycyclic aromatic hydrocarbons contamination is a hot research topic in the environmental field. In this study, we found that the Mycobacterium sp., TJFP1, has the function of degrading low molecular weight PAHs, and further investigated its [...] Read more.
The development of efficient bioremediation technologies for polycyclic aromatic hydrocarbons contamination is a hot research topic in the environmental field. In this study, we found that the Mycobacterium sp., TJFP1, has the function of degrading low molecular weight PAHs, and further investigated its degradation characteristics using the PAH model compound phenanthrene as a target pollutant. The optimal growth and degradation conditions were determined by single-factor experiments to be 37 °C, pH 9.0, and an initial concentration of 100 mg/L phenanthrene. Under this condition, the degradation efficiency of phenanthrene reached 100% after 106 h of incubation, and the average degradation rate could reach 24.48 mg/L/day. Combined with whole genome sequencing analysis, it was revealed that its genome carries a more complete phenanthrene degradation pathway, including functional gene clusters related to the metabolism of PAHs, such as phd and nid. Meanwhile, intermediates such as phthalic acid were detected; it was determined that TJFP1 metabolizes phenanthrene via the phthalic acid pathway. Simulated contaminated soil experiments were also conducted, and the results showed that the removal rate of phenanthrene from the soil after 20 days of inoculation with the bacterial strain was about 3.7 times higher than that of the control group (natural remediation). At the same time from the soil physical and chemical properties and soil microbial community structure of two levels to explore the changes in different means of remediation, indicating that it can be successfully colonized in the soil, and as a dominant group of bacteria to play the function of remediation, verifying the environmental remediation function of the strains, for the actual inter-soil remediation to provide theoretical evidence. This study provides efficient strain resources for the bioremediation of PAH contamination. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

31 pages, 18126 KiB  
Article
Eco-Friendly Conversion of Waste Zeolite Dust into Dual Oil/Water Affinity Sorbents via HPGR-Based Agglomeration–Deagglomeration
by Ewelina Pabiś-Mazgaj, Agata Stempkowska and Tomasz Gawenda
Sustainability 2025, 17(10), 4359; https://doi.org/10.3390/su17104359 - 12 May 2025
Viewed by 531
Abstract
This study presents an innovative, eco-friendly approach for converting waste zeolite dust into efficient petroleum sorbents through an integrated agglomeration–deagglomeration process using high-pressure grinding rolls (HPGRs). This method generates secondary porosity without calcination, enhancing sorption while reducing greenhouse gas emissions and supporting sustainable [...] Read more.
This study presents an innovative, eco-friendly approach for converting waste zeolite dust into efficient petroleum sorbents through an integrated agglomeration–deagglomeration process using high-pressure grinding rolls (HPGRs). This method generates secondary porosity without calcination, enhancing sorption while reducing greenhouse gas emissions and supporting sustainable development by valorizing industrial by-products for environmental remediation. The study aimed to assess the influence of binder and water content on petroleum sorption performance, textural properties, and mechanical strength of the produced sorbents, and to identify correlations between these parameters. Sorbents were characterized using mercury porosimetry (MIP), sorption measurements, mechanical resistance tests, scanning electron microscopy (SEM), and digital microscopy. Produced zeolite sorbents (0.5–1 mm) exceeded the 50 wt.% sorption threshold required for oil spill cleanup in Poland, outperforming diatomite sorbents by 15–50% for diesel and 40% for used engine oil. The most effective sample, 3/w/22.5, reached capacities of 0.4 g/g for petrol, 0.8 g/g for diesel, and 0.3 g/g for used oil. The sorption mechanism was governed by physical processes, mainly diffusion of nonpolar molecules into meso- and macropores via van der Waals forces. Sorbents with dominant pores (~4.8 µm) showed ~15% higher efficiency than those with smaller pores (~0.035 µm). The sorbents demonstrated amphiphilic behavior, enabling simultaneous uptake of polar (water) and nonpolar (petrochemical) substances. Full article
Show Figures

Figure 1

Back to TopTop