Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (600)

Search Parameters:
Keywords = physical properties of rocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 167102 KiB  
Article
Influence of Mineralogical and Petrographic Properties on the Mechanical Behavior of Granitic and Mafic Rocks
by Muhammad Faisal Waqar, Songfeng Guo, Shengwen Qi, Malik Aoun Murtaza Karim, Khan Zada, Izhar Ahmed and Yanjun Shang
Minerals 2025, 15(7), 747; https://doi.org/10.3390/min15070747 - 17 Jul 2025
Viewed by 343
Abstract
This study investigates the impact of mineralogical and petrographic characteristics on the mechanical behavior of granitic and mafic rocks from the Shuangjiangkou (Sichuan Province) and Damiao complexes (Hebei Province) in China. The research methodology combined petrographic investigation, comprising optical microscopy and Scanning Electron [...] Read more.
This study investigates the impact of mineralogical and petrographic characteristics on the mechanical behavior of granitic and mafic rocks from the Shuangjiangkou (Sichuan Province) and Damiao complexes (Hebei Province) in China. The research methodology combined petrographic investigation, comprising optical microscopy and Scanning Electron Microscopy–Energy-Dispersive X-ray Spectroscopy (SEM-EDS) methods, with methodical geotechnical characterization to establish quantitative relationships between mineralogical composition and engineering properties. The petrographic studies revealed three lithologic groups: fine-to-medium-grained Shuangjiangkou granite (45%–60% feldspar, 27%–35% quartz, 10%–15% mica), plagioclase-rich anorthosite (more than 90% of plagioclase), and intermediate mangerite (40%–50% of plagioclase, 25%–35% of perthite). The uniaxial compressive strength tests showed great variations: granite (127.53 ± 15.07 MPa), anorthosite (167.81 ± 23.45 MPa), and mangerite (205.12 ± 23.87 MPa). Physical properties demonstrated inverse correlations between mechanical strength and both water absorption (granite: 0.25%–0.42%; anorthosite: 0.07%–0.44%; mangerite: 0.10%–0.25%) and apparent porosity (granite: 0.75%–0.92%; anorthosite: 0.20%–1.20%; mangerite: 0.29%–0.69%), with positive correlations to specific gravity (granite: 1.88–3.03; anorthosite: 2.67–2.90; mangerite: 2.43–2.99). Critical petrographic features controlling mechanical behavior include the following: (1) mica content in granite creating anisotropic properties, (2) extensive feldspar alteration through sericitization increasing microporosity and reducing intergranular cohesion, (3) plagioclase micro-fracturing and alteration to clinozoisite–sericite assemblages in anorthosite creating weakness networks, and (4) mangerite’s superior composition of >95% hard minerals with minimal sheet mineral content and limited alteration. Failure mode analysis indicated distinct patterns: granite experiencing shear-dominated failure (30–45° diagonal planes), anorthosite demonstrated tensile fracturing with vertical splitting, and mangerite showed catastrophic brittle failure with extensive fracture networks. These findings provide quantitative frameworks that relate petrographic features to engineering behavior, offering valuable insights for rock mass assessment and engineering design in similar crystalline rock terrains. Full article
(This article belongs to the Special Issue Characterization of Geological Material at Nano- and Micro-scales)
Show Figures

Figure 1

17 pages, 5746 KiB  
Article
Gas Prediction in Tight Sandstone Reservoirs Based on a Seismic Dispersion Attribute Derived from Frequency-Dependent AVO Inversion
by Laidong Hu, Mingchun Chen and Han Jin
Processes 2025, 13(7), 2210; https://doi.org/10.3390/pr13072210 - 10 Jul 2025
Viewed by 219
Abstract
Accurate gas prediction is crucial for identifying gas-bearing zones in tight sandstone reservoirs. Traditional seismic techniques, primarily grounded in elastic theory, often overlook inelastic dispersion effects inherent to such formations. To overcome this limitation, we introduce a gas prediction approach utilizing a dispersion [...] Read more.
Accurate gas prediction is crucial for identifying gas-bearing zones in tight sandstone reservoirs. Traditional seismic techniques, primarily grounded in elastic theory, often overlook inelastic dispersion effects inherent to such formations. To overcome this limitation, we introduce a gas prediction approach utilizing a dispersion attribute derived from frequency-dependent inversion based on an AVO equation parameterized by a gas indicator and related properties. Rock physics modeling, based on multi-scale fracture theory, reveals the frequency-dependent gas indicator is highly responsive to variations in porosity and gas saturation. Seismic AVO simulations exhibit distinguishable signatures corresponding to these variations, supporting the potential to estimate reservoir properties from pre-stack seismic data. Synthetic data tests confirm that the values of the proposed dispersion attribute increase with increasing porosity and gas saturation. Additionally, the calculated dispersion attribute exhibits a strong positive correlation with gas content, validating its effectiveness for gas evaluation. Field application results further demonstrate that the proposed dispersion attribute shows prominent anomalies in sandstone reservoirs with high gas content. Compared to the conventional P-wave dispersion attribute, the proposed dispersion attribute exhibits superior reliability in detecting gas-rich zones. These results demonstrate the utility of the method in predicting gas-bearing regions in tight sandstone reservoirs. Full article
Show Figures

