Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process
Abstract
:1. Introduction
2. Experimental
2.1. Raw Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. Effect of Particle Size on Agglomeration
3.2. Effect of Different Sintering Temperatures on the Interface
3.3. The Impact of Different Cr Contents on the Interface
4. Conclusions
- As the diamond particle size increases, the agglomeration of the composites gradually diminishes, and when the diamond particle size reaches 200 μm, the diamonds are uniformly distributed within the matrix. With the increase in sintering temperature, the interface bonding is optimized initially and then weakened, with the optimal sintering temperature being 900 °C.
- The addition of Cr elements to the Cu matrix leads to the formation of the Cr7C3 phase after sintering, which increases the relative density of the composite material and enhances the bonding strength between the diamond and the matrix, transitioning the interface from a physical bond to a metallurgical bond.
- With the optimization of diamond particle size, the thermal conductivity of the composites increased from 310 to 386 W/m K; after interface optimization, the thermal conductivity further rose to 516 W/m K, with an increase of approximately 66%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Albrow-Owen, T.; Cai, W.; Hasan, T. Miniaturization of optical spectrometers. Science 2021, 371, eabe0722. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, H.; Zhao, X.; Malyi, O.I.; Peng, J.; Lu, C.; Li, X.; Zhang, Y.; Zeng, Z.; Xing, G.; et al. Printable ink design towards customizable miniaturized energy storage devices. ACS Mater. Lett. 2020, 2, 1041–1056. [Google Scholar] [CrossRef]
- Mathew, J.; Krishnan, S. A review on transient thermal management of electronic devices. J. Electron. Packag. 2022, 144, 010801. [Google Scholar] [CrossRef]
- Bajenescu, T.I.; Bazu, M.I. Reliability of Electronic Components: A Practical Guide to Electronic Systems Manufacturing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Wang, Z.-G.; Jin, Y.-F.; Hong, R.; Du, J.; Dai, K.; Zhang, G.-Q.; Gao, J.; Xu, L.; Xu, J.-Z.; Li, Z.-M. Dual-functional thermal management materials for highly thermal conduction and effectively heat generation. Compos. Part B Eng. 2022, 242, 110084. [Google Scholar] [CrossRef]
- Tang, D.-S.; Cao, B.-Y. Phonon thermal transport and its tunability in GaN for near-junction thermal management of electronics: A review. Int. J. Heat Mass Transf. 2023, 200, 123497. [Google Scholar] [CrossRef]
- Moreno, G.; Narumanchi, S.; Feng, X.; Anschel, P.; Myers, S.; Keller, P. Electric-drive vehicle power electronics thermal management: Current status, challenges, and future directions. J. Electron. Packag. 2022, 144, 011004. [Google Scholar] [CrossRef]
- Lv, Y.-G.; Wang, Y.-T.; Meng, T.; Wang, Q.-W.; Chu, W.-X. Review on thermal management technologies for electronics in spacecraft environment. Energy Storage Sav. 2024, 3, 153–189. [Google Scholar] [CrossRef]
- Sharma, S.K.; Saxena, K.K.; Salem, K.H.; Mohammed, K.A.; Singh, R.; Prakash, C. Effects of various fabrication techniques on the mechanical characteristics of metal matrix composites: A review. Adv. Mater. Process. Technol. 2024, 10, 277–294. [Google Scholar] [CrossRef]
- Maurya, P.; Kota, N.; Gibmeier, J.; Wanner, A.; Roy, S. Review on study of internal load transfer in metal matrix composites using diffraction techniques. Mater. Sci. Eng. A 2022, 840, 142973. [Google Scholar] [CrossRef]
