Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = physical metallurgical bonding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2515 KiB  
Review
A Review of Joining Technologies for SiC Matrix Composites
by Yongheng Lu, Jinzhuo Zhang, Guoquan Li, Zaihong Wang, Jing Wu and Chong Wei
Materials 2025, 18(9), 2046; https://doi.org/10.3390/ma18092046 - 30 Apr 2025
Viewed by 774
Abstract
SiC matrix composites are widely used in high-temperature structural components of aircraft engines and nuclear reactor materials because of their excellent properties such as their high modulus, high strength, corrosion resistance, and high-temperature resistance. However, the bonding of SiCf/SiC composites poses significant challenges [...] Read more.
SiC matrix composites are widely used in high-temperature structural components of aircraft engines and nuclear reactor materials because of their excellent properties such as their high modulus, high strength, corrosion resistance, and high-temperature resistance. However, the bonding of SiCf/SiC composites poses significant challenges in practical engineering applications, primarily due to residual stresses, anisotropy in composite properties, and the demanding conditions required for high-performance joints. This work reviews various bonding technologies for SiC ceramics and SiC matrix composites. These include solid-state diffusion bonding, NITE phase bonding, direct bonding without filling materials, MAX phase bonding, glass ceramic bonding, polymer precursor bonding, metal brazing bonding, and Si-C reaction bonding. Key results, such as the highest bending strength of 439 MPa achieved with Si-C reaction bonding, are compared alongside the microstructural characteristics of different joints. Additionally, critical factors for successful bonding, such as physical mismatch and metallurgical incompatibility, are discussed in detail. Future research directions are proposed, emphasizing the optimization of bonding techniques and evaluation of joint performance in harsh environments. This review provides valuable insights into advancing bonding technologies for SiC composites in aerospace and nuclear applications. Full article
Show Figures

Figure 1

12 pages, 6442 KiB  
Article
Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process
by Junfeng Zhao, Hao Su, Kai Li, Haijuan Mei, Junliang Zhang and Weiping Gong
Nanomaterials 2025, 15(1), 73; https://doi.org/10.3390/nano15010073 - 6 Jan 2025
Cited by 1 | Viewed by 1312
Abstract
Cu/Diamond (Cu/Dia) composites are regarded as next-generation thermal dissipation materials and hold tremendous potential for use in future high-power electronic devices. The interface structure between the Cu matrix and the diamond has a significant impact on the thermophysical properties of the composite materials. [...] Read more.
Cu/Diamond (Cu/Dia) composites are regarded as next-generation thermal dissipation materials and hold tremendous potential for use in future high-power electronic devices. The interface structure between the Cu matrix and the diamond has a significant impact on the thermophysical properties of the composite materials. In this study, Cu/Dia composite materials were fabricated using the Spark Plasma Sintering (SPS) process. The results indicate that the agglomeration of diamond particles decreases with increasing particle size and that a uniform distribution is achieved at 200 μm. With an increase in the sintering temperature, the interface bonding is first optimized and then weakened, with the optimal sintering temperature being 900 °C. The addition of Cr to the Cu matrix leads to the formation of Cr7C3 after sintering, which enhances the relative density and bonding strength at the interface, transitioning it from a physical bond to a metallurgical bond. Optimizing the diamond particle size increased the thermal conductivity from 310 W/m K to 386 W/m K, while further optimizing the interface led to a significant increase to 516 W/m K, representing an overall improvement of approximately 66%. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

