Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,140)

Search Parameters:
Keywords = physical distance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4829 KB  
Article
Dynamic Energy-Aware Anchor Optimization for Contact-Based Indoor Localization in MANETs
by Manuel Jesús-Azabal, Meichun Zheng and Vasco N. G. J. Soares
Information 2025, 16(10), 855; https://doi.org/10.3390/info16100855 - 3 Oct 2025
Abstract
Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous [...] Read more.
Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous approaches, indoor contexts with resource limitations, energy constraints, or physical restrictions continue to suffer from unreliable localization. Many existing methods employ a fixed number of reference anchors, which sets a hard balance between localization accuracy and energy consumption, forcing designers to choose between precise location data and battery life. As a response to this challenge, this paper proposes an energy-aware indoor positioning strategy based on Mobile Ad Hoc Networks (MANETs). The core principle is a self-adaptive control loop that continuously monitors the network’s positioning accuracy. Based on this real-time feedback, the system dynamically adjusts the number of active anchors, increasing them only when accuracy degrades and reducing them to save energy once stability is achieved. The method dynamically estimates relative coordinates by analyzing node encounters and contact durations, from which relative distances are inferred. Generalized Multidimensional Scaling (GMDS) is applied to construct a relative spatial map of the network, which is then transformed into absolute coordinates using reference nodes, known as anchors. The proposal is evaluated in a realistic simulated indoor MANET, assessing positioning accuracy, adaptation dynamics, anchor sensitivity, and energy usage. Results show that the adaptive mechanism achieves higher accuracy than fixed-anchor configurations in most cases, while significantly reducing the average number of required anchors and their associated energy footprint. This makes it suitable for infrastructure-poor, resource-constrained indoor environments where both accuracy and energy efficiency are critical. Full article
9 pages, 1739 KB  
Article
Quantum Behavior of 10D Planck Unit: Stationary Electron, Compton Photon and Gravitational Field
by Yan Zhou, Junyan Zhang, Ernst Meyer, Xingkai Zhang and Hongyu Liang
Symmetry 2025, 17(10), 1636; https://doi.org/10.3390/sym17101636 - 2 Oct 2025
Abstract
This work focuses on the origin of electrons, Compton photons and a gravitational field. Based on the discovered 10D Planck units, the physical behavior of these units was further studied in isolated systems. Investigation shows that a 10D Planck unit in the in [...] Read more.
This work focuses on the origin of electrons, Compton photons and a gravitational field. Based on the discovered 10D Planck units, the physical behavior of these units was further studied in isolated systems. Investigation shows that a 10D Planck unit in the in situ state has the same properties as a stationary electron, while its non-in situ state shares the same physics with a Compton photon. Results indicate that photons’ potential exists between any two Compton photons, with their strength being determined by the distance between the two photons. Finally, the potential field was proved to be the gravitational field of a proton. Full article
(This article belongs to the Special Issue Gravitational Physics and Symmetry)
Show Figures

