Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (889)

Search Parameters:
Keywords = photovoltaic inverters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2755 KiB  
Article
Comparative Analysis of the Substitution Effect of Smart Inverter-Based Energy Storage Systems on the Improvement of Distribution System Hosting Capacity Using Vertical Photovoltaic Systems
by Seungmin Lee, Garam Kim, Seungwoo Son and Junghun Lee
Energies 2025, 18(16), 4307; https://doi.org/10.3390/en18164307 - 13 Aug 2025
Viewed by 211
Abstract
Renewable energy sources, particularly solar photovoltaics (PVs), are rapidly expanding to achieve carbon neutrality. Integrated photovoltaic (IPV) solutions in underutilized spaces offer a viable option for countries with land constraints and public opposition. Vertical PV (VPV) systems, featuring bifacial solar modules installed vertically, [...] Read more.
Renewable energy sources, particularly solar photovoltaics (PVs), are rapidly expanding to achieve carbon neutrality. Integrated photovoltaic (IPV) solutions in underutilized spaces offer a viable option for countries with land constraints and public opposition. Vertical PV (VPV) systems, featuring bifacial solar modules installed vertically, facing east and west, present a promising alternative. In contrast to conventional tilted PV (CPV) systems, which peak around midday, VPV systems generate more power in the morning and afternoon. This mitigates issues such as the duck curve and curtailment caused by midday overgeneration. Moreover, combining VPV and CPV systems can increase the solar hosting capacity of a distribution line (DL) for PV-system interconnections, driving research interest. This study assessed the hosting-capacity improvements from VPV systems by analyzing voltage fluctuations and thermal constraints using OpenDSS software (Version 9.1.1.1). The potential substitution effect of a smart inverter-based energy-storage system (ESS) was also explored. The analysis, based on real-grid conditions in South Korea, incorporated actual DL data, generation and demand profiles, and operational data from both VPV and CPV systems. Worst-case scenarios were simulated to evaluate their impact on grid stability. The results demonstrate that VPV systems can increase hosting capacity by up to 23% and ensure stable grid operation by reducing power-generation uncertainties. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

22 pages, 4240 KiB  
Article
Power Optimization of Partially Shaded PV System Using Interleaved Boost Converter-Based Fuzzy Logic Method
by Ali Abedaljabar Al-Samawi, Abbas Swayeh Atiyah and Aws H. Al-Jrew
Eng 2025, 6(8), 201; https://doi.org/10.3390/eng6080201 - 13 Aug 2025
Viewed by 219
Abstract
Partial shading condition (PSC) for photovoltaic (PV) arrays complicates the operation of PV systems at peak power due to the existence of multiple peak points on the power–voltage (P–V) characteristic curve. Identifying the global peak among multiple peaks presents challenges, as the system [...] Read more.
Partial shading condition (PSC) for photovoltaic (PV) arrays complicates the operation of PV systems at peak power due to the existence of multiple peak points on the power–voltage (P–V) characteristic curve. Identifying the global peak among multiple peaks presents challenges, as the system may become trapped at a local peak, potentially resulting in significant power loss. Power generation is reduced, and hot-spot issues might arise, which can cause shaded modules to fail, under the partly shaded case. In this paper, instead of focusing on local peaks, several effective, precise, and dependable maximum power point tracker (MPPT) systems monitor the global peak using a fuzzy logic controller. The suggested method can monitor the total of all PV array peaks using an interleaved boost converter DC/DC (IBC), not only the global peaks. A DC/DC class boost converter (CBC), the current gold standard for traditional control methods, is pitted against the suggested converter. Four PSC-PV systems employ three-phase inverters to connect their converters to the power grid. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