21 pages, 10872 KiB  
Review
State-of-the-Art Carbon-Nanotubes-Reinforced Copper-Based Composites: The Interface Design of CNTs and Cu Matrix
by Xiaona Ren, Yue Chang and Changchun Ge
Int. J. Mol. Sci. 2024, 25(23), 12957; https://doi.org/10.3390/ijms252312957 - 2 Dec 2024
Cited by 3 | Viewed by 2454
Abstract
Carbon nanotubes (CNTs)-reinforced copper-based composites (CNT/Cu) have been extensively investigated due to their exceptional theoretical electrical, thermal, and mechanical properties. However, the actual performance of these composites has consistently fallen short of theoretical expectations. This discrepancy primarily arises from the inability to achieve [...] Read more.
Carbon nanotubes (CNTs)-reinforced copper-based composites (CNT/Cu) have been extensively investigated due to their exceptional theoretical electrical, thermal, and mechanical properties. However, the actual performance of these composites has consistently fallen short of theoretical expectations. This discrepancy primarily arises from the inability to achieve direct chemical bonding between copper and carbon nanotubes or to alloy them effectively. Consequently, this leads to interference in electron and phonon transmission at the interface between the two materials, adversely affecting their electrical and thermal conductivity as well as other properties. In recent years, research has increasingly focused on optimizing and regulating the interfacial interactions between carbon nanotubes and the copper matrix to enhance overall performance while also exploring potential applications. This article reviews recent advancements from an interface regulation perspective, summarizing typical interfacial characteristics such as physical interfaces, chemical bonding, and metallurgical bonding along with their respective preparation methods and effects on performance enhancement. Furthermore, a novel microstructural design of CNT/Cu is put forward, where amorphous CNTs (aCNTs) were utilized as the reinforcing phase to form a nanoscale networked composite interface. This not only enables Cu to adhere to the aCNTs’ sidewall but also fills the sidewall within them, with the aim of significantly strengthening the interfacial bonding strength of CNT/Cu and achieving comprehensive improvement of the composite material properties. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science)
Show Figures

Figure 1

14 pages, 6001 KiB  
Article
Analysis of Copper Welding Parameters during the Manufacture of Tubular Profiles Using Unconventional Extrusion Processes
by Marcin Knapiński, Teresa Bajor, Anna Kawałek and Grzegorz Banaszek
Materials 2024, 17(19), 4737; https://doi.org/10.3390/ma17194737 - 27 Sep 2024
Cited by 1 | Viewed by 1045
Abstract
In recent years, there has been a lack of information in the literature regarding the extrusion and connection of closed profiles from oxygen-free copper in bridge dies. Available studies contain information on the processes of extrusion and connection of profiles from aluminium alloys [...] Read more.
In recent years, there has been a lack of information in the literature regarding the extrusion and connection of closed profiles from oxygen-free copper in bridge dies. Available studies contain information on the processes of extrusion and connection of profiles from aluminium alloys and various types of steel. However, there is a lack of detailed data on the values of technological parameters for which copper is joined in the extrusion process. Therefore, one of the goals of this work is to fill the gap in the literature regarding the extrusion of oxygen-free copper in bridge dies. In this work, the authors determined the thermo-mechanical conditions at which oxygen-free copper will be joined. This paper describes the effects of charge temperature and hydrostatic pressure in the weld zone of a bridge die on copper bonding in the fabrication of tubular profiles. Physical tests of the welding process under the conditions of upsetting a material consisting of two parts were carried out using the Gleeble 3800 metallurgical process simulator with the PocketJaw module in the standard configuration for SICO (strain-induced crack opening) tests. For the numerical simulations, the commercial computer programme FORGE®NxT 2.1. using the finite element method (FEM) was used. Based on the analysis of the test results obtained, it was found that complete material bonding during the extrusion process could be achieved for a charge temperature higher than 600 °C and a hydrostatic pressure of 45–65 MPa. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

18 pages, 11399 KiB  
Article
Optimization of Ratio and Hydration Mechanism of Titanium-Extracted Residual Slag-Based Filling Cementitious Materials
by Jielin Li, Ao Li, Jianzhang Hao, Jiye Xu, Ming Li and Keping Zhou
Minerals 2024, 14(4), 416; https://doi.org/10.3390/min14040416 - 18 Apr 2024
Cited by 2 | Viewed by 1794
Abstract
Using metallurgical solid waste Titanium-extracted Residual Slag (TRS) as mine-filling cementitious material is crucial to reduce the filling cost and promote the utilization of solid waste resources. In this paper, taking the strength of the backfill at different curing ages as the response [...] Read more.
Using metallurgical solid waste Titanium-extracted Residual Slag (TRS) as mine-filling cementitious material is crucial to reduce the filling cost and promote the utilization of solid waste resources. In this paper, taking the strength of the backfill at different curing ages as the response target, the Design-expert mixing design was used to optimize the proportioning experiment of titanium-extracted residual slag, titanium gypsum, silicate cement, and total tailings, to analyze the interactions and influences of the materials on the strength of the backfill, and to analyze the hydration mechanism of the titanium-extracted residual slag-based filling cementitious materials under the optimal proportioning. The results show that: (1) the order of the sensitivity of each component to the strength of backfill is: composite activator > cement > titanium gypsum > titanium-extracted residual slag, and there are different degrees of interaction between them; (2) the optimal ratio of titanium-extracted residual slag-based filling cementitious materials is TRS:titanium gypsum:cement:composite activator = 55:25:17:3; (3) early strength formation of backfill is mainly related to its hydration products ettringite and C-S-H, the rapid nucleation and cross-growth of ettringite in the early stage forms an effective physical filling effect, which is the main reason for the formation of high early strength, and the later strength of backfill benefited from the continuous accumulation of C-S-H encapsulation and bonding, which further densified its internal structure; (4) the use of titanium-extracted residual slag-based filling cementitious materials contributes to safe, green, and economic mining. Full article
Show Figures