- Bai, H.; Ma, N.; Lang, J.; Zhu, C.; Ma, Y. Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder. Compos. Part B Eng. 2013, 52, 182–186. [Google Scholar] [CrossRef]
- Dai, S.; Li, J.; Lu, N. Research progress of diamond/copper composites with high thermal conductivity. Diam. Relat. Mater. 2020, 108, 107993. [Google Scholar] [CrossRef]
- Jia, S.; Yang, F. High thermal conductive copper/diamond composites: State of the art. J. Mater. Sci. 2021, 56, 2241–2274. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Kumar, S. Phonon transmission and thermal conductance across graphene/Cu interface. Appl. Phys. Lett. 2013, 103, 123110. [Google Scholar] [CrossRef]
- Yoshida, K.; Morigami, H. Thermal properties of diamond/copper composite material. Microelectron. Reliab. 2004, 44, 303–308. [Google Scholar] [CrossRef]
- Ekimov, E.; Suetin, N.; Popovich, A.; Ralchenko, V. Thermal conductivity of diamond composites sintered under high pressures. Diam. Relat. Mater. 2008, 17, 838–843. [Google Scholar] [CrossRef]
- Bai, G.; Wang, L.; Zhang, Y.; Wang, X.; Wang, J.; Kim, M.J.; Zhang, H. Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix. Mater. Charact. 2019, 152, 265–275. [Google Scholar] [CrossRef]
- Li, M.; Huang, J.; Fang, A.; Mansoor, B.; Pei, Z.; Ma, C. Binder jetting additive manufacturing of copper/diamond composites: An experimental study. J. Manuf. Process. 2021, 70, 205–213. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, L.; Li, F.; Sang, L.; Liao, M.; Tang, K.; Ye, J.; Gu, S. Enhancement of interfacial thermal conductance by introducing carbon vacancy at the Cu/diamond interface. Carbon 2024, 223, 119021. [Google Scholar] [CrossRef]
- Zhang, Y.; Pershin, L.; Yang, Z.; Zhang, Y.; Hao, J.; Mostaghimi, J.; Zhang, H. Atmospheric plasma sprayed Cu coating on Cu–B/diamond composite for electronic packaging application. Vacuum 2024, 228, 113469. [Google Scholar] [CrossRef]
- Li, H.; Li, K.; Fan, Y.; Liu, C.; Wang, C. Influence of brazing temperature on interfacial reaction layer characteristics of Cu-Sn-Ti/diamond composites. Diam. Relat. Mater. 2022, 128, 109276. [Google Scholar] [CrossRef]
- Sang, J.; Yuan, Y.; Yang, W.; Zhu, J.; Fu, L.; Li, D.; Zhou, L. Exploring the underlying causes of optimizing thermal conductivity of copper/diamond composites by interface thickness. J. Alloys Compd. 2022, 891, 161777. [Google Scholar] [CrossRef]
- Li, Q.; Liu, F.; Hu, S.; Song, H.; Yang, S.; Jiang, H.; Wang, T.; Koh, Y.K.; Zhao, C.; Kang, F.; et al. Inelastic phonon transport across atomically sharp metal/semiconductor interfaces. Nat. Commun. 2022, 13, 4901. [Google Scholar] [CrossRef]
- Weber, L.; Tavangar, R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X = Cr, B) diamond composites. Scr. Mater. 2007, 57, 988–991. [Google Scholar] [CrossRef]
- Ke, C.; Jia, C.; Hong, G.; Li, W. On the thermal conductivity of Cu–Zr/diamond composites. Mater. Des. 2013, 45, 36–42. [Google Scholar]
- Kang, Q.; He, X.; Ren, S.; Liu, T.; Liu, Q.; Wu, M.; Qu, X. Microstructure and thermal properties of copper–diamond composites with tungsten carbide coating on diamond particles. Mater. Charact. 2015, 105, 18–23. [Google Scholar] [CrossRef]
- Chen, W.; Wang, F.; Fan, L.; Zheng, H.; Guo, X.; Zheng, P.; Zheng, L.; Zhang, Y. Double layer interfacial structure of Cr3C2–Cr7C3 in copper/diamond composites for thermal management applications. Appl. Therm. Eng. 2024, 255, 123958. [Google Scholar] [CrossRef]