13 pages, 1892 KiB  
Article
Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid
by Zhichun Yang, Mengyu Li, Jinyan Chen, Waqar Ahmad, Guofeng Zhang, Chengbing Qin, Liantuan Xiao and Suotang Jia
Nanomaterials 2025, 15(16), 1229; https://doi.org/10.3390/nano15161229 - 12 Aug 2025
Viewed by 289
Abstract
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose [...] Read more.
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose a defect-targeted passivation strategy using 2-chlorocinnamic acid (2-Cl) to simultaneously enhance the efficiency and stability of perovskite solar cells (PSCs). The crystallization kinetics, film morphology, and optical and electronic properties of the used formamidinium–cesium lead halide (FA0.85Cs0.15Pb(I0.95Br0.05)3, FACs) absorber were modulated and systematically investigated by various characterizations. Mechanistically, the carbonyl group in 2-Cl coordinates with undercoordinated Pb2+ ions, while the chlorine atom forms Pb–Cl bonds, effectively passivating the surface and interfacial defects. The optimized FACs perovskite film was incorporated into inverted (p-i-n) PSCs with a typical architecture of ITO/NiOx/PTAA/Al2O3/FACs/PEAI/PCBM/BCP/Ag. The optimal device delivers a champion power conversion efficiency (PCE) of 22.58% with an open-circuit voltage of 1.14 V and a fill factor of 82.8%. Furthermore, the unencapsulated devices retain 90% of their initial efficiency after storage in ambient air for 30 days and 83% of their original PCE after stress under 1 sun illumination with maximum power point tracking at 50 °C in a N2 environment, demonstrating the practical potential of dual-site molecular passivation for durable perovskite photovoltaics. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

27 pages, 1948 KiB  
Article
Real-World Performance and Economic Evaluation of a Residential PV Battery Energy Storage System Under Variable Tariffs: A Polish Case Study
by Wojciech Goryl
Energies 2025, 18(15), 4090; https://doi.org/10.3390/en18154090 - 1 Aug 2025
Viewed by 533
Abstract
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal [...] Read more.
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal variation was significant; self-sufficiency exceeded 90% in summer, while winter conditions increased grid dependency. The hybrid system reduced electricity costs by over EUR 1400 annually, with battery operation optimized for high-tariff periods. Comparative analysis of three configurations—grid-only, PV-only, and PV + BESS—demonstrated the economic advantage of the integrated solution, with the shortest payback period (9.0 years) achieved with financial support. However, grid voltage instability during high PV production led to inverter shutdowns, highlighting limitations in the infrastructure. This study emphasizes the importance of tariff strategies, environmental conditions, and voltage control when designing residential PV-BESS systems. Full article
(This article belongs to the Special Issue Design, Analysis and Operation of Renewable Energy Systems)
Show Figures

Figure 1

12 pages, 1486 KiB  
Proceeding Paper
Comparative Analysis Between Simulation Using Specialized Software for Photovoltaic Power Plant Design and Real-World Data from a Solar Power Plant
by Mincho Velkov and Stanimir Stefanov
Eng. Proc. 2025, 100(1), 64; https://doi.org/10.3390/engproc2025100064 - 31 Jul 2025
Viewed by 58
Abstract
This study presents a comparative analysis between simulated results obtained using PVSol Expert software and real operational data from a functioning photovoltaic power plant (PVPP) located in Plovdiv, Bulgaria. The primary objective is to evaluate the accuracy and practical applicability of simulation-based predictions [...] Read more.
This study presents a comparative analysis between simulated results obtained using PVSol Expert software and real operational data from a functioning photovoltaic power plant (PVPP) located in Plovdiv, Bulgaria. The primary objective is to evaluate the accuracy and practical applicability of simulation-based predictions compared to actual system performance under real-world climatic and geographical conditions. The analysis is based on a comprehensive dataset, including generated electricity, solar irradiance levels, ambient temperature, and system losses. These real measurements are systematically compared against a PVSol Expert simulation model constructed using identical input parameters—such as module orientation and tilt, number and type of panels, inverter specifications, and electrical configuration. The results provide insight into the reliability of simulation tools for design verification and performance forecasting in photovoltaic applications. Full article
Show Figures

