Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (180)

Search Parameters:
Keywords = photovoltaic output uncertainty

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1146 KiB  
Review
A Review of Optimization Scheduling for Active Distribution Networks with High-Penetration Distributed Generation Access
by Kewei Wang, Yonghong Huang, Yanbo Liu, Tao Huang and Shijia Zang
Energies 2025, 18(15), 4119; https://doi.org/10.3390/en18154119 - 3 Aug 2025
Viewed by 301
Abstract
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations [...] Read more.
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations and localized voltage violations, posing safety challenges. Consequently, research on optimal dispatch for ADNs with a high penetration of renewable energy has become a current focal point. This paper provides a comprehensive review of research in this domain over the past decade. Initially, it analyzes the voltage impact patterns and control principles in distribution networks under varying levels of renewable energy penetration. Subsequently, it introduces optimization dispatch models for ADNs that focus on three key objectives: safety, economy, and low carbon emissions. Furthermore, addressing the challenge of solving non-convex and nonlinear models, the paper highlights model reformulation strategies such as semidefinite relaxation, second-order cone relaxation, and convex inner approximation methods, along with summarizing relevant intelligent solution algorithms. Additionally, in response to the high uncertainty of renewable energy output, it reviews stochastic optimization dispatch strategies for ADNs, encompassing single-stage, two-stage, and multi-stage approaches. Meanwhile, given the promising prospects of large-scale deep reinforcement learning models in the power sector, their applications in ADN optimization dispatch are also reviewed. Finally, the paper outlines potential future research directions for ADN optimization dispatch. Full article
Show Figures

Figure 1

20 pages, 1979 KiB  
Article
Energy Storage Configuration Optimization of a Wind–Solar–Thermal Complementary Energy System, Considering Source-Load Uncertainty
by Guangxiu Yu, Ping Zhou, Zhenzhong Zhao, Yiheng Liang and Weijun Wang
Energies 2025, 18(15), 4011; https://doi.org/10.3390/en18154011 - 28 Jul 2025
Viewed by 370
Abstract
The large-scale integration of new energy is an inevitable trend to achieve the low-carbon transformation of power systems. However, the strong randomness of wind power, photovoltaic power, and loads poses severe challenges to the safe and stable operation of systems. Existing studies demonstrate [...] Read more.
The large-scale integration of new energy is an inevitable trend to achieve the low-carbon transformation of power systems. However, the strong randomness of wind power, photovoltaic power, and loads poses severe challenges to the safe and stable operation of systems. Existing studies demonstrate insufficient integration and handling of source-load bilateral uncertainties in wind–solar–fossil fuel storage complementary systems, resulting in difficulties in balancing economy and low-carbon performance in their energy storage configuration. To address this insufficiency, this study proposes an optimal energy storage configuration method considering source-load uncertainties. Firstly, a deterministic bi-level model is constructed: the upper level aims to minimize the comprehensive cost of the system to determine the energy storage capacity and power, and the lower level aims to minimize the system operation cost to solve the optimal scheduling scheme. Then, wind and solar output, as well as loads, are treated as fuzzy variables based on fuzzy chance constraints, and uncertainty constraints are transformed using clear equivalence class processing to establish a bi-level optimization model that considers uncertainties. A differential evolution algorithm and CPLEX are used for solving the upper and lower levels, respectively. Simulation verification in a certain region shows that the proposed method reduces comprehensive cost by 8.9%, operation cost by 10.3%, the curtailment rate of wind and solar energy by 8.92%, and carbon emissions by 3.51%, which significantly improves the economy and low-carbon performance of the system and provides a reference for the future planning and operation of energy systems. Full article
Show Figures