Figure 1

17 pages, 3679 KiB  
Article
Binary-Classification Physical Fractal Models in Different Coal Structures
by Guangui Zou, Yuyan Che, Tailang Zhao, Yajun Yin, Suping Peng and Jiasheng She
Fractal Fract. 2025, 9(7), 450; https://doi.org/10.3390/fractalfract9070450 - 8 Jul 2025
Viewed by 232
Abstract
Existing theoretical models of wave-induced flow face challenges in coal applications due to the scarcity of experimental data in the seismic-frequency band. Additionally, traditional viscoelastic combination models exhibit inherent limitations in accurately capturing the attenuation characteristics of rocks. To overcome these constraints, we [...] Read more.
Existing theoretical models of wave-induced flow face challenges in coal applications due to the scarcity of experimental data in the seismic-frequency band. Additionally, traditional viscoelastic combination models exhibit inherent limitations in accurately capturing the attenuation characteristics of rocks. To overcome these constraints, we propose a novel binary classification physical fractal model, which provides a more robust framework for analyzing wave dispersion and attenuation in complex coal. The fractal cell was regarded as an element to re-establish the viscoelastic constitutive equation. In the new constitutive equation, three key fractional orders, α, β, and γ, emerged. Among them, α mainly affects the attenuation at low frequencies; β controls the attenuation in the middle-frequency band; and γ dominates the attenuation in the tail-frequency band. After fitting with the measured attenuation data of partially saturated coal samples under variable confining pressures and variable temperature conditions, the results show that this model can effectively represent the attenuation characteristics of elastic wave propagation in coals with different coal structures. It provides a new theoretical model and analysis ideas for the study of elastic wave attenuation in tectonic coals and is of great significance for an in-depth understanding of the physical properties of coals and related geophysical prospecting. Full article
(This article belongs to the Special Issue Fractal Dimensions with Applications in the Real World)
Show Figures

Figure 1

18 pages, 5336 KiB  
Article
Comparative Flexural Response of Mineralized Massive Sulfides and Meta-Rhyolitic Rocks
by Haitham M. Ahmed and Essam B. Moustafa
Geosciences 2025, 15(7), 263; https://doi.org/10.3390/geosciences15070263 - 8 Jul 2025
Viewed by 220
Abstract
An experimental study was conducted to investigate the flexural mechanical properties of mineralized (massive sulfides) and non-mineralized (meta-rhyolitic tuff) rock samples using a three-point bending test. Mineralogical analysis was conducted on samples from both rock categories, followed by the determination of physical properties [...] Read more.
An experimental study was conducted to investigate the flexural mechanical properties of mineralized (massive sulfides) and non-mineralized (meta-rhyolitic tuff) rock samples using a three-point bending test. Mineralogical analysis was conducted on samples from both rock categories, followed by the determination of physical properties (P-wave velocity and density). In the massive sulfide zones, there are three distinctive zones of mineralization, each exhibiting varying degrees of pyritization: the intense pyritization zone (formerly Zone A) exhibited extensive pyrite replacement of sphalerite and chalcopyrite, the transitional zone (Zone B) displays intergrowths of pyrite and sphalerite, and the coarse sulfide zone (Zone C) features coarser, less altered sulfides—polyphase hydrothermal alteration, including sericitization, silicification, and amphibole veining. Mineralized rocks showed a 35.18% increase in density (3.65 ± 0.17 kg/m3 vs. 2.72 ± 0.014 kg/m3) attributed to dense sulfide content. The flexural strength more than doubled (99.02 ± 4.42 GPa vs. 43.17 ± 6.45 GPa), experiencing a 129% increase, due to homogeneous chalcopyrite distribution and fine-grained sulfide networks. Despite strength differences, deflection rates showed a non-significant 4% variation (0.373 ± 0.083 mm for mineralized vs. 0.389 ± 0.074 mm for metamorphic rocks), indicating comparable ductility. Full article
Show Figures