Figure 1

24 pages, 9448 KiB  
Article
Distributed Online Voltage Control with Feedback Delays Under Coupled Constraints for Distribution Networks
by Jinxuan Liu, Yanjian Peng, Xiren Zhang, Zhihao Ning and Dingzhong Fan
Technologies 2025, 13(8), 327; https://doi.org/10.3390/technologies13080327 - 31 Jul 2025
Viewed by 175
Abstract
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of [...] Read more.
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of relying on centralized computation, the proposed method allows each inverter to make local decisions using real-time voltage measurements and delayed communication with neighboring PV nodes. To account for practical asynchronous communication and feedback delay, a Distributed Online Primal–Dual Push–Sum (DOPP) algorithm that integrates a fixed-step delay model into the push–sum coordination framework is developed. Through extensive case studies on a modified IEEE 123-bus system, it has been demonstrated that the proposed method maintains robust performance under both static and dynamic scenarios, even in the presence of fixed feedback delays. Specifically, in static scenarios, the proposed strategy rapidly eliminates voltage violations within 50–100 iterations, effectively regulating all nodal voltages into the acceptable range of [0.95, 1.05] p.u. even under feedback delays with a delay step of 10. In dynamic scenarios, the proposed strategy ensures 100% voltage compliance across all nodes, demonstrating superior voltage regulation and reactive power coordination performance over conventional droop and incremental control approaches. Full article
Show Figures

Figure 1

27 pages, 5196 KiB  
Article
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
by Kan Wang, Jiahui Mi, Hao Wang, Xiaolei Liu and Tingting Shi
Hydrogen 2025, 6(3), 52; https://doi.org/10.3390/hydrogen6030052 - 29 Jul 2025
Viewed by 319
Abstract
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical [...] Read more.
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25, 50, 100 mm), transient release duration, dispersion patterns, and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship, with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk, producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile, increased wind velocities (>10 m/s) accelerate hydrogen dilution, reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces, leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications. Full article
Show Figures

Figure 1

25 pages, 2495 KiB  
Article
Integration Strategies for Large-Scale Renewable Interconnections with Grid Forming and Grid Following Inverters, Capacitor Banks, and Harmonic Filters
by Soham Ghosh, Arpit Bohra, Sreejata Dutta and Saurav Verma
Energies 2025, 18(15), 3934; https://doi.org/10.3390/en18153934 - 23 Jul 2025
Viewed by 334
Abstract
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the [...] Read more.
The transition towards a power system characterized by a reduced presence of synchronous generators (SGs) and an increased reliance on inverter-based resources (IBRs), including wind, solar photovoltaics (PV), and battery storage, presents new operational challenges, particularly when these sources exceed 50–60% of the system’s demand. While current grid-following (GFL) IBRs, which are equipped with fast and rigid control systems, continue to dominate the inverter landscape, there has been a notable surge in research focused on grid-forming (GFM) inverters in recent years. This study conducts a comparative analysis of the practicality and control methodologies of GFM inverters relative to traditional GFL inverters from a system planning perspective. A comprehensive framework aimed at assisting system developers and consulting engineers in the grid-integration of wide-scale renewable energy sources (RESs), incorporating strategies for the deployment of inverters, capacitor banks, and harmonic filters, is proposed in this paper. The discussion includes an examination of the reactive power capabilities of the plant’s inverters and the provision of additional reactive power to ensure compliance with grid interconnection standards. Furthermore, the paper outlines a practical approach to assess the necessity for enhanced filtering measures to mitigate potential resonant conditions and achieve harmonic compliance at the installation site. The objective of this work is to offer useful guidelines and insights for the effective addition of RES into contemporary power systems. Full article
Show Figures