Figure 1

19 pages, 2954 KiB  
Article
Maximum Power Extraction of Photovoltaic Systems Using Dynamic Sliding Mode Control and Sliding Observer
by Ali Karami-Mollaee and Oscar Barambones
Mathematics 2025, 13(14), 2305; https://doi.org/10.3390/math13142305 - 18 Jul 2025
Viewed by 199
Abstract
In this paper, a robust optimized controller is implemented in the photovoltaic generator system (PVGS). The PVGS is composed of individual photovoltaic (PV) cells, which convert solar energy to electrical energy. To optimize the efficiency of the PVGS under variable solar irradiance and [...] Read more.
In this paper, a robust optimized controller is implemented in the photovoltaic generator system (PVGS). The PVGS is composed of individual photovoltaic (PV) cells, which convert solar energy to electrical energy. To optimize the efficiency of the PVGS under variable solar irradiance and temperatures, a maximum power point tracking (MPPT) controller is necessary. Additionally, the PVGS output voltage is typically low for many applications. To achieve the MPPT and to gain the output voltage, an increasing boost converter (IBC) is employed. Then, two issues should be considered in MPPT. At first, a smooth control signal for adjusting the duty cycle of the IBC is important. Another critical issue is the PVGS and IBC unknown sections, i.e., the total system uncertainty. Therefore, to address the system uncertainties and to regulate the smooth duty cycle of the converter, a robust dynamic sliding mode control (DSMC) is proposed. In DSMC, a low-pass integrator is placed before the system to suppress chattering and to produce a smooth actuator signal. However, this integrator increases the system states, and hence, a sliding mode observer (SMO) is proposed to estimate this additional state. The stability of the proposed control scheme is demonstrated using the Lyapunov theory. Finally, to demonstrate the effectiveness of the proposed method and provide a reliable comparison, conventional sliding mode control (CSMC) with the same proposed SMO is also implemented. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

22 pages, 4306 KiB  
Article
A Novel Renewable Energy Scenario Generation Method Based on Multi-Resolution Denoising Diffusion Probabilistic Models
by Donglin Li, Xiaoxin Zhao, Weimao Xu, Chao Ge and Chunzheng Li
Energies 2025, 18(14), 3781; https://doi.org/10.3390/en18143781 - 17 Jul 2025
Cited by 1 | Viewed by 300
Abstract
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the [...] Read more.
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the inherent non-stationarity, multi-scale volatility, and uncontrollability of RES output significantly increase the risk of source–load imbalance, posing serious challenges to the reliability and economic efficiency of power systems. Scenario generation technology has emerged as a critical tool to quantify uncertainty and support dispatch optimization. Nevertheless, conventional scenario generation methods often fail to produce highly credible wind and solar output scenarios. To address this gap, this paper proposes a novel renewable energy scenario generation method based on a multi-resolution diffusion model. To accurately capture fluctuation characteristics across multiple time scales, we introduce a diffusion model in conjunction with a multi-scale time series decomposition approach, forming a multi-stage diffusion modeling framework capable of representing both long-term trends and short-term fluctuations in RES output. A cascaded conditional diffusion modeling framework is designed, leveraging historical trend information as a conditioning input to enhance the physical consistency of generated scenarios. Furthermore, a forecast-guided fusion strategy is proposed to jointly model long-term and short-term dynamics, thereby improving the generalization capability of long-term scenario generation. Simulation results demonstrate that MDDPM achieves a Wasserstein Distance (WD) of 0.0156 in the wind power scenario, outperforming DDPM (WD = 0.0185) and MC (WD = 0.0305). Additionally, MDDPM improves the Global Coverage Rate (GCR) by 15% compared to MC and other baselines. Full article
(This article belongs to the Special Issue Advances in Power Distribution Systems)
Show Figures

