Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = photothermal interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2414 KiB  
Review
Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives
by Joe Rizkallah, Nicole Charbel, Abdallah Yassine, Amal El Masri, Chris Raffoul, Omar El Sardouk, Malak Ghezzawi, Therese Abou Nasr and Firas Kreidieh
Pharmaceutics 2025, 17(8), 1019; https://doi.org/10.3390/pharmaceutics17081019 - 6 Aug 2025
Abstract
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt [...] Read more.
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt and NF-κB signaling pathways, and by inducing mitochondrial apoptosis through reactive oxygen species generation and cytochrome c release. However, its clinical application is hindered by its systemic and hemolytic toxicity, rapid degradation in plasma, poor pharmacokinetics, and immunogenicity, necessitating the development of targeted delivery strategies to enable safe and effective treatment. Nanoparticle-based delivery systems have emerged as a promising strategy for overcoming these challenges, offering improved tumor targeting, reduced off-target effects, and enhanced stability. This review provides a comprehensive overview of the mechanisms through which melittin exerts its anticancer effects and evaluates the development of various melittin-loaded nanocarriers, including liposomes, polymeric nanoparticles, dendrimers, micelles, and inorganic systems. It also summarizes the preclinical evidence for melittin nanotherapy across a wide range of cancer types, highlighting both its cytotoxic and immunomodulatory effects. The potential of melittin nanoparticles to overcome multidrug resistance and synergize with chemotherapy, immunotherapy, photothermal therapy, and radiotherapy is discussed. Despite promising in vitro and in vivo findings, its clinical translation remains limited. Key barriers include toxicity, manufacturing scalability, regulatory approval, and the need for more extensive in vivo validation. A key future direction is the application of computational tools, such as physiologically based pharmacokinetic modeling and artificial-intelligence-based modeling, to streamline development and guide its clinical translation. Addressing these challenges through focused research and interdisciplinary collaboration will be essential to realizing the full therapeutic potential of melittin-based nanomedicines in oncology. Overall, this review synthesizes the findings from over 100 peer-reviewed studies published between 2008 and 2025, providing an up-to-date assessment of melittin-based nanomedicine strategies across diverse cancer types. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

16 pages, 8409 KiB  
Article
Imaging of Laser-Induced Thermal Convection and Conduction in Artificial Vitreous Humor
by Jack Pelzel, Reese Anderson, Darin J. Ulness and Krys Strand
Biophysica 2025, 5(3), 31; https://doi.org/10.3390/biophysica5030031 - 27 Jul 2025
Viewed by 174
Abstract
This study extends the application of photothermal spectroscopy to explore heat transfer dynamics in biological fluids, focusing on the examination of artificial vitreous humor (VH) models of human VH and an endogenous sample of cervine (deer) VH. The research integrates previously established methods [...] Read more.
This study extends the application of photothermal spectroscopy to explore heat transfer dynamics in biological fluids, focusing on the examination of artificial vitreous humor (VH) models of human VH and an endogenous sample of cervine (deer) VH. The research integrates previously established methods for analyzing thermal lensing through photothermal deflection. By visualizing convective and conductive heat transfer processes in the artificial components of human VH, one gains insights into the dynamic behavior of heat transfer in the VH. Relevance extends to clinical cases where pathology requires replacement of endogenous VH with an artificial VH substitute. Several VH substitutes identified in the literature were chosen for this study based on their physical properties and relative abundance in the VH. Individual component fluids, and mixtures of these components, were analyzed at various concentrations based on their physiological concentration ranges in the human VH as they varied with age, sex, and certain disease states. By way of comparison to endogenous biological VH, a sample of VH obtained from a female white-tailed deer eye was analyzed, enhancing the understanding of heat transfer in artificial components of the VH compared to endogenous VH. There is a vast array of ophthalmological procedures that utilize an external heat source interacting with endogenous or artificial VH. The data found in this study will progress the understanding of heat transfer within artificial VH components in comparison to endogenous VH and contribute to the advancement of certain ophthalmological procedures. Full article
(This article belongs to the Special Issue Biomedical Optics: 3rd Edition)
Show Figures