Figure 1

15 pages, 8946 KiB  
Article
Synthesis of Aluminium Nitride-Based Coatings on Mild Steel Substrates Utilising an Integrated Laser/Sol–Gel Method
by Ogulcan Eren, Alhaji M. Kamara, Huseyin Kursad Sezer and Sundar Marimuthu
Photonics 2024, 11(4), 382; https://doi.org/10.3390/photonics11040382 - 18 Apr 2024
Cited by 2 | Viewed by 2282
Abstract
The field of protective coatings for industrial applications is continuously evolving, driven by a need for materials that offer exceptional hardness, enhanced wear resistance, and low friction coefficients. Conventional methods of coating development, such as physical vapour deposition (PVD) and chemical vapour deposition [...] Read more.
The field of protective coatings for industrial applications is continuously evolving, driven by a need for materials that offer exceptional hardness, enhanced wear resistance, and low friction coefficients. Conventional methods of coating development, such as physical vapour deposition (PVD) and chemical vapour deposition (CVD), often face challenges like the necessity of vacuum conditions, slow growth rates, and weak substrate adhesion, leading to inadequate interface bonding. This study introduces a novel approach utilising an integrated laser/sol–gel method for synthesising aluminium nitride (AlN) coatings on EN43 mild steel substrates which overcomes these limitations. The technique employs a high-intensity diode laser with optimal power and translation speeds to consolidate a pre-applied thin layer of sol–gel slurry consisting of aluminium hydroxide, graphite, and urea on the substrate. Chemical thermodynamic calculations were used to predict the slurry composition, along with identifying the critical temperature range and the essential enthalpy needed for the synthesis of aluminium nitride. A three-dimensional heat transfer model was developed to predict the important process parameters, such as scanning speed and laser power density, required to achieve the temperature ranges necessary for a successful deposition process. Optical and scanning electron microscopy techniques were used to examine the surface morphology and microstructure of the coating. Elemental energy-dispersive X-ray spectroscopy and an X-ray diffraction analysis confirmed the synthesis of an aluminium nitride coating with a thickness ranging from 4 to 5 µm. Furthermore, the detection of sub-micron crystalline aluminium nitride structures yielding a metal matrix composite interlayer was indicative of strong metallurgical bonding. Microhardness testing indicated a hardness value of approximately 876 HV. The coated samples with the highest quality exhibited a surface roughness, Ra, ranging from 1.8 to 2.1 µm. Additionally, the coatings demonstrated an exceptionally low coefficient of friction, recorded at less than 0.1. These results represent a significant step forward in this field, offering a cost-effective, efficient, and scalable solution for producing high-quality coatings with superior performance characteristics. Full article
(This article belongs to the Special Issue Laser Processing and Modification of Materials)
Show Figures