Figure 1

22 pages, 3393 KiB  
Article
Stochastic Operation of BESS and MVDC Link in Distribution Networks Under Uncertainty
by Changhee Han, Sungyoon Song and Jaehyeong Lee
Electronics 2025, 14(13), 2737; https://doi.org/10.3390/electronics14132737 - 7 Jul 2025
Viewed by 245
Abstract
This study introduces a stochastic optimization framework designed to effectively manage power flows in flexible medium-voltage DC (MVDC) link systems within distribution networks (DNs). The proposed approach operates in coordination with a battery energy storage system (BESS) to enhance the overall efficiency and [...] Read more.
This study introduces a stochastic optimization framework designed to effectively manage power flows in flexible medium-voltage DC (MVDC) link systems within distribution networks (DNs). The proposed approach operates in coordination with a battery energy storage system (BESS) to enhance the overall efficiency and reliability of the power distribution. Given the inherent uncertain characteristics associated with forecasting errors in photovoltaic (PV) generation and load demand, the study employs a distributionally robust chance-constrained optimization technique to mitigate the potential operational risks. To achieve a cooperative and optimized control strategy for MVDC link systems and BESS, the proposed method incorporates a stochastic relaxation of the reliability constraints on bus voltages. By strategically adjusting the conservativeness of these constraints, the proposed framework seeks to maximize the cost-effectiveness of DN operations. The numerical simulations demonstrate that relaxing the strict reliability constraints enables the distribution system operator to optimize the electricity imports more economically, thereby improving the overall financial performance while maintaining system reliability. Through case studies, we showed that the proposed method improves the operational cost by up to 44.7% while maintaining 96.83% bus voltage reliability under PV and load power output uncertainty. Full article
(This article belongs to the Special Issue Advanced Control Techniques for Power Converter and Drives)
Show Figures

Figure 1

18 pages, 1130 KiB  
Article
Robust Optimization of Active Distribution Networks Considering Source-Side Uncertainty and Load-Side Demand Response
by Renbo Wu and Shuqin Liu
Energies 2025, 18(13), 3531; https://doi.org/10.3390/en18133531 - 4 Jul 2025
Viewed by 305
Abstract
Aiming to solve optimization scheduling difficulties caused by the double uncertainty of source-side photovoltaic (PV) output and load-side demand response in active distribution networks, this paper proposes a two-stage distribution robust optimization method. First, the first-stage model with the objective of minimizing power [...] Read more.
Aiming to solve optimization scheduling difficulties caused by the double uncertainty of source-side photovoltaic (PV) output and load-side demand response in active distribution networks, this paper proposes a two-stage distribution robust optimization method. First, the first-stage model with the objective of minimizing power purchase cost and the second-stage model with the co-optimization of active loss, distributed power generation cost, PV abandonment penalty, and load compensation cost under the worst probability distribution are constructed, and multiple constraints such as distribution network currents, node voltages, equipment outputs, and demand responses are comprehensively considered. Secondly, the second-order cone relaxation and linearization technique is adopted to deal with the nonlinear constraints, and the inexact column and constraint generation (iCCG) algorithm is designed to accelerate the solution process. The solution efficiency and accuracy are balanced by dynamically adjusting the convergence gap of the main problem. The simulation results based on the improved IEEE33 bus system show that the proposed method reduces the operation cost by 5.7% compared with the traditional robust optimization, and the cut-load capacity is significantly reduced at a confidence level of 0.95. The iCCG algorithm improves the computational efficiency by 35.2% compared with the traditional CCG algorithm, which verifies the effectiveness of the model in coping with the uncertainties and improving the economy and robustness. Full article
Show Figures

Figure 1

26 pages, 6623 KiB  
Article
Optimal Allocation of Shared Energy Storage in Low-Carbon Parks Taking into Account the Uncertainty of Photovoltaic Output and Electric Vehicle Charging
by Shang Jiang, Jiacheng Li, Wenlong Shen, Lu Liang and Jinfeng Wu
Energies 2025, 18(13), 3280; https://doi.org/10.3390/en18133280 - 23 Jun 2025
Viewed by 256
Abstract
The growing integration of renewable energy and electric vehicle loads in parks has intensified the intermittency of photovoltaic (PV) output and demand-side uncertainty, complicating energy storage system design and operation. Meanwhile, under carbon neutrality goals, the energy system must balance economic efficiency with [...] Read more.
The growing integration of renewable energy and electric vehicle loads in parks has intensified the intermittency of photovoltaic (PV) output and demand-side uncertainty, complicating energy storage system design and operation. Meanwhile, under carbon neutrality goals, the energy system must balance economic efficiency with emission reductions, raising the bar for storage planning. To address these challenges, this study proposes a two-stage robust optimization method for shared energy storage configuration in a park-level integrated PV–storage–charging system (PV-SESS-CS). The method considers the uncertainties of PV and electric vehicle (EV) loads and incorporates carbon emission reduction benefits. First, a configuration model for shared energy storage that accounts for carbon emission reduction is established. Then, a two-stage robust optimization model is developed to characterize the uncertainties of PV output and EV charging demand. Typical PV output scenarios are generated using Latin Hypercube Sampling, and representative PV profiles are extracted via K-means clustering. For EV charging loads, uncertainty scenarios are generated using Monte Carlo Sampling. Finally, simulations are conducted based on real-world industrial park data. The results demonstrate that the proposed method can effectively mitigate the negative impact of source-load fluctuations, significantly reduce operating costs, and enhance carbon emission reductions. This study provides strong methodological support for optimal energy storage planning and low-carbon operation in park-level PV-SESS-CS. Full article
Show Figures