- Ukhina, A.V.; Dudina, D.V.; Esikov, M.A.; Samoshkin, D.A.; Stankus, S.V. The Influence of the Carbide-Forming Metallic Additives (W, Mo, Cr, Ti) on the Microstructure and Thermal Conductivity of Copper–Diamond Composites. J. Compos. Sci. 2023, 7, 219. [Google Scholar] [CrossRef]
- Kang, Q.; He, X.; Ren, S.; Zhang, L.; Wu, M.; Guo, C.; Cui, W.; Qu, X. Preparation of copper–diamond composites with chromium carbide coatings on diamond particles for heat sink applications. Appl. Therm. Eng. 2013, 60, 423–429. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, D.; Chen, M.; Wu, T.; Ouyang, J.; Xiong, D. An Investigation on the Spark Plasma Sintering Diffusion Bonding of Diamond/Cu Composites with a Cr Interlayer. Materials 2024, 17, 6026. [Google Scholar] [CrossRef]
- Tong, X.C. Advanced Materials for Thermal Management of Electronic Packaging; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 30. [Google Scholar]
- Jiang, G.; Diao, L.; Kuang, K. Advanced Thermal Management Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cho, H.J.; Yan, D.; Tam, J.; Erb, U. Effects of diamond particle size on the formation of copper matrix and the thermal transport properties in electrodeposited copper-diamond composite materials. J. Alloys Compd. 2019, 791, 1128–1137. [Google Scholar] [CrossRef]
- Wu, X.; Luo, T. The importance of anharmonicity in thermal transport across solid-solid interfaces. J. Appl. Phys. 2014, 115, 014901. [Google Scholar] [CrossRef]
- Huang, H.; Zhong, Y.; Cai, B.; Wang, J.; Liu, Z.; Peng, Q. Size-and temperature-dependent thermal transport across a Cu− diamond interface: Non-equilibrium molecular dynamics simulations. Surf. Interfaces 2023, 37, 102736. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, S.; Lu, Z.; Pu, J.; Zhang, G. Adhesive transfer at copper/diamond interface and adhesion reduction mechanism with fluorine passivation: A first-principles study. Carbon 2018, 127, 548–556. [Google Scholar] [CrossRef]
- Liu, X.; Sun, F.; Wang, L.; Wu, Z.; Wang, X.; Wang, J.; Kim, M.J.; Zhang, H. The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond. Appl. Surf. Sci. 2020, 515, 146046. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Che, Z.; Wang, X.; Zhang, H.; Wang, J.; Kim, M.J. Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites. J. Alloys Compd. 2018, 749, 1098–1105. [Google Scholar] [CrossRef]
- Xie, Z.; Guo, H.; Zhang, X.; Huang, S.; Xie, H.; Mi, X. Tailoring the thermal and mechanical properties of diamond/Cu composites by interface regulation of Cr alloying. Diam. Relat. Mater. 2021, 114, 108309. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Su, H.; Li, K.; Mei, H.; Zhang, J.; Gong, W. Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process. Nanomaterials 2025, 15, 73. https://doi.org/10.3390/nano15010073
Zhao J, Su H, Li K, Mei H, Zhang J, Gong W. Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process. Nanomaterials. 2025; 15(1):73. https://doi.org/10.3390/nano15010073
Chicago/Turabian StyleZhao, Junfeng, Hao Su, Kai Li, Haijuan Mei, Junliang Zhang, and Weiping Gong. 2025. "Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process" Nanomaterials 15, no. 1: 73. https://doi.org/10.3390/nano15010073
APA StyleZhao, J., Su, H., Li, K., Mei, H., Zhang, J., & Gong, W. (2025). Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process. Nanomaterials, 15(1), 73. https://doi.org/10.3390/nano15010073