Figure 1

14 pages, 24416 KiB  
Article
Microstructure and Wear Resistance of Ni–WC–TiC Alloy Coating Fabricated by Laser
by Yu Liu, Zeyu Li, Guohui Li, Fengming Du and Miao Yu
Lubricants 2023, 11(4), 170; https://doi.org/10.3390/lubricants11040170 - 10 Apr 2023
Cited by 12 | Viewed by 2483
Abstract
In this study, a Ni–WC–TiC alloy coating was fabricated by laser to improve the wear resistance and service life of Cr12MoV die steel. The microstructures and phases of the coating were analyzed by a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), [...] Read more.
In this study, a Ni–WC–TiC alloy coating was fabricated by laser to improve the wear resistance and service life of Cr12MoV die steel. The microstructures and phases of the coating were analyzed by a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The properties of the coating were tested by a hardness and friction wear tester. The results show that the coating has a good metallurgical bond with the substrate. The microstructures from top to bottom are mainly equiaxed crystal, columnar dendrite, and cellular dendrite. Combined with the physical phase analysis and elemental distribution of the coating, there are some phases, such as γ~(Fe, Ni), Cr23C6, WC, TiC, Fe3W3C, and Cr2Ti. Compared with the Cr12MoV steel substrate, the Ni–WC–TiC alloy coating has good properties of hardness and wear resistance. In the coating, the background region of the grains is γ~(Fe, Ni). From the EDS results, it can be seen that there are some rod-like particles, Cr23C6, which are uniformly distributed on the top of the coating. Some W and Ti carbides form in grains. The addition of TiC particles improves the WC particles refinement. The highest hardness of the coating is 770.7 HV0.5, which is approximately 3.3 times higher than that of the substrate. The wear volume is 0.26 mm3, or approximately 8.6% of the substrate, which is contributed to the reinforced phases and finer microstructure of the coating. The wear volumes of the Cr12MoV substrate are 1.8 and 4.5 mm3 at 20 and 60 min, respectively. While the wear volumes of the Ni–WC–TiC coating are 0.2 and 0.7 mm3 at 20 and 60 min, respectively. The increased amplitude of the coating’s wear volume is smaller than that of the substrate. The results show that this Ni–WC–TiC alloy coating is helpful for improving the properties and service life of Cr12MoV die steel. Full article
Show Figures

Graphical abstract

22 pages, 12107 KiB  
Article
Influence of Si3N4 on the Dry Sliding Wear Characteristics of Stir-Cast Cu-10Sn/xSi3N4 Metal Matrix Composite for Bearing Applications
by Sooraj Satheesh, Gokul Krishna Gopakumar Priya, Govind Venugopal, Anuranjan Anil, Jayakrishna Ajithkumar Jayasree, Anandhan Ajan Vishnu, Karthik Venkitraman Shankar and Anil Kumar
Lubricants 2022, 10(12), 351; https://doi.org/10.3390/lubricants10120351 - 5 Dec 2022
Cited by 4 | Viewed by 2534
Abstract
Bronze metal matrix composites (MMCs) are futuristic materials that may find applications in automobile, aviation, and marine industries, specifically for propellers in submarines, bearings, and bushings for defence purposes. The present investigation studied the effect of Si3N4 (5, 10, 15 [...] Read more.
Bronze metal matrix composites (MMCs) are futuristic materials that may find applications in automobile, aviation, and marine industries, specifically for propellers in submarines, bearings, and bushings for defence purposes. The present investigation studied the effect of Si3N4 (5, 10, 15 wt%) ceramic particles on the physical, metallurgical, and tribological behaviour of Cu-10Sn/Si3N4 MMCs. Cast rods of three composites and a base alloy were fabricated using the liquid metallurgy route. The microstructural characterisation for the cast samples was conducted using FESEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), XRD (X-ray diffraction), and TEM (Transmission Electron Microscope), which revealed that the Cu-10Sn alloy reinforced with 5 wt% of Si3N4 had homogeneous distribution and perfect bonding of the Si3N4 with the bronze MMC. The dry sliding wear test was performed by varying parameters such as the applied load (10, 20, 30 N) and sliding velocity (1, 2, 3 m/s). The specific wear rate (SWR) increased against an increased load. However, the SWR and coefficient of friction decreased and then increased against an increasing sliding velocity due to tribolayer formation. The primary wear mechanism observed at low and high loads was severe delamination. In contrast, the wear mechanism was adhesion wear at high and low velocities. Amongst the researched samples, Cu-10Sn/5 wt% Si3N4 composites revealed the least SWR at a load of 10 N and sliding velocity of 2 m/s and hence can be recommended for manufacturing bearings and bushings in the automobile and defence industry. Full article
(This article belongs to the Special Issue Friction and Wear in Composite Materials)
Show Figures