Figure 1

24 pages, 6560 KiB  
Article
Spatio-Temporal Attention-Based Deep Learning for Smart Grid Demand Prediction
by Muhammed Cavus and Adib Allahham
Electronics 2025, 14(13), 2514; https://doi.org/10.3390/electronics14132514 - 20 Jun 2025
Cited by 2 | Viewed by 1203
Abstract
Accurate short-term load forecasting is vital for the reliable and efficient operation of smart grids, particularly under the uncertainty introduced by variable renewable energy sources (RESs) such as solar and wind. This study introduces ST-CALNet, a novel hybrid deep learning framework that integrates [...] Read more.
Accurate short-term load forecasting is vital for the reliable and efficient operation of smart grids, particularly under the uncertainty introduced by variable renewable energy sources (RESs) such as solar and wind. This study introduces ST-CALNet, a novel hybrid deep learning framework that integrates convolutional neural networks (CNNs) with an Attentive Long Short-Term Memory (LSTM) network to enhance forecasting performance in renewable-integrated smart grids. The CNN component captures spatial dependencies from multivariate inputs, comprising meteorological variables and generation data, while the LSTM module models temporal correlations in historical load patterns. An embedded attention mechanism dynamically weights input sequences, enabling the model to prioritise the most influential time steps, thereby improving its interpretability and robustness during demand fluctuations. ST-CALNet was trained and evaluated using real-world datasets that include electricity consumption, solar photovoltaic (PV) output, and wind generation. Experimental evaluation demonstrated that the model achieved a mean absolute error (MAE) of 0.0494, root mean squared error (RMSE) of 0.0832, and a coefficient of determination (R2) of 0.4376 for electricity demand forecasting. For PV and wind generation, the model attained MAE values of 0.0134 and 0.0141, respectively. Comparative analysis against baseline models confirmed ST-CALNet’s superior predictive accuracy, particularly in minimising absolute and percentage-based errors. Temporal and regime-based error analysis validated the model’s resilience under high-variability conditions such as peak load periods, while visualisation of attention scores offered insights into the model’s temporal focus. These findings underscore the potential of ST-CALNet for deployment in intelligent energy systems, supporting more adaptive, transparent, and dependable forecasting within smart grid infrastructures. Full article
Show Figures