Figure 1

13 pages, 1799 KB  
Article
Comparative Analysis of Speed-Power Performance and Sport-Specific Skills Among Elite Youth Soccer Players with Different Start Procedures
by Eduard Bezuglov, Anton Emanov, Timur Vakhidov, Elizaveta Kapralova, Georgiy Malyakin, Vyacheslav Kolesnichenko, Zbigniew Waśkiewicz, Larisa Smekalkina and Mikhail Vinogradov
Sports 2025, 13(10), 341; https://doi.org/10.3390/sports13100341 - 2 Oct 2025
Abstract
Accurate interpretation of physical test results is essential to objectively measure parameters both at a single point in time and throughout longitudinal assessments. This is particularly relevant for tests of speed and change of direction, which are among the most commonly used assessments [...] Read more.
Accurate interpretation of physical test results is essential to objectively measure parameters both at a single point in time and throughout longitudinal assessments. This is particularly relevant for tests of speed and change of direction, which are among the most commonly used assessments for soccer players at different levels. This study aimed to quantify the impact of start-line distance (30 cm vs. 100 cm) on linear sprint splits (5–30 m), change-of-direction (COD), and T-test performance in elite youth soccer players, while also examining potential order effects. The study involved 82 youth soccer players (14–19 y; 180.68 ± 6.97 cm; 71.65 ± 7.91 kg; BMI 21.90 ± 1.57) from an elite academy, divided into two groups. The first group started trials at 30 cm from the starting line, then at 100 cm, while the second group performed in the reverse order. All participants underwent a standard sequence of tests: anthropometric measurements, 5, 10, 20, and 30 m sprints, change-of-direction running, and the T-test. The longer start (100 cm) improved sprint times with large effects tapering with distance: 5 m (Hedges’ g = 1.00, 95% CI 0.80–1.25; Δ = 0.076 s, 0.060–0.093; 6.99%), 10 m (g = 1.37, 1.14–1.68; Δ = 0.102 s, 0.086–0.119; 5.63%), 20 m (g = 1.58, 1.36–1.88; Δ = 0.112 s, 0.096–0.127; 3.66%), 30 m (g = 1.48, 1.26–1.80; Δ = 0.114 s, 0.097–0.131; 2.71%). COD also improved (rank-biserial r = 0.516, 0.294–0.717; Δ = 0.075 s, 0.034–0.116; 1.00%) and the T-test improved (g = 0.61, 0.37–0.86; Δ = 0.107 s, 0.068–0.145; 1.26%). Order effects on Δ were evident for 30 m (Welch t = −3.05, p_Holm = 0.0157, d = −0.67) and COD (MWU p_Holm = 0.0048, r = −0.43). Protocols must specify and report the start geometry; the order should be randomised or counter-balanced, particularly for 30 m and COD. Full article
Show Figures

Figure 1

15 pages, 3403 KB  
Article
Impact of Heavy Metal Contamination on Physical and Physicochemical Characteristics of Soil near Aurubis-Pirdop Copper Smelter in Bulgaria
by Milena Kercheva, Patrycja Boguta, Kamil Skic, Viktor Kolchakov, Katerina Doneva and Maya Benkova
Pollutants 2025, 5(4), 33; https://doi.org/10.3390/pollutants5040033 - 1 Oct 2025
Abstract
Soil contamination with heavy metals (HM) poses a risk to human health and can impact different soil functions. This study aimed to determine the influence of heavy metal pollution on the physical and physicochemical characteristics of the two profiles of alluvial–deluvial soil under [...] Read more.
Soil contamination with heavy metals (HM) poses a risk to human health and can impact different soil functions. This study aimed to determine the influence of heavy metal pollution on the physical and physicochemical characteristics of the two profiles of alluvial–deluvial soil under grassland located at different distances from the Aurubis-Pirdop Copper smelter in Bulgaria. Data for soil particle-size distribution, soil bulk and particle densities, mineralogical composition, soil organic carbon contents, cation exchange properties, surface charge, soil water retention curves, pore size distribution—obtained by mercury intrusion porosimetry (MIP)—and thermal properties were obtained. The contents of Pb, Cu, As, Zn, and Cd were above the maximum permissible level in the humic horizon and decreased with depth and distance from the Copper smelter. Depending on HM speciation, the correlations are established with SOC and most physicochemical parameters. It can be concluded that the HMs impact the clay content, specific surface area, distribution of pores, and the water stability of soil aggregate fraction 1–3 mm to varying degrees. Full article
Show Figures

Figure 1

20 pages, 14676 KB  
Article
Optimal and Model Predictive Control of Single Phase Natural Circulation in a Rectangular Closed Loop
by Aitazaz Hassan, Guilherme Ozorio Cassol, Syed Abuzar Bacha and Stevan Dubljevic
Sustainability 2025, 17(19), 8807; https://doi.org/10.3390/su17198807 - 1 Oct 2025
Abstract
Pipeline systems are essential across various industries for transporting fluids over various ranges of distances. A notable application is natural circulation through thermo-syphoning, driven by temperature-induced density variations that generate fluid flow in closed loops. This passive mechanism is widely employed in sectors [...] Read more.
Pipeline systems are essential across various industries for transporting fluids over various ranges of distances. A notable application is natural circulation through thermo-syphoning, driven by temperature-induced density variations that generate fluid flow in closed loops. This passive mechanism is widely employed in sectors such as process engineering, oil and gas, geothermal energy, solar water heaters, fertilizers, etc. Natural Circulation Loops eliminate the need for mechanical pumps. While this passive mechanism reduces energy consumption and maintenance costs, maintaining stability and efficiency under varying operating conditions remains a challenge. This study investigates thermo-syphoning in a rectangular closed-loop system and develops optimal control strategies like using a Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) to ensure stable and efficient heat removal while explicitly addressing physical constraints. The results demonstrate that MPC improves system stability and reduces energy usage through optimized control actions by nearly one-third in the initial energy requirement. Compared to the LQR and unconstrained MPC, MPC with active constraints effectively manages input limitations, ensuring safer and more practical operation. With its predictive capability and adaptability, the proposed MPC framework offers a robust, scalable solution for real-time industrial applications, supporting the development of sustainable and adaptive natural circulation pipeline systems. Full article
Show Figures

Figure 1

15 pages, 943 KB  
Article
Crystallization of Four Troglitazone Isomers: Selectivity and Structural Considerations
by Shinji Matsuura, Koichi Igarashi, Masayuki Azuma and Hiroshi Ooshima
Crystals 2025, 15(10), 866; https://doi.org/10.3390/cryst15100866 - 30 Sep 2025
Abstract
The control of crystal form in chiral active pharmaceutical ingredients (APIs) is a critical challenge in pharmaceutical development, as differences in solid-state structure can significantly influence physical properties and manufacturing performance. Troglitazone, a molecule with two chiral centers, exists as four stereoisomers (RR, [...] Read more.
The control of crystal form in chiral active pharmaceutical ingredients (APIs) is a critical challenge in pharmaceutical development, as differences in solid-state structure can significantly influence physical properties and manufacturing performance. Troglitazone, a molecule with two chiral centers, exists as four stereoisomers (RR, SS, RS, SR) that crystallize as two enantiomeric pairs: RR/SS and RS/SR. This study aims to elucidate the relationship between solution-state molecular interactions and crystallization behavior of these diastereomeric pairs. Antisolvent crystallization experiments were conducted for both mixed solutions containing all four isomers and solutions of individual pairs. Crystallization kinetics were monitored by HPLC, and the resulting solids were characterized by PXRD, DSC, TG, and microscopic observation. Nucleation induction times were determined over a range of supersaturation levels. To probe intermolecular interactions in solution, NOESY and targeted NOE NMR experiments were performed, and the results were compared with crystallographic data. The RS/SR crystals(H-form) consistently exhibited shorter induction times and faster crystallization rates than the RR/SS crystals (L-form), even under conditions where RR/SS solutions were more supersaturated. In mixed solutions, H-form crystallized preferentially, with L-form either remaining in solution or being incorporated into H-form crystals as a solid solution. NOESY and NOE analyses revealed intermolecular proximities between protons that are distant in the molecular structure, indicating the presence of ordered aggregates in solution. These aggregates were more structurally compatible with the H-form than with the L-form crystal lattice, as supported by crystallographic distance analysis. The results demonstrate that differences in nucleation kinetics between troglitazone diastereomers are closely linked to solution-state molecular arrangements. Understanding these relationships provides a molecular-level basis for the rational design of selective crystallization processes for chiral APIs. Full article
(This article belongs to the Section Crystal Engineering)
15 pages, 912 KB  
Article
A Structured Low-Intensity Home-Based Walking Program to Improve Physical and Mental Functioning After Hospitalization for Severe COVID-19: A Pragmatic Nonrandomized Controlled Trial
by Nicola Lamberti, Andrea Baroni, Giovanni Piva, Giulia Fregna, Nicola Schincaglia, Anna Crepaldi, Lorenzo Gamberini, Antonella Occhi, Sofia Straudi and Fabio Manfredini
J. Clin. Med. 2025, 14(19), 6938; https://doi.org/10.3390/jcm14196938 - 30 Sep 2025
Abstract
Background/Objectives: We aimed to test whether home-based low-intensity interval training (LIIT) could be equally or more effective than traditional continuous walking advice (TWA) in a population hospitalized and healed from severe COVID-19. Methods: This pragmatic nonrandomized controlled trial (NCT04615390) enrolled patients [...] Read more.
Background/Objectives: We aimed to test whether home-based low-intensity interval training (LIIT) could be equally or more effective than traditional continuous walking advice (TWA) in a population hospitalized and healed from severe COVID-19. Methods: This pragmatic nonrandomized controlled trial (NCT04615390) enrolled patients admitted to intensive care units due to COVID-19 who at discharge from the hospital were given a choice between either a home-based LIIT program or TWA. The former received a structured LIIT walking (1:1 walk:rest ratio per 10 times) to be performed at a prescribed progressively increasing speed maintained with a metronome. The latter received TWA according to the guidelines (30 min or moderate intensity activity, 5 days/week). Outcome measures, collected at baseline, at the end of the 3-month training and at the 6-month follow-up, included 6 min walking distance (primary), lower limb strength, quality of life, depression and cognitive status. Results: From a total of 85 enrolled patients, 69 of them (LIIT n = 32; TWA n = 37) completed the study. Home exercise was safely executed with an 82% adherence for the LIIT group and 64% adherence for TWA. After the 3-month program, both groups significantly improved the 6MWD (LIIT: +87 m vs. TWA +42 m; p < 0.001) with a significant difference that was also maintained at follow-up (LIIT: +138 m vs. TWA +69 m; p < 0.001). No other significant between-group differences were noted. However, patients in the LIIT group significantly improved in the majority of the outcomes, while patients of TWA improved in only the primary outcome and the physical component of quality of life. Conclusions: Compared with TWA, LIIT walking was feasible, safe and associated with more favorable multidimensional recovery in COVID-19 survivors after hospitalization for severe pneumonitis. Full article
(This article belongs to the Special Issue Rehabilitation and Treatment of Post-COVID-19 Condition)
Show Figures

Figure 1

27 pages, 7020 KB  
Article
RPC Correction Coefficient Extrapolation for KOMPSAT-3A Imagery in Inaccessible Regions
by Namhoon Kim
Remote Sens. 2025, 17(19), 3332; https://doi.org/10.3390/rs17193332 - 29 Sep 2025
Abstract
High-resolution pushbroom satellites routinely acquire multi-tenskilometer-scale strips whose vendors’ rational polynomial coefficients (RPCs) exhibit systematic, direction-dependent biases that accumulate downstream when ground control is sparse. This study presents a physically interpretable stripwise extrapolation framework that predicts along- and across-track RPC correlation coefficients for [...] Read more.
High-resolution pushbroom satellites routinely acquire multi-tenskilometer-scale strips whose vendors’ rational polynomial coefficients (RPCs) exhibit systematic, direction-dependent biases that accumulate downstream when ground control is sparse. This study presents a physically interpretable stripwise extrapolation framework that predicts along- and across-track RPC correlation coefficients for inaccessible segments from an upstream calibration subset. Terrain-independent RPCs were regenerated and residual image-space errors were modeled with weighted least squares using elapsed time, off-nadir evolution, and morphometric descriptors of the target terrain. Gaussian kernel weights favor calibration scenes with a Jarque–Bera-indexed relief similar to the target. When applied to three KOMPSAT-3A panchromatic strips, the approach preserves native scene geometry while transporting calibrated coefficients downstream, reducing positional errors in two strips to <2.8 pixels (~2.0 m at 0.710 m Ground Sample Distance, GSD). The first strip with a stronger attitude drift retains 4.589 pixel along-track errors, indicating the need for wider predictor coverage under aggressive maneuvers. The results clarify the directional error structure with a near-constant across-track bias and low-frequency along-track drift and show that a compact predictor set can stabilize extrapolation without full-block adjustment or dense tie networks. This provides a GCP-efficient alternative to full-block adjustment and enables accurate georeferencing in controlled environments. Full article
Show Figures

Figure 1

25 pages, 3491 KB  
Article
Selective Targeting and Enhanced Photodynamic Inactivation of Methicillin-Resistant Staphylococcus aureus (MRSA) by a Decacationic Vancomycin–Mesochlorin Conjugate
by He Yin, Xiaojing Liu, Min Wang, Ying Wang, Tianhong Dai and Long Y. Chiang
Antibiotics 2025, 14(10), 978; https://doi.org/10.3390/antibiotics14100978 - 28 Sep 2025
Abstract
Background/Objectives: Covalent conjugation of an antibiotic vancomycin (VCM) moiety and a photosensitizing mesochlorin (mChlPd) unit into one molecular entity may present the potential to produce the combinatorial effect of both antibacterial photodynamic therapeutic (aPDT) and antibiotic activities. Our recent [...] Read more.
Background/Objectives: Covalent conjugation of an antibiotic vancomycin (VCM) moiety and a photosensitizing mesochlorin (mChlPd) unit into one molecular entity may present the potential to produce the combinatorial effect of both antibacterial photodynamic therapeutic (aPDT) and antibiotic activities. Our recent study indicated that a short linkage of <4 (C−C/or C−N) bond distances between these two moieties resulted in significant steric hindrance due to the bulky VCM, which greatly reduces the accessibility of the agent to the cell surface of methicillin-resistant Staphylococcus aureus (MRSA). The observed aPDT efficacy was found to be minimal. Here, we report that the revision of this linkage, via an EG10 unit using identical synthetic procedures, was able to resolve the issue. Methods: Accordingly, the corresponding combinatorial aPDT−antibiotic compound, consisting of two covalently bonded quaternary ammonium pentacationic arms on the mesochlorin chromophore core, designated as VCMe-mChlPd-N10+ (LC40e+), was prepared for applications in antibacterial photodynamic inactivation (aPDI) activity. It was selected to investigate its enhanced binding and targeting ability to the surface of Gram-positive MRSA cells. Subsequent antibacterial photodynamic therapeutic (aPDT) activity to inactivate MRSA was investigated to substantiate the corresponding cell-surface binding effect on the efficacy of aPDT. Results: We found that the covalent combination of 10 positive charges and an MRSA-targeting vancomycin (VCM) moiety in a conjugated structure, functioning as an antibiotic–decacationic photosensitizing agent (Abx-dcPS), was capable of largely improving the MRSA cell-targeting efficiency. Importantly, variation in the chain length of the oligo(ethylene glycol) linker of VCMe-mChlPd-N10+, which was sufficiently long enough to properly separate the photoactive mesochlorin ring moiety from the VCM moiety within the molecular structure, resulted in significantly enhanced aPDT activity. The new conjugate provided nearly complete eradication (>6.5-log10 colony-forming units (CFU) reduction) of MRSA cells in vitro. The aPDT efficacy followed the order Abx-dcPS (combinatorial decacationic) > dcPS (decacationic) >> nPS (nonionic). This order was also verified by the relative physical binding trend of these PSs using either nPS-, dcPS-, or Abx-dcPS-pretreated and pre-fixed MRSA cells in investigations of fluorescent confocal microscopy, UV–vis fluorescence spectroscopy, and transmission electron microscopy (TEM). Conclusions: Furthermore, the molecular conjugate of Abx-dcPS may provide covalent co-delivery of two drug components concurrently, which might also serve as an effective antibiotic agent after aPDT and potentially prevent the reoccurrence of MRSA-induced infection. Full article
Show Figures

Figure 1

22 pages, 14763 KB  
Article
Construction of a High-Density Genetic Map and QTL Mapping Analysis for Yield, Tuber Shape, and Eye Number in Diploid Potato
by Jing Yang, Chunguang Yao, Jiahao Miao, Nan Li, Faru Ji, Die Hu, Sitong Wang, Zixian Zhou, Kunyan Dai, Aie Chen and Canhui Li
Agriculture 2025, 15(19), 2032; https://doi.org/10.3390/agriculture15192032 - 28 Sep 2025
Abstract
Potato (Solanum tuberosum L.) is a globally important food crop, but its tetrasomic inheritance and diploid self-incompatibility have limited the discovery of potato genes and progress in breeding. Here, we developed an F2 segregating population consisting of 174 lines by crossing [...] Read more.
Potato (Solanum tuberosum L.) is a globally important food crop, but its tetrasomic inheritance and diploid self-incompatibility have limited the discovery of potato genes and progress in breeding. Here, we developed an F2 segregating population consisting of 174 lines by crossing a self-compatible genome-homozygous diploid line (Y8, female parent) with a heterozygous diploid line (IVP101, male parent), followed by selfing. Using whole-genome resequencing, we constructed a high-density genetic map containing 4464 recombinant bin markers with an average physical distance of 165.51 Kb. Phenotypic evaluation of 8 traits related to yield, tuber shape, and tuber eye number across three environments revealed significant parental differences and wide phenotypic variation within the F2 population. QTL (Quantitative trait loci) mapping using this genetic map and multi-environment phenotypic data identified 89 QTLs, including 7 previously reported QTLs/genes. In addition, 10 QTLs were stably detected across multiple seasons (stable QTLs). Further genetic effect analysis showed that favorable alleles of these stable QTLs significantly enhanced phenotypic values. Notably, two pleiotropic QTLs were identified on chromosomes 5 and 12; the major-effect QTL on chromosome 12 (qTY-12-6, qTS-12-3, and qTE-12-4) exhibited high phenotypic variance explained (PVE). Its favorable allele from Y8 significantly increased mean tuber weight, tuber number per plant, and promoted rounder tuber shape while reducing eye number, simultaneously improving yield and quality. Collectively, this study provides a reference for genetic mapping using homozygous and heterozygous diploid parents, and the identified QTLs offer valuable genetic resources for potato breeding and molecular mechanism research, enhancing our understanding of the genetic regulation of yield, tuber shape, and eye number in potato. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

14 pages, 3556 KB  
Article
Multi-Layer Molecular Quantum-Dot Cellular Automata Multiplexing Structure with Physical Verification for Secure Quantum RAM
by Jun-Cheol Jeon
Int. J. Mol. Sci. 2025, 26(19), 9480; https://doi.org/10.3390/ijms26199480 - 27 Sep 2025
Abstract
Molecular quantum-dot cellular automata (QCA) are attracting much attention as an alternative that can improve the problems of digital circuit design technology represented by existing CMOS technology. In particular, they are well suited to the upcoming nanoquantum environment era with their small size, [...] Read more.
Molecular quantum-dot cellular automata (QCA) are attracting much attention as an alternative that can improve the problems of digital circuit design technology represented by existing CMOS technology. In particular, they are well suited to the upcoming nanoquantum environment era with their small size, fast switching speed, and low power consumption. In this study, we propose a 5 × 5 × 1 ultra-slim vertical panel type multi-layer 2-to-1 multiplexer (Mux) using molecular QCA, departing from conventional multi-layer formats, and show its expansion to 4-to-1 Mux and application to vertical panel type D-latch and RAM cells. In addition, the polarization phenomenon of cells is physically proven using the potential energy, distance among electrons, and the relative positions of cells, and the secure RAM design takes noise elimination and polarization of the output signal into consideration. The circuits are simulated in terms of operation and performance using QCADesigner 2.0.3 and QCADesignerE, and the proposed multi-layer 2-to-1 Mux shows a significant improvement of at least 1473% and 277% in two representative standard design costs compared to the state-of-the-art multi-layer Muxes. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

16 pages, 25234 KB  
Article
Real-Time Observer and Neuronal Identification of an Erbium-Doped Fiber Laser
by Daniel Alejandro Magallón-García, Didier López-Mancilla, Rider Jaimes-Reátegui, Juan Hugo García-López, Guillermo Huerta-Cuellar and Luis Javier Ontañon-García
Photonics 2025, 12(10), 955; https://doi.org/10.3390/photonics12100955 - 26 Sep 2025
Abstract
This paper presents the implementation of a real-time nonlinear state observer applied to an erbium-doped fiber laser system. The observer is designed to estimate population inversion, a state variable that cannot be measured directly due to the physical limitations of measurement devices. Taking [...] Read more.
This paper presents the implementation of a real-time nonlinear state observer applied to an erbium-doped fiber laser system. The observer is designed to estimate population inversion, a state variable that cannot be measured directly due to the physical limitations of measurement devices. Taking advantage of the fact that the laser intensity can be measured in real time, an observer was developed to reconstruct the dynamics of population inversion from this measurable variable. To validate and strengthen the estimate obtained by the observer, a Recurrent Wavelet First-Order Neural Network (RWFONN) was implemented and trained to identify both state variables: the laser intensity and the population inversion. This network efficiently captures the system’s nonlinear dynamic properties and complements the observer’s performance. Two metrics were applied to evaluate the accuracy and reliability of the results: the Euclidean distance and the mean square error (MSE), both of which confirm the consistency between the estimated and expected values. The ultimate goal of this research is to develop a neural control architecture that combines the estimation capabilities of state observers with the generalization and modeling power of artificial neural networks. This hybrid approach opens up the possibility of developing more robust and adaptive control systems for highly dynamic, complex laser systems. Full article
(This article belongs to the Special Issue Lasers and Complex System Dynamics)
Show Figures

Figure 1

29 pages, 5526 KB  
Article
Design of UUV Underwater Autonomous Recovery System and Controller Based on Mooring-Type Mobile Docking Station
by Peiyu Han, Wei Zhang, Qiyang Wu and Yefan Shi
J. Mar. Sci. Eng. 2025, 13(10), 1861; https://doi.org/10.3390/jmse13101861 - 26 Sep 2025
Abstract
This study addresses autonomous underwater vehicle (UUV) recovery onto dynamic docking stations by proposing a fork-column recovery control system with a segmented docking strategy (long-distance approach + guided descent). To enhance model fidelity, transmission lag of actuators is captured by a specified transfer [...] Read more.
This study addresses autonomous underwater vehicle (UUV) recovery onto dynamic docking stations by proposing a fork-column recovery control system with a segmented docking strategy (long-distance approach + guided descent). To enhance model fidelity, transmission lag of actuators is captured by a specified transfer function, and nonlinear dynamics are characterized as an improved quasi-linear parameter-varying (QLPV) model. An adaptive variable–prediction–step mechanism was designed to accommodate different phases of acoustic–optical guided recovery. A model predictive controller (MPC) was developed based on an improved dynamic model to effectively handle complex constraints during the recovery process. Simulation and physical experiments demonstrated that the proposed system significantly reduces errors, among which the control accuracy (tracking error under disturbance < 0.3 m) and docking success rate (>95%) are notably superior to traditional methods, providing a reliable solution for the dynamic recovery of unmanned underwater vehicles (UUVs). Full article
(This article belongs to the Special Issue Design and Application of Underwater Vehicles)
Show Figures

Figure 1

11 pages, 283 KB  
Article
What Motives Influence Parents’ Commitment to Their Children’s Sport Participation in the United States?
by Katherine N. Alexander, Daniel J. M. Fleming, Mitchell Olsen, Travis E. Dorsch and Kat V. Adams
Int. J. Environ. Res. Public Health 2025, 22(10), 1473; https://doi.org/10.3390/ijerph22101473 - 24 Sep 2025
Viewed by 41
Abstract
Background: The public often places value on youth sport involvement in the United States due to its potential to foster positive outcomes for participants. Although sport parents are key socializers and provide access to appropriate participation opportunities for children, less is known [...] Read more.
Background: The public often places value on youth sport involvement in the United States due to its potential to foster positive outcomes for participants. Although sport parents are key socializers and provide access to appropriate participation opportunities for children, less is known about how their perceptions of their child’s motives influence their sport commitments. Purpose: Therefore, the purpose of the present study was to understand how parents’ perceptions of their child’s motives for sport participation were associated with time/travel sport commitments. Methods: Participants (N = 1250) were parents in the United States reporting on their child’s youth sport participation. Measures assessed their perceptions of their child’s motives for sport involvement, how many hours per week and months per year they engaged in sport, and how far they tended to drive to facilitate sport opportunities. Multiple regressions were utilized. Results: Analyses revealed that the number of months per year was positively predicted by motives for being physically healthy and spending time with friends. Similarly, being with friends was a positive predictor of the number of weekly hours spent in organized sport and having fun positively predicted the distance driven to participate. Motives for becoming more physically attractive negatively predicted time and travel commitments. Conclusions: Overall, the present study sheds light on how the ways parents perceive their children’s motivations for participating in youth sport influences parents’ commitment to facilitating sport participation opportunities for their children. Full article
(This article belongs to the Section Exercise and Health-Related Quality of Life)
22 pages, 4113 KB  
Article
PathGen-LLM: A Large Language Model for Dynamic Path Generation in Complex Transportation Networks
by Xun Li, Kai Xian, Huimin Wen, Shengguang Bai, Han Xu and Yun Yu
Mathematics 2025, 13(19), 3073; https://doi.org/10.3390/math13193073 - 24 Sep 2025
Viewed by 82
Abstract
Dynamic path generation in complex transportation networks is essential for intelligent transportation systems. Traditional methods, such as shortest path algorithms or heuristic-based models, often fail to capture real-world travel behaviors due to their reliance on simplified assumptions and limited ability to handle long-range [...] Read more.
Dynamic path generation in complex transportation networks is essential for intelligent transportation systems. Traditional methods, such as shortest path algorithms or heuristic-based models, often fail to capture real-world travel behaviors due to their reliance on simplified assumptions and limited ability to handle long-range dependencies or non-linear patterns. To address these limitations, we propose PathGen-LLM, a large language model (LLM) designed to learn spatial–temporal patterns from historical paths without requiring handcrafted features or graph-specific architectures. Exploiting the structural similarity between path sequences and natural language, PathGen-LLM converts spatiotemporal trajectories into text-formatted token sequences by encoding node IDs and timestamps. This enables the model to learn global dependencies and semantic relationships through self-supervised pretraining. The model integrates a hierarchical Transformer architecture with dynamic constraint decoding, which synchronizes spatial node transitions with temporal timestamps to ensure physically valid paths in large-scale road networks. Experimental results on real-world urban datasets demonstrate that PathGen-LLM outperforms baseline methods, particularly in long-distance path generation. By bridging sequence modeling and complex network analysis, PathGen-LLM offers a novel framework for intelligent transportation systems, highlighting the potential of LLMs to address challenges in large-scale, real-time network tasks. Full article
(This article belongs to the Special Issue Modeling and Data Analysis of Complex Networks)
Show Figures

Figure 1

Back to TopTop