Figure 1

15 pages, 8445 KiB  
Article
Modulated Laser Cladding of Implant-Type Coatings by Bovine-Bone-Derived Hydroxyapatite Powder Injection on Ti6Al4V Substrates—Part I: Fabrication and Physico-Chemical Characterization
by Aura-Cătălina Mocanu, Florin Miculescu, George E. Stan, Iuliana Pasuk, Teddy Tite, Alexandru Pascu, Tudor Mihai Butte and Lucian-Toma Ciocan
Materials 2022, 15(22), 7971; https://doi.org/10.3390/ma15227971 - 11 Nov 2022
Cited by 5 | Viewed by 2476
Abstract
The surface physico-chemistry of metallic implants governs their successful long-term functionality for orthopedic and dentistry applications. Here, we investigated the feasibility of harmoniously combining two of the star materials currently employed in bone treatment/restoration, namely, calcium-phosphate-based bioceramics (in the form of coatings that [...] Read more.
The surface physico-chemistry of metallic implants governs their successful long-term functionality for orthopedic and dentistry applications. Here, we investigated the feasibility of harmoniously combining two of the star materials currently employed in bone treatment/restoration, namely, calcium-phosphate-based bioceramics (in the form of coatings that have the capacity to enhance osseointegration) and titanium alloys (used as bulk implant materials due to their mechanical performance and lack of systemic toxicity). For the first time, bovine-bone-derived hydroxyapatite (BHA) was layered on top of Ti6Al4V substrates using powder injection laser cladding technology, and then subjected, in this first stage of the research, to an array of physical-chemical analyses. The laser processing set-up involved the conjoined modulation of the BHA-to-Ti ratio (100 wt.% and 50 wt.%) and beam power range (500–1000 W). As such, on each metallic substrate, several overlapped strips were produced and the external surface of the cladded coatings was further investigated. The morphological and compositional (SEM/EDS) evaluations exposed fully covered metallic surfaces with ceramic-based materials, without any fragmentation and with a strong metallurgical bond. The structural (XRD, micro-Raman) analyses showed the formation of calcium titanate as the main phase up to maximum 800 W, accompanied by partial BHA decomposition and the consequential advent of tetracalcium phosphate (markedly above 600 W), independent of the BHA ratio. In addition, the hydrophilic behavior of the coatings was outlined, being linked to the varied surface textures and phase dynamism that emerged due to laser power increment for both of the employed BHA ratios. Hence, this research delineates a series of optimal laser cladding technological parameters for the adequate deposition of bioceramic layers with customized functionality. Full article
(This article belongs to the Special Issue Biomaterials and Implant Biocompatibility (Second Volume))
Show Figures

Graphical abstract

11 pages, 2279 KiB  
Article
Physical Metallurgical Bonding Layer Formed between Fe80Si9B11 Metallic Glass and Crystalline Aluminum in Rolled Composite Plate by High-Pressure Torsion at Room Temperature
by Shengfeng Shan, Xiaopeng Zhang, Haibo Guo and Yuanzhi Jia
Metals 2022, 12(11), 1929; https://doi.org/10.3390/met12111929 - 11 Nov 2022
Viewed by 1553
Abstract
Metallic glasses (MGs) have excellent properties, such as high strength and low elastic modulus, can be used as reinforcement in metal matrix composites. In this paper, aluminum matrix composites reinforced with Fe80Si9B11 MG strips with different weight contents [...] Read more.
Metallic glasses (MGs) have excellent properties, such as high strength and low elastic modulus, can be used as reinforcement in metal matrix composites. In this paper, aluminum matrix composites reinforced with Fe80Si9B11 MG strips with different weight contents (5, 10, 15, 20 and 25%) were produced by roll-bonding at an initial temperature of 450 °C and 80% deformation. Tensile mechanical tests showed that the tensile strength of the composite sheets containing 10% MG strips showed the highest tensile strength of 166 MPa. Further studies on the sandwich structured samples were conducted using high-pressure torsion (HPT) technology with various pressures of 0.55 GPa, 1.10 GPa, 1.65 GPa, and 2.20 GPa. X-ray diffractometry (XRD), scanning electron microscopy (SEM), TriboIndenter nanomechanical testing, and transmission electron microscopy (TEM) were used to study the microstructures, mechanical properties and the bonding interface of the material. The results show that the hardness near the interface presented a transition area. High-resolution TEM observation showed that physical metallurgical bonding can be achieved between MG and aluminum alloy. A preliminary fitting of metallurgical bonding conditions was carried out according to the experimental parameters of HPT and the interface bonding condition in this study. Full article
Show Figures