Figure 1

11 pages, 4206 KiB  
Article
Micro-Actuators with Light and Magnetism Dual-Control for Maneuverable Movements
by Yang Zhang, Tenglong Fu, Erming Tian and Jing Yi
Appl. Sci. 2025, 15(12), 6719; https://doi.org/10.3390/app15126719 - 16 Jun 2025
Viewed by 385
Abstract
Recent studies have highlighted the advantageous applications of the Marangoni effect in interfacial propulsion systems. Among these, optically driven Marangoni systems are particularly promising owing to their precise controllability and eco-friendly operation. Nevertheless, among these actuators, free movement still is limited by the [...] Read more.
Recent studies have highlighted the advantageous applications of the Marangoni effect in interfacial propulsion systems. Among these, optically driven Marangoni systems are particularly promising owing to their precise controllability and eco-friendly operation. Nevertheless, among these actuators, free movement still is limited by the interaction between light and actuators. In this work, we present a facile fabrication method for photothermal composites comprising polydimethylsiloxane (PDMS) matrices embedded with carbon nanoparticles and Fe3O4 microparticles to achieve a dual-control micro-actuator. Experimental characterization confirmed the superior photothermal conversion efficiency of the composite material. Symmetrical structural configurations were engineered to achieve long-range (>15 cm), directionally programmable, and rotational motion under continuous near-infrared laser irradiation (808 nm, 2 W/cm2), while exhibiting magnetically responsive capabilities for trajectory modulation. Furthermore, the inherent viscoelasticity, mechanical flexibility, and enhanced tensile strength (up to 1.8 MPa) of the composite material enable propulsion of macroscopic payloads exceeding 50 g. The fabrication process demonstrates cost-effective, scalable, and environmentally sustainable characteristics, requiring neither complex equipment nor organic solvents. This strategy provides a paradigm shift for designing Marangoni effect-based photothermal actuators, with transformative potential in autonomous surface robotics and microfluidics applications. Full article
Show Figures

Figure 1

20 pages, 6956 KiB  
Article
Chiral Growth of Gold Horns on Polyhedrons for SERS Identification of Enantiomers and Polarized Light-Induced Photothermal Sterilization
by Bowen Shang and Guijian Guan
Materials 2025, 18(11), 2627; https://doi.org/10.3390/ma18112627 - 4 Jun 2025
Viewed by 542
Abstract
The integration of chirality into nanomaterials holds significant potential for improving molecular recognition and biomedical technologies. In this work, we fabricated novel chiral horned gold nanostructures (HNS) by controlling the concentration of chiral ligands L-/D-cysteine (Cys). The unique three-dimensional morphology with horns-rotational arrangement [...] Read more.
The integration of chirality into nanomaterials holds significant potential for improving molecular recognition and biomedical technologies. In this work, we fabricated novel chiral horned gold nanostructures (HNS) by controlling the concentration of chiral ligands L-/D-cysteine (Cys). The unique three-dimensional morphology with horns-rotational arrangement enables synergistic optimization of chiral optical responses and surface-enhanced Raman scattering (SERS) performance. The proposed chiral HNSs can be used to recognize amino acid enantiomers, in which homochiral amino acid has distinct affinities to the chiral HNSs of homogeneous handedness. The 4-mercaptobenzoic acid (4-MPBA)-modified D-HNS demonstrates significantly enhanced targeting affinity for D-amino acids in the Escherichia coli (E. coli) cell wall, enabling successful amplification of SERS signals and advancing bacterial detection methodologies. By demonstrating the rotation-selective interaction between chiral HNSs and circularly polarized light (CPL), D-HNS exhibits excellent photothermal conversion efficiency under right-handed circularly polarized light (RCP) irradiation. This enables the synergistic combination of targeted physical disruption and photothermal sterilization, which leads to efficient eradication of E. coli. The D-HNS hydrogel composite system further expands the practical application of photothermal sterilization. Altogether, chiral HNSs have achieved SERS detection of bacteria and efficient polarization photothermal sterilization, which helps further develop applications based on chiral nanomaterials. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