Figure 1

31 pages, 10887 KiB  
Article
Impact of Reservoir Properties on Micro-Fracturing Stimulation Efficiency and Operational Design Optimization
by Shaohao Wang, Yuxiang Wang, Wenkai Li, Junlong Cheng, Jianqi Zhao, Chang Zheng, Yuxiang Zhang, Ruowei Wang, Dengke Li and Yanfang Gao
Processes 2025, 13(7), 2137; https://doi.org/10.3390/pr13072137 - 4 Jul 2025
Viewed by 283
Abstract
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay [...] Read more.
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay content, and heavy oil viscosity on micro-fracturing stimulation effectiveness, based on the oil sands reservoir in Block Zhong-18 of the Fengcheng Oilfield. By establishing an extended Drucker–Prager constitutive model, Kozeny–Poiseuille permeability model, and hydro-mechanical coupling numerical simulation, this study quantitatively reveals the controlling effects of reservoir properties on key rock parameters (e.g., elastic modulus, Poisson’s ratio, and permeability), integrating experimental data with literature review. The results demonstrate that increasing clay content significantly reduces reservoir permeability and stimulated volume, whereas elevated asphaltene content inhibits stimulation efficiency by weakening rock strength. Additionally, the thermal sensitivity of heavy oil viscosity indirectly affects geomechanical responses, with low-viscosity fluids under high-temperature conditions being more conducive to effective stimulation. Based on the quantitative relationship between cumulative injection volume and stimulation parameters, a classification-based optimization model for oil sands reservoir operations was developed, predicting over 70% reduction in preheating duration. This study provides both theoretical foundations and practical guidelines for micro-fracturing parameter design in complex oil sands reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 6249 KiB  
Article
Application of the NOA-Optimized Random Forest Algorithm to Fluid Identification—Low-Porosity and Low-Permeability Reservoirs
by Qunying Tang, Yangdi Lu, Xiaojing Yang, Yuping Li, Wei Zhang, Qiangqiang Yang, Zhen Tian and Rui Deng
Processes 2025, 13(7), 2132; https://doi.org/10.3390/pr13072132 - 4 Jul 2025
Viewed by 300
Abstract
As an important unconventional oil and gas resource, tight oil exploration and development is of great significance to ensure energy supply under the background of continuous growth of global energy demand. Low-porosity and low-permeability reservoirs are characterized by tight rock properties, poor physical [...] Read more.
As an important unconventional oil and gas resource, tight oil exploration and development is of great significance to ensure energy supply under the background of continuous growth of global energy demand. Low-porosity and low-permeability reservoirs are characterized by tight rock properties, poor physical properties, and complex pore structure, and as a result the fine calculation of logging reservoir parameters faces great challenges. In addition, the crude oil in this area has high viscosity, the formation water salinity is low, and the oil reservoir resistivity shows significant spatial variability in the horizontal direction, which further increases the difficulty of oil and water reservoir identification and affects the accuracy of oil saturation calculation. Targeting the above problems, the Nutcracker Optimization Algorithm (NOA) was used to optimize the hyperparameters of the random forest classification model, and then the optimal hyperparameters were input into the random forest model, and the conventional logging curve and oil test data were combined to identify and classify the reservoir fluids, with the final accuracy reaching 94.92%. Compared with the traditional Hingle map intersection method, the accuracy of this method is improved by 14.92%, which verifies the reliability of the model for fluid identification of low-porosity and low-permeability reservoirs in the research block and provides reference significance for the next oil test and production test layer in this block. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization, 2nd Edition)
Show Figures