Figure 1

16 pages, 9075 KiB  
Article
Investigating the Effect of Fly Ash Addition on the Metallurgical and Mechanical Behavior of Al-Si-Mg-Cu Alloy for Engine Cylinder Head Application
by Karthik Venkitraman Shankar, Jan Jezierski, Vaira Vignesh Ramalingam, Devaprasad Padmakumar, Midun Raj Leena, Amal, Gokul Reghunath and Rakesh Krishnan
Materials 2022, 15(15), 5462; https://doi.org/10.3390/ma15155462 - 8 Aug 2022
Cited by 12 | Viewed by 2876
Abstract
The authors researched the physical, metallurgical, and mechanical characteristics of A354 alloy (Al-Si-Mg-Cu) reinforced with 5, 10, and 15 wt% of fly ash metal matrix composites. A baseline alloy and three composites were fabricated by a liquid metallurgy route and poured into a [...] Read more.
The authors researched the physical, metallurgical, and mechanical characteristics of A354 alloy (Al-Si-Mg-Cu) reinforced with 5, 10, and 15 wt% of fly ash metal matrix composites. A baseline alloy and three composites were fabricated by a liquid metallurgy route and poured into a permanent mold to obtain cast rods of dimension Φ32 mm × 156 mm. The metallurgical characterization of the developed alloy and metal matrix composites was conducted using energy-dispersive spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), and X-ray diffraction. All the developed composites showed a pore-free nature, but only A354 alloy reinforced with 5 wt% of fly ash (AF5) possessed a homogeneous distribution and perfect bonding of the fly ash with the A354 matrix. Therefore, transmission electron microscopy (TEM) analysis was performed on the sample AF5. All developed alloys and metal matrix composites were subjected to hardness and mechanical property tests. It was observed that the AF5 sample had 170 ± 5.6 HV and tensile strength of 216 ± 2.3 MPa, 18.8% and 24.8% higher than the A354 matrix, but the ductility (6.5 ± 0.43%) was reduced by 23% from the baseline alloy. Finally, the fractography analysis was conducted on all the samples using FESEM to analyze the fracture mode. The fabricated 5 wt% fly ash-based metal matrix composite showed better mechanical performance than other samples. Hence, sample AF5 is suggested for manufacturing components in automotive and structural parts. Full article
(This article belongs to the Topic Metal Matrix Composites: Recent Advancements)
Show Figures

Figure 1

13 pages, 4334 KiB  
Article
Study on the Microstructure and Mechanical Properties of Diamond Particle-Reinforced Copper-Iron Sandwich Composites Prepared by Powder Metallurgy
by Jian Sun, Boyi Jiang, Wanzhong Li, Xiaole Cheng, Hui Liu and Ziyang Li
Materials 2022, 15(7), 2424; https://doi.org/10.3390/ma15072424 - 25 Mar 2022
Cited by 4 | Viewed by 2342
Abstract
Synthetic diamond particle-reinforced copper-iron composites (SD/Cu-Fe) were produced by the powder metallurgical method for stone cutting applications, and the microstructure, density, compactness, hardness, flexure strength, and wear resistance of the composites were characterized in this work. The results showed that the diamond particles [...] Read more.
Synthetic diamond particle-reinforced copper-iron composites (SD/Cu-Fe) were produced by the powder metallurgical method for stone cutting applications, and the microstructure, density, compactness, hardness, flexure strength, and wear resistance of the composites were characterized in this work. The results showed that the diamond particles were relatively uniformly distributed in most areas of the copper matrix and the crystal shape of diamond particles were relatively intact in the sintering temperature range from 740 °C to 780 °C. The interfaces between the diamond particles and copper matrix, as well as the interfaces between the copper matrix and iron layer, were well bonded without significant gaps. The physical properties of composites increased first and then decreased with the sintering temperature. When the sintering temperature was 770 °C, the related properties reached the best. Diamond played a key role in improving the properties of the SD/Cu-Fe sandwich composite. This work provides a basis for the research and development of high-performance diamond-reinforced copper-based iron sandwich composites. Full article
Show Figures