Figure 1

23 pages, 6078 KiB  
Article
Multi-Energy Optimal Dispatching of Port Microgrids Taking into Account the Uncertainty of Photovoltaic Power
by Xiaoyong Wang, Xing Wei, Hanqing Zhang, Bailiang Liu and Yanmin Wang
Energies 2025, 18(12), 3216; https://doi.org/10.3390/en18123216 - 19 Jun 2025
Viewed by 360
Abstract
To tackle the problems of high scheduling costs and low photovoltaic (PV) accommodation rates in port microgrids, which are caused by the coupling of uncertainties in new energy output and load randomness, this paper proposes an optimized scheduling method that integrates scenario analysis [...] Read more.
To tackle the problems of high scheduling costs and low photovoltaic (PV) accommodation rates in port microgrids, which are caused by the coupling of uncertainties in new energy output and load randomness, this paper proposes an optimized scheduling method that integrates scenario analysis with multi-energy complementarity. Firstly, based on the improved Iterative Self-organizing Data Analysis Techniques Algorithm (ISODATA) clustering algorithm and backward reduction method, a set of typical scenarios that represent the uncertainties of PV and load is generated. Secondly, a multi-energy complementary system model is constructed, which includes thermal power, PV, energy storage, electric vehicle (EV) clusters, and demand response. Then, a planning model centered on economy is established. Through multi-energy coordinated optimization, supply–demand balance and cost control are achieved. The simulation results based on the port microgrid of the LEKKI Port in Nigeria show that the proposed method can significantly reduce system operating costs by 18% and improve the PV accommodation rate through energy storage time-shifting, flexible EV scheduling, and demand response incentives. The research findings provide theoretical and technical support for the low-carbon transformation of energy systems in high-volatility load scenarios, such as ports. Full article
Show Figures

Figure 1

32 pages, 1421 KiB  
Article
Risk-Aware Scheduling for Maximizing Renewable Energy Utilization in a Cascade Hydro–PV Complementary System
by Yan Liu, Xian Zhang, Ziming Ma, Wenshi Ren, Yangming Xiao, Xiao Xu, Youbo Liu and Junyong Liu
Energies 2025, 18(12), 3109; https://doi.org/10.3390/en18123109 - 12 Jun 2025
Viewed by 458
Abstract
With the increasing integration of variable renewables, cascade hydro–photovoltaic (PV) systems face growing challenges in scheduling under PV output uncertainty. This paper proposes a risk-aware bi-level scheduling model based on the Information Gap Decision Theory (IGDT) to maximize renewable energy utilization while accommodating [...] Read more.
With the increasing integration of variable renewables, cascade hydro–photovoltaic (PV) systems face growing challenges in scheduling under PV output uncertainty. This paper proposes a risk-aware bi-level scheduling model based on the Information Gap Decision Theory (IGDT) to maximize renewable energy utilization while accommodating different risk preferences. The upper level optimizes the uncertainty horizon based on the decision-maker’s risk attitude (risk-neutral, opportunity-seeking, or risk-averse), while the lower level ensures operational feasibility under corresponding deviations in the PV and hydropower schedule. The bi-level model is reformulated into a single-level mixed-integer linear programming (MILP) problem. A case study based on four hydropower plants and two photovoltaic (PV) clusters in Southwest China demonstrates the effectiveness of the model. Numerical results show that the opportunity-seeking strategy (OS) achieves the highest total generation (68,530.9 MWh) and PV utilization (102.2%), while the risk-averse strategy (RA) improves scheduling robustness, reduces the number of transmission violations from 38 (risk-neutral strategy) to 33, and increases the system reserve margin to 20.1%. Compared to the conditional value-at-risk (CVaR) model, the RA has comparable robustness. The proposed model provides a flexible and practical tool for risk-informed scheduling in multi-energy complementary systems. Full article
Show Figures

Figure 1

21 pages, 2175 KiB  
Article
Performance Ratio Estimation for Building-Integrated Photovoltaics—Thermal and Angular Characterisation
by Ana Marcos-Castro, Carlos Sanz-Saiz, Jesús Polo and Nuria Martín-Chivelet
Appl. Sci. 2025, 15(12), 6579; https://doi.org/10.3390/app15126579 - 11 Jun 2025
Viewed by 526
Abstract
Building-integrated photovoltaics (BIPV) requires tools that improve and facilitate simulating and predicting the system’s output energy. The efficiency of a photovoltaic (PV) system can be determined by the performance ratio (PR), which relates the actual system’s output energy to the theoretical [...] Read more.
Building-integrated photovoltaics (BIPV) requires tools that improve and facilitate simulating and predicting the system’s output energy. The efficiency of a photovoltaic (PV) system can be determined by the performance ratio (PR), which relates the actual system’s output energy to the theoretical output according to the installed power and the solar irradiation, thus accounting for the power losses the PV system undergoes. Among the different parameters affecting PR, module temperature and the angle of incidence of irradiance are the most dependent on the BIPV application due to the varied module positioning. This paper assesses the suitability of several BIPV temperature models and determines the angular losses for any possible module positioning. The proposed methodology is easy to replicate and results in polar heatmap graphs to estimate PR at the desired location as a function of the tilt and azimuth angles of the modules. The calculations require irradiance, ambient temperature, and wind speed data, which can easily be obtained worldwide. Dynamic sky conditions are addressed through filters that smooth out quickly changing input data to avoid high and low peaks. The developed graphs are helpful in the decision-making process for BIPV designs by allowing the designer to estimate the expected PR of the BIPV system for any possible position of the modules on the building envelope, reducing the effect of uncertainties and resulting in more accurate and better predictions of the system’s output energy. The method applied to a BIPV façade in Madrid showed a deviation of less than 3% between the estimated and monitored PRs; the PR values ranged between 0.74 and 0.82, depending on the BIPV application and module position. Full article
(This article belongs to the Special Issue Advances in the Energy Efficiency and Thermal Comfort of Buildings)
Show Figures