Figure 1

19 pages, 1406 KiB  
Article
A Comparative Study of Dimensionality Reduction Methods for Accurate and Efficient Inverter Fault Detection in Grid-Connected Solar Photovoltaic Systems
by Shahid Tufail and Arif I. Sarwat
Electronics 2025, 14(14), 2916; https://doi.org/10.3390/electronics14142916 - 21 Jul 2025
Viewed by 317
Abstract
The continuous, effective operation of grid-connected photovoltaic (GCPV) systems depends on dependable inverter failure detection. Early, precise fault diagnosis improves general system dependability, lowers maintenance costs, and saves downtime. Although computing efficiency remains a difficulty, particularly in resource-limited contexts, machine learning-based fault detection [...] Read more.
The continuous, effective operation of grid-connected photovoltaic (GCPV) systems depends on dependable inverter failure detection. Early, precise fault diagnosis improves general system dependability, lowers maintenance costs, and saves downtime. Although computing efficiency remains a difficulty, particularly in resource-limited contexts, machine learning-based fault detection presents interesting prospects in accuracy and responsiveness. By streamlining data complexity and allowing faster and more effective fault diagnosis, dimensionality reduction methods play vital role. Using dimensionality reduction and ML techniques, this work explores inverter fault detection in GCPV systems. Photovoltaic inverter operational data was normalized and preprocessed. In the next step, dimensionality reduction using Principal Component Analysis (PCA) and autoencoder-based feature extraction were explored. For ML training four classifiers which include Random Forest (RF), logistic regression (LR), decision tree (DT), and K-Nearest Neighbors (KNN) were used. Trained on the whole standardized dataset, the RF model routinely produced the greatest accuracy of 99.87%, so efficiently capturing complicated feature interactions but requiring large processing resources and time of 36.47sec. LR model showed reduction in accuracy, but very fast training time compared to other models. Further, PCA greatly lowered computing demands, especially improving inference speed for LR and KNN. High accuracy of 99.23% across all models was maintained by autoencoder-derived features. Full article
Show Figures

Figure 1

18 pages, 7477 KiB  
Article
A Three-Layer Sequential Model Predictive Current Control for NNPC Four-Level Inverters with Low Common-Mode Voltage
by Liyu Dai, Wujie Chao, Chaoping Deng, Junwei Huang, Yihan Wang, Minxin Lin and Tao Jin
Electronics 2025, 14(14), 2910; https://doi.org/10.3390/electronics14142910 - 21 Jul 2025
Viewed by 337
Abstract
The four-level nested neutral point clamped (4L-NNPC) inverter has recently become a promising solution for renewable energy generation, e.g., wind and photovoltaic power. The NNPC inverter can stabilize the flying capacitor (FC) voltages of each bridge through redundant switch states (RSSs). This paper [...] Read more.
The four-level nested neutral point clamped (4L-NNPC) inverter has recently become a promising solution for renewable energy generation, e.g., wind and photovoltaic power. The NNPC inverter can stabilize the flying capacitor (FC) voltages of each bridge through redundant switch states (RSSs). This paper presents an improved three-layer sequential model predictive control (3LS-MPC) method for 4L-NNPCs. This method eliminates weighting factors and removes the switch states that generate high common-mode voltage (CMV). Before selecting the optimal vector, we disable certain switch states which affect the FC voltages, continuing to deviate from the desired value. Then, adopting a two-stage optimal vector selection method, we select the optimal sector based on six specific vectors and choose the optimal vector from the seven vectors in the optimal sector. The feasibility of this method was verified in Matlab/Simulink and the prototype. The experimental results show that compared with classical FCS-MPC, the proposed 3LS-MPC method reduces the common-mode voltage and has better harmonic quality and more stable FCs voltages. Full article
Show Figures