15 pages, 6801 KiB  
Article
TiN-Only Metasurface Absorber for Solar Energy Harvesting
by Hongfu Liu, Jijun Li, Hua Yang, Junqiao Wang, Boxun Li, Han Zhang and Yougen Yi
Photonics 2025, 12(5), 443; https://doi.org/10.3390/photonics12050443 - 3 May 2025
Cited by 28 | Viewed by 899
Abstract
With global energy demand surging and traditional energy resources diminishing, the solar absorber featuring optimized design shows substantial potential in areas like power generation. This study proposes a solar absorber that is insensitive to wide-angle incidence and polarization. It has a cylindrical structure [...] Read more.
With global energy demand surging and traditional energy resources diminishing, the solar absorber featuring optimized design shows substantial potential in areas like power generation. This study proposes a solar absorber that is insensitive to wide-angle incidence and polarization. It has a cylindrical structure with square holes, which is constructed from titanium nitride (TiN). The calculation results indicate that, for plane waves, the average absorption of this solar absorber across the wavelength range of 300–2500 nm reaches 92.4%. Moreover, its absorption rate of the solar spectrum corresponding to AM1.5 reaches 94.8%. The analysis of the characteristics within the electric and magnetic field profiles indicates that the superior absorption properties arise from a cooperative resonance effect. This effect originates from the interaction among surface plasmon resonance, guided-mode resonance, and cavity resonance. In this study, the geometric parameters of the solar absorber’s structure significantly influence its absorption performance. Therefore, we optimized these parameters to obtain the optimal values. Even at a large incident angle, this absorber maintains high absorption performance and shows insensitivity to the polarization angle. The findings expected from this study are likely to be of considerable practical importance within the realm of solar photothermal conversion. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

14 pages, 4151 KiB  
Article
Emissive Pentacene-Loaded βcyclodextrin-Derived C-Nanodots Exhibit Red-Light Triggered Photothermal Effect
by Ludovica Maugeri, Giorgia Fangano, Ester Butera, Giuseppe Forte, Paolo Giuseppe Bonacci, Nicolò Musso, Francesco Ruffino, Loredana Ferreri, Grazia Maria Letizia Consoli and Salvatore Petralia
Pharmaceutics 2025, 17(5), 543; https://doi.org/10.3390/pharmaceutics17050543 - 22 Apr 2025
Viewed by 487
Abstract
Background: The design of multifunctional carbon based nanosystems exhibiting light-triggered hyperthermia, emission, low cytotoxicity, and drug delivery capability is of significant interest in the area of nanomaterials. In this study, we present red-emitting and photothermal carbon nanodots (Cdots-βCD/PTC) obtained by the encapsulation of [...] Read more.
Background: The design of multifunctional carbon based nanosystems exhibiting light-triggered hyperthermia, emission, low cytotoxicity, and drug delivery capability is of significant interest in the area of nanomaterials. In this study, we present red-emitting and photothermal carbon nanodots (Cdots-βCD/PTC) obtained by the encapsulation of hydrophobic pentacene (PTC) within Carbon nanodots (Cdots) synthesized from beta-cyclodextrin (βCD). Methods: The prepared nanostructures were investigated in terms of morphology, size, and optical properties, by absorption and emission optical spectroscopy, atomic force microscopy, dynamics light scattering, Z-potential, nuclear magnetic resonance, and infra-red spectroscopy. Molecular modelling simulation was used to investigate the geometry and the stabilization energy of the Cdots-βCD/PTC inclusion complex. Results: The as prepared Cdots-βCD/PTC demonstrated good water dispersibility, green-emission (ϕPL = 1.7%), and photothermal conversion (η = 17.4%) upon red-light excitation (680 nm). Furthermore, Cdots-βCD/PTC low cytotoxicity in the range 0.008 μg–0.8 μg and good interaction with albumin protein (KSV = 2.78 ± 0.28 mL mg−1) were demonstrated. Molecular simulation analysis revealed the formation of the inclusion complex with an energy of −5.32 kcal mol−1, where PTC is orthogonally oriented in the βCD cavity. Conclusions: The results presented in this work highlight the potential of Cdots-βCD/PTC as a novel versatile nanosystem for biomedical applications, such as bioimaging and site-specific photothermal treatment of cancer cells. Full article
Show Figures