Figure 1

19 pages, 8915 KiB  
Article
Research on Control Technology of Large-Section Water-Bearing Broken Surrounding Rock Roadway
by Wenqing Peng and Shenghua Feng
Appl. Sci. 2025, 15(13), 7011; https://doi.org/10.3390/app15137011 - 21 Jun 2025
Viewed by 202
Abstract
With the increasing depth of mining operations, the geological conditions of deep roadways have become increasingly complex. Among these complexities, the issues of fractured zones and groundwater are particularly critical, significantly contributing to the reduced stability of the surrounding rock. This study focuses [...] Read more.
With the increasing depth of mining operations, the geological conditions of deep roadways have become increasingly complex. Among these complexities, the issues of fractured zones and groundwater are particularly critical, significantly contributing to the reduced stability of the surrounding rock. This study focuses on the challenging support problem associated with water-bearing fractured surrounding rock in the Y1# belt conveyor roadway of the Wengfu phosphate mine. Through theoretical calculation, laboratory testing, numerical simulation, and field monitoring, the range and displacement of the broken zone in the broken surrounding rock roadway are studied and analyzed. The results show that the physical and mechanical properties of the broken surrounding rock mass are weakened by water, and the range and deformation of the broken zone of the surrounding rock of the water-bearing roadway increase. In response to the failure characteristics of the water-bearing fractured surrounding rock in the Y1# belt conveyor roadway, an optimized support scheme was developed. A combined support system of steel arch frames and localized grouting was proposed to enhance the control of the surrounding rock. Field monitoring data confirmed that the optimized support scheme achieved satisfactory control effectiveness, effectively addressing the stability challenges posed by water-bearing fractured rock masses. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

23 pages, 11085 KiB  
Article
Failure Mechanism and Movement Process Inversion of Rainfall-Induced Landslide in Yuexi Country
by Yonghong Xiao, Lu Wei and Xianghong Liu
Sustainability 2025, 17(12), 5639; https://doi.org/10.3390/su17125639 - 19 Jun 2025
Viewed by 328
Abstract
Shallow landslides are one of the main geological hazards that occur during heavy rainfall in Yuexi County every year, posing potential risks to the personal and property safety of local residents. A rainfall-induced shallow landslide named Baishizu No. 15 landslide in Yuexi Country [...] Read more.
Shallow landslides are one of the main geological hazards that occur during heavy rainfall in Yuexi County every year, posing potential risks to the personal and property safety of local residents. A rainfall-induced shallow landslide named Baishizu No. 15 landslide in Yuexi Country was taken as a case study. Based on the field geological investigation, combined with physical and mechanical experiments in laboratory as well as numerical simulation, the failure mechanism induced by rainfall infiltration was studied, and the movement process after landslide failure was inverted. The results show that the pore-water pressure within 2 m of the landslide body increases significantly and the factory of safety (Fs) has a good corresponding relationship with rainfall, which decreased to 0.978 after the heavy rainstorm on July 5 and July 6 in 2020. The maximum shear strain and displacement are concentrated at the foot and front edge of the landslide, which indicates a “traction type” failure mode of the Baishizu No. 15 landslide. In addition, the maximum displacement during landslide instability is about 0.5 m. The residual strength of soils collected from the soil–rock interface shows significant rate-strengthening, which ensures that the Baishizu No. 15 landslide will not exhibit high-speed and long runout movement. The rate-dependent friction coefficient of sliding surface was considered to simulate the movement process of the Baishizu No. 15 landslide by using PFC2D. The simulation results show that the movement velocity exhibited obvious oscillatory characteristics. After the movement stopped, the landslide formed a slip cliff at the rear edge and deposited as far as the platform at the front of the slope foot but did not block the road ahead. The final deposition state is basically consistent with the on-site investigation. The research results of this paper can provide valuable references for the disaster prevention, mitigation, and risk assessment of shallow landslides on residual soil slopes in the Dabie mountainous region. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