Figure 1

16 pages, 2975 KiB  
Article
Control Strategy of Distributed Photovoltaic Storage Charging Pile Under Weak Grid
by Yan Zhang, Shuangting Xu, Yan Lin, Xiaoling Fang, Yang Wang and Jiaqi Duan
Processes 2025, 13(7), 2299; https://doi.org/10.3390/pr13072299 - 19 Jul 2025
Viewed by 330
Abstract
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance [...] Read more.
Distributed photovoltaic storage charging piles in remote rural areas can solve the problem of charging difficulties for new energy vehicles in the countryside, but these storage charging piles contain a large number of power electronic devices, and there is a risk of resonance in the system under weak grid conditions. Firstly, the topology of a photovoltaic storage charging pile is introduced, including a bidirectional DC/DC converter, unidirectional DC/DC converter, and single-phase grid-connected inverter. Then, the maximum power tracking control strategy based on improved conductance micro-increment is derived for a photovoltaic power generation system, and a constant voltage and constant current charge–discharge control strategy is derived for energy storage equipment. Additionally, a segmented reflective charging control strategy is introduced for charging piles, and the quasi-PR controller is introduced for single-phase grid-connected inverters. In addition, an improved second-order general integrator phase-locked loop (SOGI-PLL) based on feed-forward of the grid current is derived. Finally, a simulation model is built to verify the performance of the solar–storage charging pile and lay the technical groundwork for future integrated control strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 6850 KiB  
Article
Optimizing Energy Consumption in Public Institutions Using AI-Based Load Shifting and Renewable Integration
by Otilia Elena Dragomir, Florin Dragomir and Marius Păun
J. Sens. Actuator Netw. 2025, 14(4), 74; https://doi.org/10.3390/jsan14040074 - 15 Jul 2025
Viewed by 497
Abstract
This paper details the development and implementation of an intelligent energy efficiency system for an electrical grid that incorporates renewable energy sources, specifically photovoltaic systems. The system is applied in a small locality of approximately 8000 inhabitants and aims to optimize energy consumption [...] Read more.
This paper details the development and implementation of an intelligent energy efficiency system for an electrical grid that incorporates renewable energy sources, specifically photovoltaic systems. The system is applied in a small locality of approximately 8000 inhabitants and aims to optimize energy consumption in public institutions by scheduling electrical appliances during periods of surplus PV energy production. The proposed solution employs a hybrid neuro-fuzzy approach combined with scheduling techniques to intelligently shift loads and maximize the use of locally generated green energy. This enables appliances, particularly schedulable and schedulable non-interruptible ones, to operate during peak PV production hours, thereby minimizing reliance on the national grid and improving overall energy efficiency. This directly reduces the cost of electricity consumption from the national grid. Furthermore, a comprehensive power quality analysis covering variables including harmonic distortion and voltage stability is proposed. The results indicate that while photovoltaic systems, being switching devices, can introduce some harmonic distortion, particularly during peak inverter operation or transient operating regimes, and flicker can exceed standard limits during certain periods, the overall voltage quality is maintained if proper inverter controls and grid parameters are adhered to. The system also demonstrates potential for scalability and integration with energy storage systems for enhanced future performance. Full article
(This article belongs to the Section Network Services and Applications)
Show Figures

Figure 1

25 pages, 4188 KiB  
Article
Enhanced Charge Transport in Inverted Perovskite Solar Cells via Electrodeposited La-Modified NiOx Layers
by Lina Aristizábal-Duarte, Martín González-Hernández, Sergio E. Reyes, J. A. Ramírez-Rincón, Pablo Ortiz and María T. Cortés
Energies 2025, 18(14), 3590; https://doi.org/10.3390/en18143590 - 8 Jul 2025
Viewed by 487
Abstract
This work explored an electrochemical approach for synthesizing lanthanum-modified nickel oxide (NiOx:La) as a hole transport layer (HTL) in inverted perovskite solar cells (IPSCs). By varying the La3+ concentration, the chemical, charge transport, structural, and morphological properties of the NiO [...] Read more.
This work explored an electrochemical approach for synthesizing lanthanum-modified nickel oxide (NiOx:La) as a hole transport layer (HTL) in inverted perovskite solar cells (IPSCs). By varying the La3+ concentration, the chemical, charge transport, structural, and morphological properties of the NiOx:La film and the HTL/PVK interface were evaluated to enhance photovoltaic performance. X-ray photoelectron spectroscopy (XPS) confirmed La3+ incorporation, a higher Ni3+/Ni3+ ratio, and a valence band shift, improving p-type conductivity. Electrochemical impedance spectroscopy and Mott–Schottky analyses indicated that NiOx:La 0.5% exhibited the lowest resistance and the highest carrier density, correlating with higher recombination resistance. The NiOx:La 0.5% based cell achieved a PCE of 20.08%. XRD and SEM confirmed no significant changes in PVK structure, while photoluminescence extinction demonstrated improved charge extraction. After 50 days, this cell retained 80% of its initial PCE, whereas a pristine NiOx device retained 75%. Hyperspectral imaging revealed lower optical absorption loss and better homogeneity. These results highlight NiOx:La as a promising HTL for efficient and stable IPSCs. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