Figure 1

19 pages, 5369 KiB  
Article
Interactions of Terahertz Photons with Phonons of Two-Dimensional van der Waals MoS2/WSe2/MoS2 Heterostructures and Thermal Responses
by Jingwen Huang, Ningsheng Xu, Yumao Wu, Xue Ran, Yue Fang, Hongjia Zhu, Weiliang Wang, Huanjun Chen and Shaozhi Deng
Materials 2025, 18(7), 1665; https://doi.org/10.3390/ma18071665 - 4 Apr 2025
Viewed by 871
Abstract
The interaction between terahertz (THz) photons and phonons of materials is crucial for the development of THz photonics. In this work, typical two-dimensional (2D) van der Waals (vdW) transition metal chalcogenide (TMD) layers and heterostructures are used in THz time-domain spectroscopy (TDS) measurements, [...] Read more.
The interaction between terahertz (THz) photons and phonons of materials is crucial for the development of THz photonics. In this work, typical two-dimensional (2D) van der Waals (vdW) transition metal chalcogenide (TMD) layers and heterostructures are used in THz time-domain spectroscopy (TDS) measurements, low-wavenumber Raman spectroscopy measurements, calculation of 2D materials’ phonon spectra, and theoretical analysis of thermal responses. The TDS results reveal strong absorption of THz photons in the frequency range of 2.5–10 THz. The low-wavenumber Raman spectra show the phonon vibration characteristics and are used to establish phonon energy bands. We also set up a computational simulation model for thermal responses. The temperature increases and distributions in the individual layers and their heterostructures are calculated, showing that THz photon absorption results in significant increases in temperature and differences in the heterostructures. These give rise to interesting photothermal effects, including the Seebeck effect, resulting in voltages across the heterostructures. These findings provide valuable guidance for the potential optoelectronic application of the 2D vdW heterostructures. Full article
(This article belongs to the Special Issue Terahertz Vibrational Spectroscopy in Advanced Materials)
Show Figures

Figure 1

21 pages, 6062 KiB  
Review
Employing Copper-Based Nanomaterials to Combat Multi-Drug-Resistant Bacteria
by Yujie Zhai, Zhuxiao Liang, Xijun Liu and Weiqing Zhang
Microorganisms 2025, 13(4), 708; https://doi.org/10.3390/microorganisms13040708 - 21 Mar 2025
Viewed by 1167
Abstract
The rise of multi-drug-resistant (MDR) bacteria poses a severe global threat to public health, necessitating the development of innovative therapeutic strategies to overcome these challenges. Copper-based nanomaterials have emerged as promising agents due to their intrinsic antibacterial properties, cost-effectiveness, and adaptability for multifunctional [...] Read more.
The rise of multi-drug-resistant (MDR) bacteria poses a severe global threat to public health, necessitating the development of innovative therapeutic strategies to overcome these challenges. Copper-based nanomaterials have emerged as promising agents due to their intrinsic antibacterial properties, cost-effectiveness, and adaptability for multifunctional therapeutic approaches. These materials exhibit exceptional potential in advanced antibacterial therapies, including chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT). Their unique physicochemical properties, such as controlled ion release, reactive oxygen species (ROS) generation, and tunable catalytic activity, enable them to target MDR bacteria effectively while minimizing off-target effects. This paper systematically reviews the mechanisms through which Cu-based nanomaterials enhance antibacterial efficiency and emphasizes their specific performance in the antibacterial field. Key factors influencing their antibacterial properties—such as electronic interactions, photothermal characteristics, size effects, ligand effects, single-atom doping, and geometric configurations—are analyzed in depth. By uncovering the potential of copper-based nanomaterials, this work aims to inspire innovative approaches that improve patient outcomes, reduce the burden of bacterial infections, and enhance global public health initiatives. Full article
(This article belongs to the Special Issue Novel Nanomaterials with Antimicrobial Activity)
Show Figures