27 pages, 4298 KiB  
Article
Feasibility Study of Waste Rock Wool Fiber as Asphalt Mixture Additive: Performance Test and Environmental Effect Analysis
by Bingjian Zeng, Ni Wan, Sipeng Zhang, Xiaohua Yu, Zhen Zhang, Jiawu Chen and Bin Lei
Buildings 2025, 15(12), 2022; https://doi.org/10.3390/buildings15122022 - 12 Jun 2025
Viewed by 464
Abstract
To investigate the feasibility of utilizing waste rock wool fiber as an additive in asphalt mixtures for resource recycling, this study evaluates and analyzes the performance of asphalt and asphalt mixtures, as well as their environmental benefits. Initially, the properties and mechanisms of [...] Read more.
To investigate the feasibility of utilizing waste rock wool fiber as an additive in asphalt mixtures for resource recycling, this study evaluates and analyzes the performance of asphalt and asphalt mixtures, as well as their environmental benefits. Initially, the properties and mechanisms of modified asphalt mortar are examined under different shapes (powdery rock wool fiber (RWP) and fibrous rock wool fiber (RWF)) and varying rock wool fiber contents (0%, 1%, 2%, 3%, and 4% of matrix asphalt mass). Subsequently, the pavement performances of asphalt mixtures with different RWF contents (0%, 0.1%, 0.2%, 0.3%, and 0.4% of asphalt mixture mass) are compared. The environmental and economic impacts of RWF-modified asphalt mixtures are assessed using the life cycle assessment (LCA) method and the benefit cost analysis (BCA) method. Finally, the carbon property ratio (CPR), an innovative index, is proposed. It comprehensively evaluates the pavement performances and economic benefits of RWF modified asphalt mixtures in relation to carbon emissions (CEs). The results indicate that compared to RWP, RWF primarily functions as an inert fiber stabilizer. It provides a physical reinforcing effect through its three-dimensional network skeleton structure. Both RWP and RWF-modified asphalts exhibit improved performance compared to matrix asphalt. RWF demonstrates superior temperature susceptibility and high temperature performance. The optimal contents for achieving the best high temperature, water stability, and low-temperature crack resistance performances of RWF-modified asphalt mixtures are 0.3%, 0.2%, and 0.2%, respectively. As the RWF content increases, the energy consumption (EC) and CEs during the pavement construction stage slightly rise within an acceptable range, while positive economic benefits also increase. Additionally, the CPR index can comprehensively assess the favorable effects of pavement performances or economic benefits against the adverse effects of CEs. It offers theoretical guidance for the design of optimal rock wool fiber content. Full article
(This article belongs to the Special Issue Advance in Eco-Friendly Building Materials and Innovative Structures)
Show Figures

Figure 1

29 pages, 21376 KiB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 508
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

16 pages, 1393 KiB  
Article
Thermal Damage Characterization and Modeling in Granite Samples Subjected to Heat Treatment by Leveraging Machine Learning and Experimental Data
by Gabit Sansyzbekov, Amoussou Coffi Adoko and Paul Mathews George
Appl. Sci. 2025, 15(11), 6328; https://doi.org/10.3390/app15116328 - 4 Jun 2025
Viewed by 537
Abstract
High temperatures significantly affect the physical and mechanical properties of rocks in deep geoengineering projects, such as geothermal development, deep mining, and the geological disposal of nuclear waste. Therefore, it is essential to explore the relationship between the thermal damage (TD) of granite [...] Read more.
High temperatures significantly affect the physical and mechanical properties of rocks in deep geoengineering projects, such as geothermal development, deep mining, and the geological disposal of nuclear waste. Therefore, it is essential to explore the relationship between the thermal damage (TD) of granite and its influencing factors. This paper characterizes the TD of granite specimens subjected to high temperatures of up to 800 °C and proposes a predictive model for this thermal damage. A database, which includes publicly available experimental data of advanced microscopic observations of granite specimens exposed to high-temperature treatments and their changes in physical and mechanical properties, was compiled and analyzed. The collected data revealed a consistent trend: crack development among quartz, feldspar, and biotite minerals was observed to intensify notably between 400 °C and 600 °C, as indicated by changes in the mechanical properties. Based on these characteristics, the relationships between TD and its influential parameters were determined using regression models and several machine learning algorithms. The derived models indicated good predictability performance with a coefficient of determination (R2) varying between 0.60 and 0.97, with the boosted ensemble tree model being the best. Nevertheless, mineral contents were not found to be good predictors of TD, even if they control the evolution of the crack during the heat treatment. It was concluded that the findings of this study could serve as a valuable tool for assessing the thermal damage of rocks. Full article
Show Figures