Figure 1

17 pages, 27769 KiB  
Article
Bonding of Al6061 by Hot Compression Forming: A Computational and Experimental Study of Interface Conditions at Bonded Surfaces
by Brigit Mittelman, Michael Ben-Haroush, Ira Aloush, Linoy Mordechay and Elad Priel
Materials 2021, 14(13), 3598; https://doi.org/10.3390/ma14133598 - 28 Jun 2021
Cited by 2 | Viewed by 2481
Abstract
In recent years, there has been a growing interest in composite components, which may be designed to provide enhanced mechanical and physical effective properties. One of the methods available to produce such components is joining by plastic deformation, which results in metallurgical bonding [...] Read more.
In recent years, there has been a growing interest in composite components, which may be designed to provide enhanced mechanical and physical effective properties. One of the methods available to produce such components is joining by plastic deformation, which results in metallurgical bonding at the interface. However, the portions of the interface that are bonded and the inhomogeneity in the bonding strength achieved at the interface tend to be overlooked. In the present study, Al6061 beams were bonded, by hot compression (300–500 °C) to different degrees of reduction. The compression was followed by tensile debonding experiments and the revealed interface was microscopically characterized in order to determine the areas that were metallurgically bonded. The SEM characterization revealed that the actual bonded area is much smaller than the interface contact area. Thermo-mechanical finite element models of the compression stage were used to investigate the thermo-mechanical fields, which develop along the interface and influence the resulting bonding strength. The principal strain field patterns across the interface area were shown to be similar to the experimentally observed temperature-dependent bonding patterns. In addition, a quantitative criterion for bonding quality was implemented and shown to correlate with the experimental findings. Full article
(This article belongs to the Special Issue Hot Deformation and Microstructure Evolution of Metallic Materials)
Show Figures

Figure 1

10 pages, 1871 KiB  
Article
The Enhancement Effect of Salt Bath Chromizing for P20 Steel
by Zihao Wei, Chundong Zhu, Lianpu Zhou and Liming Wang
Coatings 2021, 11(1), 27; https://doi.org/10.3390/coatings11010027 - 29 Dec 2020
Cited by 4 | Viewed by 2586
Abstract
The TD (Thermal Diffusion) salt bath process is used to obtain a super hard carbide coating on the material surface by utilizing the mechanism of metal thermal diffusion. In this paper, chromium carbide coating was prepared on P20 hot-pressing die steel by the [...] Read more.
The TD (Thermal Diffusion) salt bath process is used to obtain a super hard carbide coating on the material surface by utilizing the mechanism of metal thermal diffusion. In this paper, chromium carbide coating was prepared on P20 hot-pressing die steel by the TD salt bath chromizing process. Characterization of the modified surface layer was made by means of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), a micro-hardness tester and an automatic scratch tester. The influence rules of different salt bath times and temperatures on the growth thickness of the cladding layer were explored through experiments, and the optimum salt bath process scheme was determined as a temperature of 960 °C and time of 6 h. The chromium carbide coating with a thickness similar to that of chromium plating was prepared, and the average thickness of the coating was about 8–10 μm. The results showed that hardness and bonding strength of chromium carbide coating are higher than that of electroplated chromium coating. The combination of chromium carbide coating and matrix is metallurgical, while the electroplated chromium coating is physical. Immersion corrosion test results show that both coatings have good corrosion resistance in a 65% nitric acid solution. Full article
Show Figures

Figure 1

25 pages, 12892 KiB  
Review
A Review of Bonding Immiscible Mg/Steel Dissimilar Metals
by Gang Song, Taotao Li, Jingwei Yu and Liming Liu
Materials 2018, 11(12), 2515; https://doi.org/10.3390/ma11122515 - 11 Dec 2018
Cited by 36 | Viewed by 4704
Abstract
The challenge of joining immiscible Mg/Steel dissimilar metals lies in the absence of an Fe-Mg intermetallic or Fe-Mg solid solution in an Mg-Fe system, and differences in their physical and chemical properties. Promoting interfacial reaction and regulating the composition of interface layer are [...] Read more.
The challenge of joining immiscible Mg/Steel dissimilar metals lies in the absence of an Fe-Mg intermetallic or Fe-Mg solid solution in an Mg-Fe system, and differences in their physical and chemical properties. Promoting interfacial reaction and regulating the composition of interface layer are beneficial for the formation of an Mg/steel interface layer and to obtain an effective Mg/steel joint. This research work focusses on the bonding of immiscible Mg/steel dissimilar metals: First, an Mg/steel interface layer was designed by controlling the composition of added alloy elements and trace elements in the base metal. Second, the Mg/steel dissimilar metals welding methods were divided into three parts—solid state welding, welding-brazing and fusion welding. The main distinctions between them were difference in interfacial temperature, thickness of interface layer, and type of compound. Third, the orientation relationships (OR) of the Mg/interface layer system and the interface layer/steel system was investigated. In this review, the effect of welding processing parameters, addition of alloy elements, base metal, and different welding methods on the joint’s performance was studied. The mechanical property, microstructure, interface layer and metallurgical reactions of the joint were also examined. The most recent progress in joining immiscible Mg/Steel dissimilar metals and future research prospects are presented at the end of the paper. Full article
Show Figures

Figure 1

Back to TopTop