Figure 1

33 pages, 12074 KiB  
Article
PVP as an Oxygen Vacancy-Inducing Agent in the Development of Black 45S5 Bioactive Glass Fibrous Scaffolds Doped with Zn and Mg Using A-HSBS
by Keila C. Costa, Maria Geórgia da S. Andrade, Rondinele N. de Araujo, Adegildo R. de Abreu Junior, Marianna V. Sobral, Juan Carlos R. Gonçalves, Bianca V. Sousa, Gelmires A. Neves and Romualdo R. Menezes
Materials 2025, 18(6), 1340; https://doi.org/10.3390/ma18061340 - 18 Mar 2025
Cited by 1 | Viewed by 730
Abstract
Currently, there is an increasing demand for advanced materials that can address the needs of tissue engineering and have the potential for use in treatments targeting tumor cells, such as black bioactive materials in photothermal therapy. Thus, 3D fibrous scaffolds of black 45S5 [...] Read more.
Currently, there is an increasing demand for advanced materials that can address the needs of tissue engineering and have the potential for use in treatments targeting tumor cells, such as black bioactive materials in photothermal therapy. Thus, 3D fibrous scaffolds of black 45S5 bioactive glass were produced using the air-heated solution blow spinning (A-HSBS) technique, with polyvinylpyrrolidone (PVP) serving as a spinning aid and an oxygen vacancy-inducing agent. Glass powder with the same composition was synthesized via the sol-gel route for comparison. The samples were characterized using thermogravimetric analysis, X-ray diffraction, FTIR spectroscopy, and scanning electron microscopy, along with in vitro tests using simulated body fluid (SBF), phosphate-buffered saline (PBS), and TRIS solution. The results showed that PVP enhanced oxygen vacancy formation and stabilized the scaffolds at 600 °C. Doping with Zn and Mg ions reduced crystallization while significantly increasing the fiber diameters. Scaffolds doped with Zn exhibited lower degradation rates, delayed apatite formation, and hindered ionic release. Conversely, Mg ions facilitated greater interaction with the medium and rapid apatite formation, completely covering the fibers. The scaffolds showed no cytotoxicity in the MTT assay at concentrations of up to 200 µg/mL for HaCat cells and 0.8 mg/mL for L929 cells. This study demonstrated the effectiveness of using PVP in the production of black bioactive glass scaffolds, highlighting their potential for bone regeneration. Full article
(This article belongs to the Special Issue Materials for Drug Delivery and Medical Engineering)
Show Figures

Figure 1

23 pages, 5699 KiB  
Article
A Light-Steered Self-Rowing Liquid Crystal Elastomer-Based Boat
by Zongsong Yuan, Jinze Zha and Junxiu Liu
Polymers 2025, 17(6), 711; https://doi.org/10.3390/polym17060711 - 7 Mar 2025
Viewed by 2214
Abstract
Conventional machines often face limitations due to complex controllers and bulky power supplies, which can hinder their reliability and operability. In contrast, self-excited movements can harness energy from a stable environment for self-regulation. In this study, we present a novel model of a [...] Read more.
Conventional machines often face limitations due to complex controllers and bulky power supplies, which can hinder their reliability and operability. In contrast, self-excited movements can harness energy from a stable environment for self-regulation. In this study, we present a novel model of a self-rowing boat inspired by paddle boats. This boat is powered by a liquid crystal elastomer (LCE) turntable that acts as a motor and operates under consistent illumination. We investigated the dynamic behavior of the self-rowing boat under uniform illumination by integrating the photothermal reaction theory of LCEs with a nonlinear dynamic framework. The primary equations were solved using the fourth-order Runge–Kutta method. Our findings reveal that the model exhibits two modes of motion under steady illumination: a static pattern and a self-rowing pattern. The transition between these modes is influenced by the interaction of the driving and friction torques generated by photothermal energy. This study quantitatively analyzes the fundamental conditions necessary for initiating a self-rowing motion and examines how various dimensionless parameters affect the speed of the self-rowing system. The proposed system offers several unique advantages, including a simple structure, easy control, and independence from electronic components. Furthermore, it has the potential for miniaturization and integration, enhancing its applicability in miniature machines and systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 3436 KiB  
Article
The Light-Fueled Stable Self-Rolling of a Liquid Crystal Elastomer-Based Wheel
by Jinze Zha, Kai Li and Junxiu Liu
Polymers 2025, 17(4), 436; https://doi.org/10.3390/polym17040436 - 7 Feb 2025
Viewed by 793
Abstract
Self-excited systems rely on stable external stimuli to initiate and sustain oscillations via internal processes. However, these oscillations can compromise system stability and increase friction, limiting their practical applications. To overcome this issue, we propose the light-fueled stable self-rolling of a liquid crystal [...] Read more.
Self-excited systems rely on stable external stimuli to initiate and sustain oscillations via internal processes. However, these oscillations can compromise system stability and increase friction, limiting their practical applications. To overcome this issue, we propose the light-fueled stable self-rolling of a liquid crystal elastomer (LCE)-based wheel. A photothermal response model based on an LCE was used to analyze the temperature distribution within the LCE rods. The driving torque for self-rolling is generated by the contraction resulting from the LCE’s photothermal response, which displaces the wheel’s center of mass. We then derived the equilibrium equations and identified the critical conditions for achieving stable self-rolling motion. Through the interaction between the temperature field and driving torque, the wheel achieves continuous and stable self-rolling by absorbing thermal energy to counteract damping dissipation. Numerical simulations revealed that the stable self-rolling velocity is influenced by several key parameters, including heat flux, the contraction coefficient, gravitational acceleration, the initial damping torque, and the rolling damping coefficient. The proposed LCE-based wheel enhances system stability and significantly reduces frictional losses. These characteristics make it a promising candidate for applications in autonomous drive systems, micro-transportation devices, and photothermal energy conversion technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

39 pages, 4703 KiB  
Article
Mechanisms of the Photomechanical Response in Thin-Film Dye-Doped Glassy Polymers
by Zoya Ghorbanishiadeh, Ankita Bhuyan, Bojun Zhou, Morteza Sheibani Karkhaneh and Mark G. Kuzyk
Polymers 2025, 17(2), 254; https://doi.org/10.3390/polym17020254 - 20 Jan 2025
Viewed by 1174
Abstract
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness [...] Read more.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating. While photo-isomerization of dopant molecules is commonly observed in dye-doped polymers, the shape changes of a molecule might not couple strongly to the host polymer through steric mechanical interactions, thus not contributing substantially to a macroscopic shape change. To gain insights into the effectiveness of such mechanical coupling, we directly probe the dopant molecules using dichroism measurements simultaneously while measuring the photomechanical response and find mechanical coupling to be small enough to make photothermal heating—mediated by the transfer of optical energy as heat to the polymer—the dominant mechanism. We also predict the fraction of light energy converted to mechanical energy using a model whose parameters are thermodynamic material properties that are measured with independent experiments. We find that in the thin-film geometry, these dye-doped glassy polymers are as efficient as any other material but their large Young’s modulus relative to other organic materials, such as liquid crystal elastomers, makes them suitable in applications that require mechanically strong materials. The mechanical properties and the photomechanical response of thin films are observed to be significantly different than in fibers, suggesting that the geometry of the material and surface effects might play an important role. Full article
(This article belongs to the Special Issue Advanced Stimuli-Responsive Polymer Composites)
Show Figures

Figure 1

20 pages, 5958 KiB  
Article
Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar–Thermal Energy Management
by Yang Meng, Jiangyu Zhang, Yuchan Li, Hui Jiang and Delong Xie
Molecules 2025, 30(1), 168; https://doi.org/10.3390/molecules30010168 - 4 Jan 2025
Viewed by 1259
Abstract
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. [...] Read more.
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry. The scaffold undergoes selective delignification, followed by a simple, room-temperature polydopamine (PDA) modification to deposit Ag nanoparticles (Ag NPs) and graft octadecyl chains, resulting in a superhydrophobic hierarchical structure. This superhydrophobicity plays a critical role in preventing PCM leakage and enhancing environmental adaptability, ensuring long-term stability under diverse conditions. Encapsulating stearic acid (SA) as the PCM, the CPCM exhibits exceptional stability, achieving a high latent heat of 175.5 J g−1 and an energy storage efficiency of 87.7%. In addition, the thermal conductivity of the CPCM is significantly enhanced along the longitudinal direction, a 2.1-fold increase compared to pure SA, due to the integration of Ag NPs and the unidirectional wood architecture. This synergy also drives efficient photothermal conversion via π-π stacking interactions of PDA and the surface plasmon effects of Ag NPs, enabling rapid solar-to-thermal energy conversion. Moreover, the CPCM demonstrates remarkable water resistance, self-cleaning ability, and long-term thermal reliability, retaining its functionality through 100 heating–cooling cycles. This multifunctional balsa-based CPCM represents a breakthrough in integrating phase-change behavior with advanced environmental adaptability, offering promising applications in solar–thermal energy systems. Full article
(This article belongs to the Special Issue Recent Advances in Superhydrophobic Materials and Their Application)
Show Figures

Graphical abstract

23 pages, 2695 KiB  
Review
Lipidic and Inorganic Nanoparticles for Targeted Glioblastoma Multiforme Therapy: Advances and Strategies
by Ewelina Musielak and Violetta Krajka-Kuźniak
Micro 2025, 5(1), 2; https://doi.org/10.3390/micro5010002 - 3 Jan 2025
Cited by 8 | Viewed by 2549
Abstract
Due to their biocompatibility, nontoxicity, and surface conjugation properties, nanomaterials are effective nanocarriers capable of encapsulating chemotherapeutic drugs and facilitating targeted delivery across the blood–brain barrier (BBB). Although research on nanoparticles for brain cancer treatment is still in its early stages, these systems [...] Read more.
Due to their biocompatibility, nontoxicity, and surface conjugation properties, nanomaterials are effective nanocarriers capable of encapsulating chemotherapeutic drugs and facilitating targeted delivery across the blood–brain barrier (BBB). Although research on nanoparticles for brain cancer treatment is still in its early stages, these systems hold great potential to revolutionize drug delivery. Glioblastoma multiforme (GBM) is one of the most common and lethal brain tumors, and its heterogeneous and aggressive nature complicates current treatments, which primarily rely on surgery. One of the significant obstacles to effective treatment is the poor penetration of drugs across the BBB. Moreover, GBM is often referred to as a “cold” tumor, characterized by an immunosuppressive tumor microenvironment (TME) and minimal immune cell infiltration, which limits the effectiveness of immunotherapies. Therefore, developing novel, more effective treatments is critical to improving the survival rate of GBM patients. Current strategies for enhancing treatment outcomes focus on the controlled, targeted delivery of chemotherapeutic agents to GBM cells across the BBB using nanoparticles. These therapies must be designed to engage specialized transport systems, allowing for efficient BBB penetration, improved therapeutic efficacy, and reduced systemic toxicity and drug degradation. Lipid and inorganic nanoparticles can enhance brain delivery while minimizing side effects. These formulations may include epitopes—small antigen fragments that bind directly to free antibodies, B cell receptors, or T cell receptors—that interact with transport systems and enable BBB crossing, thereby boosting therapeutic efficacy. Lipid-based nanoparticles (LNPs), such as liposomes, niosomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), are among the most promising delivery systems due to their unique properties, including their size, surface modification capabilities, and proven biosafety. Additionally, inorganic nanoparticles such as gold nanoparticles, mesoporous silica, superparamagnetic iron oxide nanoparticles, and dendrimers offer promising alternatives. Inorganic nanoparticles (INPs) can be easily engineered, and their surfaces can be modified with various elements or biological ligands to enhance BBB penetration, targeted delivery, and biocompatibility. Strategies such as surface engineering and functionalization have been employed to ensure biocompatibility and reduce cytotoxicity, making these nanoparticles safer for clinical applications. The use of INPs in GBM treatment has shown promise in improving the efficacy of traditional therapies like chemotherapy, radiotherapy, and gene therapy, as well as advancing newer treatment strategies, including immunotherapy, photothermal and photodynamic therapies, and magnetic hyperthermia. This article reviews the latest research on lipid and inorganic nanoparticles in treating GBM, focusing on active and passive targeting approaches. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