Figure 1

16 pages, 5360 KiB  
Article
Petrophysics Parameter Inversion and Its Application Based on the Transient Electromagnetic Method
by Xiaozhen Teng, Jianhua Yue, Kailiang Lu, Danyang Xi, Herui Zhang and Kua Wang
Appl. Sci. 2025, 15(11), 6256; https://doi.org/10.3390/app15116256 - 2 Jun 2025
Viewed by 419
Abstract
The transient electromagnetic (TEM) method is a widely used geophysical technique for detecting subsurface electrical structures. However, its inversion results are typically limited to resistivity parameters, making it challenging to directly infer key petrophysical properties, such as water saturation and porosity. This study [...] Read more.
The transient electromagnetic (TEM) method is a widely used geophysical technique for detecting subsurface electrical structures. However, its inversion results are typically limited to resistivity parameters, making it challenging to directly infer key petrophysical properties, such as water saturation and porosity. This study proposes a petrophysics parameter inversion approach based on TEM data. By constructing multiple geoelectric models with varying porosities and water saturation values for numerical simulations, the results demonstrated that both the forward and inversion responses of the TEM field maintained errors within 5%. The inversion procedure begins with the reconstruction of the subsurface resistivity distribution, which reliably reflects the true geoelectric model. Based on the inverted resistivity, the water saturation and porosity parameters are subsequently estimated. The inversion results closely match the overall trend of the actual model and exhibit a clear response at the target layer. Finally, the proposed method is applied to a field test at the Tongxin Coal Mine. By integrating subsurface electrical responses with geological data, the spatial distributions of water saturation and porosity within the coal-bearing strata were delineated. This provides a scientific basis for the detailed characterization of the physical properties of coal and surrounding rock, as well as for understanding the development of pores and fractures in underground strata. Full article
Show Figures

Figure 1

15 pages, 669 KiB  
Systematic Review
Basalt Rock Powder in Cementitious Materials: A Systematic Review
by Maryane Pipino Beraldo Almeida, Lays da Silva Sá Gomes, Alex Ramos Silva, Jacqueline Roberta Tamashiro, Fábio Friol Guedes Paiva, Lucas Henrique Pereira Silva and Angela Kinoshita
Resources 2025, 14(6), 86; https://doi.org/10.3390/resources14060086 - 23 May 2025
Cited by 1 | Viewed by 811
Abstract
Concrete and mortar production consumes significant natural resources, leading to environmental concerns and sustainability challenges. Sustainable alternatives, such as industrial byproducts, have been explored to replace clinkers and aggregates. Basalt rock powder (BRP) is a promising option due to its physical and chemical [...] Read more.
Concrete and mortar production consumes significant natural resources, leading to environmental concerns and sustainability challenges. Sustainable alternatives, such as industrial byproducts, have been explored to replace clinkers and aggregates. Basalt rock powder (BRP) is a promising option due to its physical and chemical properties, including its better particle size distribution and compatibility with cementitious composites, and studies have highlighted its pozzolanic activity and its potential to improve mechanical properties (compressive strength, flexural strength, and durability). Reusing rock dust as a raw material could transform it into a mineral byproduct, benefiting the new material and reducing waste volumes. This article presents a systematic literature review on the use of BRP in construction materials, conducted using the Scopus, ScienceDirect, PubMed, and Web of Science databases and following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) procedures. The search resulted in 787 articles (up to December 2024) and, after the screening process, 17 met the inclusion criteria. From the selected articles, information regarding the utilization of this waste product; its influence on mechanical properties, pozzolanic activity, and durability; and the sustainability associated with its use was compiled. The risk of bias was low as the search was comprehensive, all the papers were peer-reviewed, and all authors reviewed the papers independently. In conclusion, the studies demonstrate the potential of using BRP as a component of cementitious materials, indicating it as a possible innovative solution to the current challenges in the construction industry. Full article
Show Figures

Figure 1

31 pages, 4555 KiB  
Article
The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits
by Farida Issatayeva, Auez Abetov, Gulzada Umirova, Aigerim Abdullina, Zhanibek Mustafin and Oleksii Karpenko
Geosciences 2025, 15(6), 190; https://doi.org/10.3390/geosciences15060190 - 22 May 2025
Viewed by 587
Abstract
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of [...] Read more.
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of the impact on the lithosphere of mantle plumes rising along TCMFCFs, intense block deformations and tectonic movements are generated; rift systems, and volcanic–plutonic belts spatially combined with them, are formed; and intrusive bodies are introduced. These processes cause epithermal ore formation as a consequence of the impact of mantle plumes rising along TCMFCF to the lithosphere. At hydrocarbon fields, they play extremely important roles in conductive and convective heat, as well as in mass transfer to the area of hydrocarbon generation, determining the relationship between the processes of lithogenesis and tectogenesis, and activating the generation of hydrocarbons from oil and gas source rock. Detection of TCMFCFs was carried out using MMSS (the method of microseismic sounding) and MTSM (the magnetotelluric sounding method), in combination with other geological and geophysical data. Practical examples are provided for mineral deposits where subvertical transcrustal columns of increased permeability, traced to considerable depths, have been found; the nature of these unique structures is related to faults of pre-Paleozoic emplacement, which determined the fragmentation of the sub-crystalline structure of the Earth and later, while developing, inherited the conditions of volumetric fluid dynamics, where the residual forms of functioning of fluid-conducting thermohydrocolumns are granitoid batholiths and other magmatic bodies. Experimental modeling of deep processes allowed us to identify the quantum character of crystal structure interactions of minerals with “inert” gases under elevated thermobaric conditions. The roles of helium, nitrogen, and hydrogen in changing the physical properties of rocks, in accordance with their intrastructural diffusion, has been clarified; as a result of low-energy impact, stress fields are formed in the solid rock skeleton, the structures and textures of rocks are rearranged, and general porosity develops. As the pressure increases, energetic interactions intensify, leading to deformations, phase transitions, and the formation of chemical bonds under the conditions of an unstable geological environment, instability which grows with increasing gas saturation, pressure, and temperature. The processes of heat and mass transfer through TCMFCFs to the Earth’s surface occur in stages, accompanied by a release of energy that can manifest as explosions on the surface, in coal and ore mines, and during earthquakes and volcanic eruptions. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

19 pages, 7278 KiB  
Article
Enrichment Geological Conditions and Resource Evaluation Methods for the Gas in Thinly Interbedded Coal Measures: A Case Study of the Chengzihe Formation in the Jixi Basin
by Jiangpeng Guo, Shu Tao, Caiqin Bi, Yi Cui, Bin Yu and Yijie Wen
Energies 2025, 18(10), 2584; https://doi.org/10.3390/en18102584 - 16 May 2025
Viewed by 294
Abstract
The Cretaceous Chengzihe Formation in the Jixi Basin hosts abundant coal measure gas resources. Analyzing the geological conditions for gas enrichment and evaluating its resource potential are essential for advancing unconventional gas exploration. However, studies on the geological conditions controlling the enrichment of [...] Read more.
The Cretaceous Chengzihe Formation in the Jixi Basin hosts abundant coal measure gas resources. Analyzing the geological conditions for gas enrichment and evaluating its resource potential are essential for advancing unconventional gas exploration. However, studies on the geological conditions controlling the enrichment of thinly interbedded coal measure reservoirs in the Chengzihe Formation and corresponding assessment methods remain lacking. Based on the analysis of source–reservoir–seal characteristics of the thinly interbedded coal measure gas system in the Jixi Basin, integrated with resource assessment and reservoir formation controls, this study systematically reveals the enrichment patterns and accumulation mechanisms. The results show that the accumulation of thinly interbedded coal measure gas depends on three key geological factors: the gas-generating capacity of high-quality source rocks, the widespread distribution and stacking of thinly interbedded reservoirs, and the sealing capacity of cap rocks. In addition, enrichment is influenced by multiple factors, including tectonic evolution history, magmatic intrusion, sedimentary microfacies, and hydrogeological processes. Among these, the development of sedimentary microfacies (interdistributary bay and peat swamp) plays a decisive role in controlling the spatial distribution and physical properties of the reservoirs, while other factors further shape gas enrichment through synergistic interactions. Finally, using the volumetric method, the estimated gas resources of thinly interbedded coal measure gas in the Chengzihe Formation are 1226.73 × 108 m3, with the upper member showing significant potential of 688.98 × 108 m3. Full article
Show Figures

Figure 1

Back to TopTop