Graphical abstract

31 pages, 4071 KiB  
Article
Sustainable Distribution Network Planning for Enhancing PV Accommodation: A Source–Network–Storage Coordinated Stochastic Approach
by Jing Wang, Chenzhang Chang, Jian Le, Xiaobing Liao and Weihao Wang
Sustainability 2025, 17(12), 5324; https://doi.org/10.3390/su17125324 - 9 Jun 2025
Viewed by 417
Abstract
To address the impacts of source load temporal–spatial uncertainties on distribution network planning considering the global transition towards sustainable energy systems with high-penetration photovoltaic (PV) integration, this paper proposes a source–network–storage coordinated stochastic planning method. A temporal–spatial correlation probability model for PV output [...] Read more.
To address the impacts of source load temporal–spatial uncertainties on distribution network planning considering the global transition towards sustainable energy systems with high-penetration photovoltaic (PV) integration, this paper proposes a source–network–storage coordinated stochastic planning method. A temporal–spatial correlation probability model for PV output and load demand is constructed based on Copula theory. Scenario generation and efficient reduction are achieved through Monte Carlo sampling and K-means clustering, extracting representative daily scenarios that preserve the temporal–spatial characteristics. A coordinated planning model targeting the minimization of comprehensive costs is established to holistically optimize PV deployment, energy storage system (ESS) configuration, and network expansion schemes. Simulations on typical distribution network systems demonstrate that the proposed method, by integrating temporal–spatial correlation modeling and multi-element collaborative decision-making, significantly improves PV accommodation capacity and reduces planning costs while improving the overall economic efficiency of distribution network planning. This study provides a robust technical pathway for developing economically viable and resilient distribution networks capable of integrating large-scale renewable energy, thereby contributing to the decarbonization of the power sector and advancing the goals of sustainable energy development. Full article
Show Figures

Figure 1

33 pages, 5679 KiB  
Article
Short-Term Photovoltaic Power Forecasting Based on an Improved Zebra Optimization Algorithm—Stochastic Configuration Network
by Yonggang Wang, Wenpeng Li, Haoran Chen, Yuanchu Ma, Bingbing Yu and Yadong Yu
Sensors 2025, 25(11), 3378; https://doi.org/10.3390/s25113378 - 27 May 2025
Viewed by 498
Abstract
The output of photovoltaic (PV) power generation systems remains uncertain primarily due to the uncontrollable nature of weather conditions, which may introduce disturbances to the power grid upon integrating PV systems. Accurate short-term PV power forecasting is an essential approach for ensuring the [...] Read more.
The output of photovoltaic (PV) power generation systems remains uncertain primarily due to the uncontrollable nature of weather conditions, which may introduce disturbances to the power grid upon integrating PV systems. Accurate short-term PV power forecasting is an essential approach for ensuring the stability of the power system. The paper proposes a short-term PV power forecasting model based on improved zebra optimization algorithm (IZOA)-stochastic configuration network (SCN). First, the historical PV data are divided into three weather patterns, effectively reducing the uncertainty of PV power. Second, a prediction model based on SCN is developed. To enhance the forecasting model’s accuracy even further, the IZOA is introduced to optimize the key parameters of the SCN. Finally, IZOA-SCN is employed for short-term PV power through various weather patterns. Experiment results show that the proposed method significantly improves the prediction accuracy in contrast to other comparison models. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