16 pages, 13677 KiB  
Article
Ab Initio Study of the Energetics, Electronic Properties, and Chlorine Migration Behavior of B2-FeAl (110) Surface by Microalloying
by Weiqian Chen, Peiqing La, Ruojiao Yin, Lei Wan, Yong Du and Yibing Zheng
Crystals 2025, 15(1), 46; https://doi.org/10.3390/cryst15010046 - 31 Dec 2024
Cited by 1 | Viewed by 812
Abstract
Ab initio methods based on DFT are utilized to study the formation energy, adsorption energy, and electronic properties of pure and X-doped (X = Mo, Ti, Ni) B2-FeAl (110) surface configurations. The effect of microalloying element doping on the corrosion resistance of B2-FeAl [...] Read more.
Ab initio methods based on DFT are utilized to study the formation energy, adsorption energy, and electronic properties of pure and X-doped (X = Mo, Ti, Ni) B2-FeAl (110) surface configurations. The effect of microalloying element doping on the corrosion resistance of B2-FeAl coating to molten chlorinated salts was evaluated by the CI-NEB method. Our results show that the Ni atom preferentially occupies the position of the Fe atom, while the Mo and Ti atoms preferentially replace the Al atom in the supercell. The Cl atom tends to be adsorbed at the SB-FeAl site on a pure B2-FeAl (110) surface. The adsorption energies of a single chlorine atom at stable adsorption sites of Ni-doped B2-FeAl (110) surface are small, which means that Ni doping reduces the possibility of corrosion. The PDOS diagrams confirm that for the chlorine adsorption model of Mo-doped B2-FeAl (110) surface, strong hybridization between Mo-d, Al-p, and Fe-d orbitals occur in the energy region of −4.5~−2 eV and 0.5~2.5 eV, while in the energy range of −7.0~4.8 eV, Cl-p interacts with Mo-d and Al-s, respectively, indicating that Cl bonds with Mo and Al atom, respectively. The addition of Mo and Ni hinders the diffusion of chlorine atoms on the surface, weakens the corrosion rate of B2-FeAl in chlorinated molten salt, and improves the corrosion resistance of B2-FeAl coating. However, Ti doping promotes the migration of chlorine atoms and increases the corrosion rate of B2-FeAl in chlorinated molten salt to a certain extent. The aim of this study is to reveal the corrosion resistance mechanism of FeAl coating from the atomic level and provide a theoretical basis for the application of chloride molten salt as an efficient heat storage medium in the field of photothermal. Full article
(This article belongs to the Special Issue Microstructure and Properties of Intermetallic Compounds)
Show Figures

Figure 1

Back to TopTop