25 pages, 7875 KiB  
Article
A Comparative Study of Direct Power Control Strategies for STATCOM Using Three-Level and Five-Level Diode-Clamped Inverters
by Diyaa Mustaf Mohammed, Raaed Faleh Hassan, Naseer M. Yasin, Mohammed Alruwaili and Moustafa Ahmed Ibrahim
Energies 2025, 18(13), 3582; https://doi.org/10.3390/en18133582 - 7 Jul 2025
Cited by 1 | Viewed by 458
Abstract
For power electronic interfaces, Direct Power Control (DPC) has emerged as a leading control technique, especially in applications such as synchronous motors, induction motors, and other electric drives; renewable energy sources (such as photovoltaic inverters and wind turbines); and converters that are grid-connected, [...] Read more.
For power electronic interfaces, Direct Power Control (DPC) has emerged as a leading control technique, especially in applications such as synchronous motors, induction motors, and other electric drives; renewable energy sources (such as photovoltaic inverters and wind turbines); and converters that are grid-connected, such as Virtual Synchronous Generator (VSG) and Static Compensator (STATCOM) configurations. DPC accomplishes several significant goals by avoiding the inner current control loops and doing away with coordinating transformations. The application of STATCOM based on three- and five-level diode-clamped inverters is covered in this work. The study checks the abilities of DPC during power control adjustments during diverse grid operation scenarios while detailing how multilevel inverters affect system stability and power reliability. Proportional Integral (PI) controllers are used to control active and reactive power levels as part of the control approach. This study shows that combining DPC with Sinusoidal Pulse Width Modulation (SPWM) increases the system’s overall electromagnetic performance and control accuracy. The performance of STATCOM systems in power distribution and transient response under realistic operating conditions is assessed using simulation tools applied to three-level and five-level inverter topologies. In addition to providing improved voltage quality and accurate reactive power control, the five-level inverter structure surpasses other topologies by maintaining a total harmonic distortion (THD) below 5%, according to the main findings. The three-level inverter operates efficiently under typical grid conditions because of its straightforward design, which uses less processing power and computational complexity. Full article
Show Figures

Figure 1

18 pages, 8267 KiB  
Article
Discontinuous Multilevel Pulse Width Modulation Technique for Grid Voltage Quality Improvement and Inverter Loss Reduction in Photovoltaic Systems
by Juan-Ramon Heredia-Larrubia, Francisco M. Perez-Hidalgo, Antonio Ruiz-Gonzalez and Mario Jesus Meco-Gutierrez
Electronics 2025, 14(13), 2695; https://doi.org/10.3390/electronics14132695 - 3 Jul 2025
Cited by 1 | Viewed by 264
Abstract
In the last decade, countries have experienced increased solar radiation, leading to an increase in the use of solar photovoltaic (PV) systems to boost renewable energy generation. However, the high solar penetration into these systems can disrupt the normal operation of the distribution [...] Read more.
In the last decade, countries have experienced increased solar radiation, leading to an increase in the use of solar photovoltaic (PV) systems to boost renewable energy generation. However, the high solar penetration into these systems can disrupt the normal operation of the distribution grid. Thus, a major concern is the impact of these units on power quality indices. To improve these units, one approach is to design more efficient power inverters. This study introduces a pulse width modulation (PWM) technique for multilevel power inverters, employing a sine wave as the carrier wave and an amplitude over-modulated triangular wave as the modulator (PSTM-PWM). The proposed technique improves the waveform quality and increases the AC voltage output of the multilevel inverter compared with that from conventional PWM techniques. In addition, it ensures compliance with the EN50160 standard. These improvements are achieved with a lower modulation order than that used in traditional techniques, resulting in reduced losses in multilevel power inverters. The proposed approach is then implemented using a five-level cascaded H-bridge inverter. In addition, a comparative analysis of the efficiency of multilevel power inverters was performed, contrasting classical modulation techniques with the proposed approach for various modulation orders. The results demonstrate a significant improvement in both total harmonic distortion (THD) and power inverter efficiency. Full article
(This article belongs to the Special Issue Advances in Pulsed-Power and High-Power Electronics)
Show Figures

Figure 1

Back to TopTop