26 pages, 2825 KiB  
Article
A Multi-Time Scale Dispatch Strategy Integrating Carbon Trading for Mitigating Renewable Energy Fluctuations in Virtual Power Plants
by Wanling Zhuang, Junwei Liu, Jun Zhan, Honghao Liang, Cong Shen, Qian Ai and Minyu Chen
Energies 2025, 18(10), 2624; https://doi.org/10.3390/en18102624 - 19 May 2025
Viewed by 425
Abstract
Under the “dual-carbon” strategic framework, the installed capacity of renewable energy sources has continuously increased, while that of conventional generation units has progressively decreased. This structural shift significantly diminishes the operational flexibility of power generation systems and intensifies grid imbalances caused by renewable [...] Read more.
Under the “dual-carbon” strategic framework, the installed capacity of renewable energy sources has continuously increased, while that of conventional generation units has progressively decreased. This structural shift significantly diminishes the operational flexibility of power generation systems and intensifies grid imbalances caused by renewable energy volatility. To address these challenges, this study proposes a carbon-aware multi-timescale virtual power plant (VPP) scheduling framework with coordinated multi-energy integration, which operates through two sequential phases: day-ahead scheduling and intraday rolling optimization. In the day-ahead phase, demand response mechanisms are implemented to activate load-side regulation capabilities, coupled with information gap decision theory (IGDT) to quantify renewable energy uncertainties, thereby establishing optimal baseline schedules. During the intraday phase, rolling horizon optimization is executed based on updated short-term forecasts of renewable energy generation and load demand to determine final dispatch decisions. Numerical simulations demonstrate that the proposed framework achieves a 3.76% reduction in photovoltaic output fluctuations and 3.91% mitigation of wind power variability while maintaining economically viable scheduling costs. Specifically, the intraday optimization phase yields a 1.70% carbon emission reduction and a 7.72% decrease in power exchange costs, albeit with a 3.09% increase in operational costs attributable to power deviation penalties. Full article
Show Figures

Figure 1

17 pages, 3408 KiB  
Article
Robust Assessment Method for Hosting Capacity of Distribution Network in Mountainous Areas for Distributed Photovoltaics
by Youzhuo Zheng, Kun Zhou, Yekui Yang, Hanbin Diao, Long Hua, Renzhi Wang, Kang Liu and Qi Guo
Energies 2025, 18(9), 2394; https://doi.org/10.3390/en18092394 - 7 May 2025
Viewed by 347
Abstract
The penetration rate of distributed photovoltaic (PV) in mountainous distribution networks is increasing year by year, and the assessment of distributed PV hosting capacity (PVHC) in distribution networks in mountainous areas is also becoming more and more important. To this end, this paper [...] Read more.
The penetration rate of distributed photovoltaic (PV) in mountainous distribution networks is increasing year by year, and the assessment of distributed PV hosting capacity (PVHC) in distribution networks in mountainous areas is also becoming more and more important. To this end, this paper proposes a robust assessment method for distributed PVHC of flexible distribution networks in mountainous areas. The method utilizes soft open point (SOP) and energy storage to realize the flexible interconnection of distribution networks in mountainous areas, connecting the low-voltage nodes at the end of distribution networks in mountainous areas and improving the overall power quality of distribution networks. Secondly, the output curves of distributed PV output and load demand are analyzed and the distributed PV uncertainty model is drawn, so as to construct a two-layer robust assessment model of distributed PVHC for mountainous flexible distribution networks. Finally, the dual-layer robust assessment model, which cannot be solved directly, is transformed into a solvable mixed-integer linear programming model using the pairwise method, and the effectiveness of this paper’s method is verified by the simulation results of the IEEE 33-node distribution network system. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop