Employing Copper-Based Nanomaterials to Combat Multi-Drug-Resistant Bacteria
Abstract
:1. Introduction
2. Key Antibacterial Targets: Membrane Integrity, ROS, Metabolism/Enzymes, DNA, and Signaling Pathways
2.1. Membrane Disruption
2.2. Generation of Reactive Oxygen Species (ROS)
2.3. Interference with Bacterial Metabolism and Enzyme Function
2.4. DNA Damage
2.5. Disruption of Bacterial Signaling (Quorum Sensing System)
3. Cu-Based Nanomaterials for Biocatalytic Antibacterial Applications
3.1. Cu Single-Atom Nanozymes
3.2. Cu Clusters
3.3. Copper Oxides and Chalcogenides
3.4. Copper Alloy
4. Looking Ahead
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular Mechanisms of Antibiotic Resistance Revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.S.; Wong, C.T.H.; Aung, T.T.; Lakshminarayanan, R.; Mehta, J.S.; Rauz, S.; McNally, A.; Kintses, B.; Peacock, S.J.; De La Fuente-Nunez, C.; et al. Antimicrobial Resistance: A Concise Update. Lancet Microbe 2025, 6, 100947. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.D.; Wright, G.D. Antibacterial Drug Discovery in the Resistance Era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef]
- Fan, X.; Gao, Y.; Yang, F.; Low, J.L.; Wang, L.; Paulus, B.; Wang, Y.; Trampuz, A.; Cheng, C.; Haag, R. A Copper Single-Atom Cascade Bionanocatalyst for Treating Multidrug-Resistant Bacterial Diabetic Ulcer. Adv. Funct. Mater. 2023, 33, 2301986. [Google Scholar] [CrossRef]
- Raoult, D.; Leone, M.; Roussel, Y.; Rolain, J.-M. Attributable Deaths Caused by Infections with Antibiotic-Resistant Bacteria in France. Lancet Infect. Dis. 2019, 19, 128–129. [Google Scholar] [CrossRef]
- Nishshankage, K.; Fernandez, A.B.; Pallewatta, S.; Buddhinie, P.K.C.; Vithanage, M. Current Trends in Antimicrobial Activities of Carbon Nanostructures: Potentiality and Status of Nanobiochar in Comparison to Carbon Dots. Biochar 2024, 6, 2. [Google Scholar] [CrossRef]
- Dzuvor, C.K.O.; Shen, H.-H.; Haritos, V.S.; He, L. Coassembled Multicomponent Protein Nanoparticles Elicit Enhanced Antibacterial Activity. ACS Nano 2024, 18, 4478–4494. [Google Scholar] [CrossRef]
- Huang, T.; Linklater, D.; Li, X.; Gamage, S.S.B.; Alkazemi, H.; Farrugia, B.; Heath, D.E.; O’Brien-Simpson, N.M.; O’Connor, A.J. One-Step Synthesis of Antimicrobial Polypeptide-Selenium Nanoparticles Exhibiting Broad-Spectrum Efficacy against Bacteria and Fungi with Superior Resistance Prevention. ACS Appl. Mater. Interfaces 2024, 16, 68996–69010. [Google Scholar] [CrossRef]
- Linklater, D.P.; Ivanova, E.P. Nanostructured Antibacterial Surfaces—What Can Be Achieved? Nano Today 2022, 43, 101404. [Google Scholar] [CrossRef]
- Imani, S.M.; Ladouceur, L.; Marshall, T.; Maclachlan, R.; Soleymani, L.; Didar, T.F. Antimicrobial Nanomaterials and Coatings: Current Mechanisms and Future Perspectives to Control the Spread of Viruses Including SARS-CoV-2. ACS Nano 2020, 14, 12341–12369. [Google Scholar] [CrossRef]
- Lan, F.; Aarons, J.; Shu, Y.; Zhou, X.; Jiao, H.; Wang, H.; Guan, Q.; Li, W. Anchoring Strategy for Highly Active Copper Nanoclusters in Hydrogenation of Renewable Biomass-Derived Compounds. Appl. Catal. B Environ. 2021, 299, 120651. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Li, X.; Gao, C.; Pu, Y.; Zhong, X.; Qian, J.; Zeng, M.; Chu, X.; Chen, Z.; et al. Embedding Reverse Electron Transfer between Stably Bare Cu Nanoparticles and Cation-vacancy CuWO4. Adv. Mater. 2024, 36, 2412570. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Cheng, J.; Ou, Y.; Deng, Y.; Zhao, Q. Copper I-II-Containing Composites and Coatings with High and Broad-Spectrum Antimicrobial Activity. Chem. Eng. J. 2024, 498, 155193. [Google Scholar] [CrossRef]
- Fathi, P.; Roslend, A.; Alafeef, M.; Moitra, P.; Dighe, K.; Esch, M.B.; Pan, D. In Situ Surface-directed Assembly of 2D Metal Nanoplatelets for Drug-free Treatment of Antibiotic-resistant Bacteria. Adv. Healthc. Mater. 2022, 11, 2102567. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Shan, J.; Jin, X.; Sun, W.; Cheng, L.; Chen, X.-L.; Wang, X. Nanoarchitectonics of in Situ Antibiotic-Releasing Acicular Nanozymes for Targeting and Inducing Cuproptosis-like Death to Eliminate Drug-Resistant Bacteria. ACS Nano 2024, 18, 24327–24349. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Song, H.; Lu, J.; Yuan, Z.; Guo, J. Copper Nanoparticles and Copper Ions Promote Horizontal Transfer of Plasmid-Mediated Multi-Antibiotic Resistance Genes across Bacterial Genera. Environ. Int. 2019, 129, 478–487. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; He, S.; Han, X.; Wang, A.; Zhang, F.; Deng, J.; Long, X.; Lin, J.; Feng, Y.; et al. Enhancing Antibiotic-Resistant Bacterial Infection Therapy: Self-Assembling Gemini Quaternary Ammonium-Functionalized Peptide Nanoassemblies with Multiple Antibacterial Mechanisms. ACS Nano 2025, 19, 6977–6992. [Google Scholar] [CrossRef]
- Wu, X.; Xing, Z.; Huang, H.; Ding, Z.; Gao, Y.; Adeli, M.; Ma, L.; Ma, T.; Cheng, C.; Zhao, C. Bacteriophage-like Nanobiocatalysts with Spiky Topography and Dual-Atom Sites for Treating Drug-Resistant Bacteria. ACS Nano 2024. [Google Scholar] [CrossRef]
- Zhang, H.; Li, D.; Ren, H.; Ma, Z.; Meng, S.; Qiao, Y.; Yang, J.; Wang, Y.; Zhou, Q.; Xie, L. A Bioinspired Virus-like Mechano–Bactericidal Nanomotor for Ocular Multidrug-resistant Bacterial Infection Treatment. Adv. Mater. 2025, 37, 2408221. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W.; Liu, L.; Gao, Y.; Zhang, C.; Chen, L.; Lv, F.; Xi, J.; Du, T.; Luo, L.; et al. Spin Polarization Induced by Atomic Strain of MBene Promotes the ·O2– Production for Groundwater Disinfection. Nat. Commun. 2025, 16, 197. [Google Scholar] [CrossRef]
- Fu, S.; Yi, X.; Li, Y.; Li, Y.; Qu, X.; Miao, P.; Xu, Y. Berberine and Chlorogenic Acid-Assembled Nanoparticles for Highly Efficient Inhibition of Multidrug-Resistant Staphylococcus Aureus. J. Hazard. Mater. 2024, 473, 134680. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ji, H.; Liu, C.; Bing, W.; Wang, Z.; Qu, X. A Multinuclear Metal Complex Based DNase-mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms. Angew. Chem. 2016, 128, 10890–10894. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, X.; Hou, S.; Zhang, L.; Liu, X.; Yang, G.; Wang, Y.; Hao, M.; Zhang, W.; Wang, J.; et al. A Light-Responsive Multilayered 3D Porous Ga2O3 Hydrogel for Photocatalytic Antibacterial Therapy Promoting Healing of MDR S. Aureus-Infected Wounds. J. Mater. Sci. Technol. 2025, 225, 188–202. [Google Scholar] [CrossRef]
- Zhu, J.; Xie, R.; Gao, R.; Zhao, Y.; Yodsanit, N.; Zhu, M.; Burger, J.C.; Ye, M.; Tong, Y.; Gong, S. Multimodal Nanoimmunotherapy Engages Neutrophils to Eliminate Staphylococcus Aureus Infections. Nat. Nanotechnol. 2024, 19, 1032–1043. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, W.; Zhong, L.; Yang, Y.; Chen, Y.; Hou, Q.; Yu, P.; Jiang, X. Phenylboronic Acid-Modified Gold Nanoclusters as a Nanoantibiotic to Treat Vancomycin-Resistant Enterococcus faecalis-Caused Infections. ACS Nano 2023, 17, 19685–19695. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, W.; Chen, W.; Li, B.; Li, G.; Deng, H.; Zhang, L.; Shao, C.; Shan, A. Self-Assembling Peptide with Dual Function of Cell Penetration and Antibacterial as a Nano Weapon to Combat Intracellular Bacteria. Sci. Adv. 2025, 11, eads3844. [Google Scholar] [CrossRef]
- Zou, P.; Huang, L.; Li, Y.; Liu, D.; Che, J.; Zhao, T.; Li, H.; Li, J.; Cui, Y.; Yang, G.; et al. Phase-separated Nano-antibiotics Enhanced Survival in Multidrug-resistant Escherichia coli Sepsis by Precise Periplasmic Ec DsbA Targeting. Adv. Mater. 2024, 36, 2407152. [Google Scholar] [CrossRef]
- Ye, Y.; Zheng, Q.; Wang, Z.; Wang, S.; Lu, Z.; Chu, Q.; Liu, Y.; Yao, K.; Wei, B.; Han, H.; et al. Metal-Phenolic Nanoparticles Enhance Low Temperature Photothermal Therapy for Bacterial Biofilm in Superficial Infections. J. Nanobiotechnol. 2024, 22, 713. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Xue, B.; Ruan, S.; Guo, J.; Huang, Y.; Geng, X.; Wang, D.; Zhou, C.; Zheng, J.; Yuan, Z. Supercharged Precision Killers: Genetically Engineered Biomimetic Drugs of Screened Metalloantibiotics against Acinetobacter baumanni. Sci. Adv. 2024, 10, eadk6331. [Google Scholar] [CrossRef]
- Fan, H.; Wong, K.I.; Ma, Y.; Li, M.; Li, H.; Wei, L.; Wang, S.; Yao, M.; Lu, M. Biodegradable Acid-responsive Nanocarrier for Enhanced Antibiotic Therapy against Drug-resistant Helicobacter pylori via Urease Inhibition. Adv. Funct. Mater. 2025, 35, 2412893. [Google Scholar] [CrossRef]
- Wang, T.; Teng, R.; Wu, M.; Ge, Z.; Liu, Y.; Yang, B.; Li, C.; Fan, Z.; Du, J. A Polypeptosome Spray to Heal Antibiotic-Resistant Bacteria-Infected Wound by Photocatalysis-Induced Metabolism-Interference. ACS Nano 2024, 18, 35620–35631. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Yang, M.; Yang, Y.; Tang, Z.; Guo, Y.; Zhou, J.; Gui, Y.; Huang, R.; Cai, J.; Yu, B.; et al. Metal Ion and Antibiotic Co-Loaded Nanoparticles for Combating Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis. ACS Nano 2025, 19, 5253–5268. [Google Scholar] [CrossRef]
- Luceri, A.; Francese, R.; Perero, S.; Lembo, D.; Ferraris, M.; Balagna, C. Antibacterial and Antiviral Activities of Silver Nanocluster/Silica Composite Coatings Deposited onto Air Filters. ACS Appl. Mater. Interfaces 2024, 16, 3955–3965. [Google Scholar] [CrossRef] [PubMed]
- Duarte Bernardino, C.; Lee, M.; Ren, Q.; Ruehle, B. Facile Spray-Coating of Antimicrobial Silica Nanoparticles for High-Touch Surface Protection. ACS Appl. Mater. Interfaces 2025, 17, 12507–12519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, W.; Mohammadniaei, M.; Zheng, T.; Zhang, Q.; Ashley, J.; Liu, S.; Sun, Y.; Tang, B.Z. Upregulating Aggregation-Induced-Emission Nanoparticles with Blood-Tumor-Barrier Permeability for Precise Photothermal Eradication of Brain Tumors and Induction of Local Immune Responses. Adv. Mater. 2021, 33, 2008802. [Google Scholar] [CrossRef]
- Crisan, M.C.; Teodora, M.; Lucian, M. Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications. Appl. Sci. 2021, 12, 141. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, S.; Xu, X.; Du, Q. Copper-Containing Nanoparticles: Mechanism of Antimicrobial Effect and Application in Dentistry-a Narrative Review. Front. Surg. 2022, 9, 905892. [Google Scholar] [CrossRef]
- Vincent, M.; Hartemann, P.; Engels-Deutsch, M. Antimicrobial Applications of Copper. Int. J. Hyg. Environ. Health 2016, 219, 585–591. [Google Scholar] [CrossRef]
- Manivasagan, P.; Thambi, T.; Joe, A.; Han, H.-W.; Seo, S.-H.; Jun Jeon, Y.; Conde, J.; Jang, E.-S. Progress in Nanomaterial-Based Synergistic Photothermal-Enhanced Chemodynamic Therapy in Combating Bacterial Infections. Prog. Mater. Sci. 2024, 144, 101292. [Google Scholar] [CrossRef]
- Huang, Y.; Wan, X.; Su, Q.; Zhao, C.; Cao, J.; Yue, Y.; Li, S.; Chen, X.; Yin, J.; Deng, Y.; et al. Ultrasound-Activated Piezo-Hot Carriers Trigger Tandem Catalysis Coordinating Cuproptosis-like Bacterial Death against Implant Infections. Nat. Commun. 2024, 15, 1643. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Q.; Zha, Z.; Zhu, D.; Zheng, L.; Shi, L.; Wei, X.; Lian, L.; Wu, K.; Cheng, L. Copper Single-Atom Catalysts with Photothermal Performance and Enhanced Nanozyme Activity for Bacteria-infected Wound Therapy. Bioact. Mater. 2021, 6, 4389–4401. [Google Scholar] [CrossRef]
- Mei, J.; Xu, D.; Wang, L.; Kong, L.; Liu, Q.; Li, Q.; Zhang, X.; Su, Z.; Hu, X.; Zhu, W.; et al. Biofilm Microenvironment-responsive Self-assembly Nanoreactors for All-stage Biofilm Associated Infection through Bacterial Cuproptosis-like Death and Macrophage Re-rousing. Adv. Mater. 2023, 35, 2303432. [Google Scholar] [CrossRef] [PubMed]
- Caselli, L.; Traini, T.; Micciulla, S.; Sebastiani, F.; Köhler, S.; Nielsen, E.M.; Diedrichsen, R.G.; Skoda, M.W.A.; Malmsten, M. Antimicrobial Peptide Coating of TiO2 Nanoparticles for Boosted Antimicrobial Effects. Adv. Funct. Mater. 2024, 34, 2405047. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Lee, D.H.; Nguyen, P.T.; Le, P.G.; Kim, M.I. Foldable Paper Microfluidic Device Based on Single Iron Site-Containing Hydrogel Nanozyme for Efficient Glucose Biosensing. Chem. Eng. J. 2023, 454, 140541. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Huang, C.; Xu, Y.; Xu, Y. Electrogenerated Copper Selenide with Positive Charge to Efficiently Capture and Combat Drug-Resistant Bacteria for Wound Healing. J. Colloid. Interface Sci. 2023, 634, 852–863. [Google Scholar] [CrossRef]
- Rotello, V.M. Nanomaterials for Fighting Multidrug-Resistant Biofilm Infections. BME Front. 2023, 4, 0017. [Google Scholar] [CrossRef]
- Phakatkar, A.H.; Yurkiv, V.; Ghildiyal, P.; Wang, Y.; Amiri, A.; Sorokina, L.V.; Zachariah, M.R.; Shokuhfar, T.; Shahbazian-Yassar, R. In Situ Microscopic Studies on the Interaction of Multi-Principal Element Nanoparticles and Bacteria. ACS Nano 2023, 17, 5880–5893. [Google Scholar] [CrossRef]
- Bennett, I.D.; Burns, J.R.; Ryadnov, M.G.; Howorka, S.; Pyne, A.L.B. Lipidated DNA Nanostructures Target and Rupture Bacterial Membranes. Small 2024, 20, 2207585. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, S.; Zhai, Y.; Huang, R.; Pei, S.; Lin, F.; Zhang, W. Ultrafine Ru Clusters with GOx Enable Glucose-Activated Cascaded Reaction for Bacterial-Infected Diabetic Wound Healing. Chem. Eng. J. 2024, 488, 150991. [Google Scholar] [CrossRef]
- Chen, S.; Huang, F.; Mao, L.; Zhang, Z.; Lin, H.; Yan, Q.; Lu, X.; Shi, J. High Fe-Loading Single-Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy. Nano-Micro Lett. 2025, 17, 32. [Google Scholar] [CrossRef]
- Lv, K.; Hou, M.; Kou, Y.; Yu, H.; Liu, M.; Zhao, T.; Shen, J.; Huang, X.; Zhang, J.; Mady, M.F.; et al. Black Titania Janus Mesoporous Nanomotor for Enhanced Tumor Penetration and Near-Infrared Light-Triggered Photodynamic Therapy. ACS Nano 2024, 18, 13910–13923. [Google Scholar] [CrossRef]
- Wang, R.; Shi, M.; Xu, F.; Qiu, Y.; Zhang, P.; Shen, K.; Zhao, Q.; Yu, J.; Zhang, Y. Graphdiyne-Modified TiO2 Nanofibers with Osteoinductive and Enhanced Photocatalytic Antibacterial Activities to Prevent Implant Infection. Nat. Commun. 2020, 11, 4465. [Google Scholar] [CrossRef]
- Li, Z.; Wang, E.; Zhang, Y.; Luo, R.; Gai, Y.; Ouyang, H.; Deng, Y.; Zhou, X.; Li, Z.; Feng, H. Antibacterial Ability of Black Titania in Dark: Via Oxygen Vacancies Mediated Electron Transfer. Nano Today 2023, 50, 101826. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Zhang, P.; Bi, J.; Nguyen, N.H.; Dang, Y.; Xu, Z.; Wang, H.; Ninan, N.; Bright, R.; Pham, T.; et al. Silver—gallium Nano-amalgamated Particles as a Novel, Biocompatible Solution for Antibacterial Coatings. Adv. Funct. Mater. 2024, 34, 2310539. [Google Scholar] [CrossRef]
- Pugazhendhi, A.S.; Neal, C.J.; Ta, K.M.; Molinari, M.; Kumar, U.; Wei, F.; Kolanthai, E.; Ady, A.; Drake, C.; Hughes, M.; et al. A Neoteric Antibacterial Ceria-Silver Nanozyme for Abiotic Surfaces. Biomaterials 2024, 307, 122527. [Google Scholar] [CrossRef]
- Guo, L.; Tang, Y.; Wang, L.; Zhou, R.; Wang, S.; Xu, H.; Yang, X.; Zhang, J.; Chen, J.; Xu, C.; et al. Synergetic Antibacterial Nanoparticles with Broad-Spectrum for Wound Healing and Lung Infection Therapy. Adv. Funct. Mater. 2024, 34, 2403188. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Zhong, Y.; Zhang, Q.; Wu, Y.; Huang, J.; Pang, K.; Zhou, Y.; Xiao, T.; Wu, Z.; et al. pH-Responsive and Nanoenzyme-Loaded Artificial Nanocells Relieved Osteomyelitis Efficiently by Synergistic Chemodynamic and Cuproptosis Therapy. Biomaterials 2025, 313, 122762. [Google Scholar] [CrossRef]
- Li, F.; Huang, K.; Chang, H.; Liang, Y.; Zhao, J.; Yang, S.; Liu, F. A Polydopamine Coated Nanoscale FeS Theranostic Platform for the Elimination of Drug-Resistant Bacteria via Photothermal-Enhanced Fenton Reaction. Acta Biomater. 2022, 150, 380–390. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.; Liu, J.; Lin, Y.; Jiao, J.; Chen, B.; Wang, W.; Wu, S.; Li, C. Photothermal Therapy with Regulated Nrf2/NF-κB Signaling Pathway for Treating Bacteria-Induced Periodontitis. Bioact. Mater. 2022, 9, 428–445. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Guo, Z.; Yan, J.; Bu, C.; Peng, C.; Li, C.; Mao, R.; Zhang, J.; Wang, Z.; Chen, S.; et al. Gastric Acid-responsive ROS Nanogenerators for Effective Treatment of Helicobacter pylori Infection without Disrupting Homeostasis of Intestinal Flora. Adv. Sci. 2023, 10, 2206957. [Google Scholar] [CrossRef]
- Sumner, E.R.; Shanmuganathan, A.; Sideri, T.C.; Willetts, S.A.; Houghton, J.E.; Avery, S.V. Oxidative Protein Damage Causes Chromium Toxicity in Yeast. Microbiology 2005, 151, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R.; Levine, R.L. Free Radical-Mediated Oxidation of Free Amino Acids and Amino Acid Residues in Proteins. Amino Acids 2003, 25, 207–218. [Google Scholar] [CrossRef]
- Anjem, A.; Imlay, J.A. Mononuclear Iron Enzymes Are Primary Targets of Hydrogen Peroxide Stress. J. Biol. Chem. 2012, 287, 15544–15556. [Google Scholar] [CrossRef]
- Macomber, L.; Imlay, J.A. The Iron-Sulfur Clusters of Dehydratases Are Primary Intracellular Targets of Copper Toxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 8344–8349. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.F.; Imlay, J.A. Silver(I), Mercury(II), Cadmium(II), and Zinc(II) Target Exposed Enzymic Iron-Sulfur Clusters When They Toxify Escherichia Coli. Appl. Environ. Microbiol. 2012, 78, 3614–3621. [Google Scholar] [CrossRef] [PubMed]
- Macomber, L.; Elsey, S.P.; Hausinger, R.P. Fructose-1,6-bisphosphate Aldolase (Class II) Is the Primary Site of Nickel Toxicity in Escherichia coli. Mol. Microbiol. 2011, 82, 1291–1300. [Google Scholar] [CrossRef]
- Ogunseitan, O.A.; Yang, S.; Ericson, J. Microbial D-Aminolevulinate Dehydratase as a Biosensor of Lead Bioavailability in Contaminated Environments. Soil Biol. Biochem. 2000, 32, 1899–1906. [Google Scholar] [CrossRef]
- Wang, Y.; Malkmes, M.J.; Jiang, C.; Wang, P.; Zhu, L.; Zhang, H.; Zhang, Y.; Huang, H.; Jiang, L. Antibacterial Mechanism and Transcriptome Analysis of Ultra-Small Gold Nanoclusters as an Alternative of Harmful Antibiotics against Gram-Negative Bacteria. J. Hazard. Mater. 2021, 416, 126236. [Google Scholar] [CrossRef]
- Zhu, J.; Wen, T.; Qu, S.; Li, Q.; Liu, B.; Zhou, W. G-quadruplex/Hemin DNAzyme-functionalized Silver Nanoclusters with Synergistic Antibacterial and Wound Healing Capabilities for Infected Wound Management. Small 2024, 20, 2307220. [Google Scholar] [CrossRef]
- Li, X.; Deng, F.; Zheng, R.; Liu, L.; Liu, Y.; Kong, R.; Chen, A.; Yu, X.; Li, S.; Cheng, H. Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy. Small 2021, 17, 2102470. [Google Scholar] [CrossRef]
- Ali, S.G.; Ansari, M.A.; Sajid Jamal, Q.M.; Khan, H.M.; Jalal, M.; Ahmad, H.; Mahdi, A.A. Antiquorum Sensing Activity of Silver Nanoparticles in P. Aeruginosa: An in Silico Study. In Silico Pharmacol. 2017, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Azimi, S.; Klementiev, A.D.; Whiteley, M.; Diggle, S.P. Bacterial Quorum Sensing during Infection. Annu. Rev. Microbiol. 2020, 74, 201–219. [Google Scholar] [CrossRef]
- Papenfort, K.; Bassler, B.L. Quorum Sensing Signal–Response Systems in Gram-Negative Bacteria. Nat. Rev. Microbiol. 2016, 14, 576–588. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Ibrahim, K.S.; Duraisamy, S.; Sivaji, I.; Kandasamy, S.; Kumarasamy, A.; Kumar, N.S. Antiquorum Sensing and Antibiofilm Potential of Biosynthesized Silver Nanoparticles of Myristica Fragrans Seed Extract against MDR Salmonella Enterica Serovar Typhi Isolates from Asymptomatic Typhoid Carriers and Typhoid Patients. Environ. Sci. Pollut. Res. 2020, 27, 2844–2856. [Google Scholar] [CrossRef] [PubMed]
- Swem, L.R.; Swem, D.L.; O’Loughlin, C.T.; Gatmaitan, R.; Zhao, B.; Ulrich, S.M.; Bassler, B.L. A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors and Controls Bacterial Pathogenicity. Mol. Cell 2009, 35, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; He, G.; Yang, Y.; Wang, N.; Zhang, Y.; Su, Y.; Zhao, F.; Wu, J.; Wang, L.; Lin, Y.; et al. Nanomaterials Regulate Bacterial Quorum Sensing: Applications, Mechanisms, and Optimization Strategies. Adv. Sci. 2024, 11, 2306070. [Google Scholar] [CrossRef]
- Gao, M.; Xu, B.; Huang, Y.; Cao, J.; Yang, L.; Liu, X.; Djumaev, A.; Wu, D.; Shoxiddinova, M.; Cai, X.; et al. Nano-enabled Quenching of Bacterial Communications for the Prevention of Biofilm Formation. Angew. Chem. 2023, 135, e202305485. [Google Scholar] [CrossRef]
- Singh, H.; Dan, A.; Prasanna Kumari, B.; Dave, H.; Parsaila, N.; Navale, A.; Darban, Z.; Yadav, I.; Goyal, P.; Misra, S.K.; et al. Copper-MOF and Tannic Acid-Empowered Composite Cryogel as a Skin Substitute for Accelerated Deep Wound Healing. Biomater. Adv. 2024, 164, 213983. [Google Scholar] [CrossRef]
- Tripathi, A.; Park, J.; Pho, T.; Champion, J.A. Dual Antibacterial Properties of Copper-coated Nanotextured Stainless Steel. Small 2024, 20, 2311546. [Google Scholar] [CrossRef]
- Duvanova, E.; Krasnou, I.; Krumme, A.; Mikli, V.; Radio, S.; Rozantsev, G.M.; Karpichev, Y. Development of Functional Composite Cu(II)-Polyoxometalate/PLA with Antimicrobial Properties. Molecules 2022, 27, 2510. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, X.; Liao, S.; Jiang, C.; Wang, L.; Tang, Y.; Wu, G.; Dai, G.; Chen, L. Quantitative Proteomics Reveals the Mechanism of Silver Nanoparticles against Multidrug-Resistant Pseudomonas aeruginosa Biofilms. J. Proteome Res. 2020, 19, 3109–3122. [Google Scholar] [CrossRef]
- Huang, L.; Pu, H.; Sun, D. Spatiotemporally Guided Single-atom Bionanozyme for Targeted Antibiofilm Treatment. Small 2024, 20, 2407747. [Google Scholar] [CrossRef] [PubMed]
- Panáček, D.; Belza, J.; Hochvaldová, L.; Baďura, Z.; Zoppellaro, G.; Šrejber, M.; Malina, T.; Šedajová, V.; Paloncýová, M.; Langer, R.; et al. Single Atom Engineered Antibiotics Overcome Bacterial Resistance. Adv. Mater. 2024, 2410652. [Google Scholar] [CrossRef]
- Ji, Y.; Yu, Z.; Yan, L.; Song, W. Research progress in preparation, modification and application of biomass-based single-atom catalysts. China Powder Sci. Technol. 2023, 29, 100–107. [Google Scholar]
- Liu, X.; Chen, M.; Ma, J.; Liang, J.; Li, C.; Chen, C.; He, H. Advances in the synthesis strategies of carbon-based single-atom catalysts and their electrochemical applications. China Powder Sci. Technol. 2024, 30, 35–45. [Google Scholar]
- Xu, B.; Wang, H.; Wang, W.; Gao, L.; Li, S.; Pan, X.; Wang, H.; Yang, H.; Meng, X.; Wu, Q.; et al. A Single-atom Nanozyme for Wound Disinfection Applications. Angew. Chem. 2019, 131, 4965–4970. [Google Scholar] [CrossRef]
- Zhai, Y.; Pei, S.; Qin, X.; Zhang, L.; Liu, X.; Cai, S.; Zhang, W. Ultralow Dose Iron-copper Bimetallic Single-atom Nanozymes for Efficient Photothermal-chemodynamic Antibacterial and Wound Healing. Adv. Healthc. Mater. 2025, 14, 2403920. [Google Scholar] [CrossRef]
- Ou, H.; Qian, Y.; Yuan, L.; Li, H.; Zhang, L.; Chen, S.; Zhou, M.; Yang, G.; Wang, D.; Wang, Y. Spatial Position Regulation of Cu Single Atom Site Realizes Efficient Nanozyme Photocatalytic Bactericidal Activity. Adv. Mater. 2023, 35, 2305077. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, R.; Zhao, H.; Qi, H.; Li, J.; Li, J.; Zhou, X.; Wang, A.; Fan, K.; Yan, X.; et al. Bioinspired Copper Single-atom Nanozyme as a Superoxide Dismutase-like Antioxidant for Sepsis Treatment. Exploration 2022, 2, 20210267. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Q.; Li, X.; Wu, X.; Yuan, T.; Yang, Y. Simulated Enzyme Activity and Efficient Antibacterial Activity of Copper-Doped Single-Atom Nanozymes. Langmuir 2022, 38, 6860–6870. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Zhang, J.; Han, N.; Ma, W.; Zhang, D.; Yao, M.; Wang, X.; Chen, Y. Peroxidase-like Active Cu-ZIF-8 with Rich Copper(I)-Nitrogen Sites for Excellent Antibacterial Performances toward Drug-Resistant Bacteria. Nano Res. 2024, 17, 7427–7435. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, L.; Liu, X.; Ye, C.; Zhu, P.; Tan, T.; Wang, D.; Wang, Y. Tuning Oxidant and Antioxidant Activities of Ceria by Anchoring Copper Single-Site for Antibacterial Application. Nat. Commun. 2024, 15, 1010. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-N.; Zhao, Y.; Liu, J.-J. Precisely Engineered Bionic Cu-Doped Titanium Dioxide Nanoarrays/Fluorine-Doped Tin Oxide with Excellent Antibacterial and Antifouling Properties. Tungsten 2024, 6, 522–528. [Google Scholar] [CrossRef]
- Dai, X.; Liu, H.; Cai, B.; Liu, Y.; Song, K.; Chen, J.; Ni, S.; Kong, L.; Zhan, J. A Bioinspired Atomically Thin Nanodot Supported Single-Atom Nanozyme for Antibacterial Textile Coating. Small 2023, 19, 2303901. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Ma, J.; Wang, Y.; Xie, L.; Yan, X.; Shi, L.; Li, Y.; Liu, Y. Single Copper Atom Photocatalyst Powers an Integrated Catalytic Cascade for Drug-Resistant Bacteria Elimination. ACS Nano 2023, 17, 2980–2991. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, X.; Li, Q.; Fu, Q.; Wang, B.; Li, B.; Wang, S.; Chang, Q.; Xiang, H.; Ye, C.; et al. Enhancing Radiation-Resistance and Peroxidase-like Activity of Single-Atom Copper Nanozyme via Local Coordination Manipulation. Nat. Commun. 2024, 15, 6174. [Google Scholar] [CrossRef]
- Wu, L.; Lin, H.; Cao, X.; Tong, Q.; Yang, F.; Miao, Y.; Ye, D.; Fan, Q. Bioorthogonal Cu Single-atom Nanozyme for Synergistic Nanocatalytic Therapy, Photothermal Therapy, Cuproptosis and Immunotherapy. Angew. Chem. 2024, 136, e202405937. [Google Scholar] [CrossRef]
- Xing, Y.; Xiu, J.; Zhou, M.; Xu, T.; Zhang, M.; Li, H.; Li, X.; Du, X.; Ma, T.; Zhang, X. Copper Single-Atom Jellyfish-like Nanomotors for Enhanced Tumor Penetration and Nanocatalytic Therapy. ACS Nano 2023, 17, 6789–6799. [Google Scholar] [CrossRef]
- Yu, Q.; Zhou, J.; Song, J.; Zhou, H.; Kang, B.; Chen, H.; Xu, J. A Cascade Nanoreactor of Metal-protein-polyphenol Capsule for Oxygen-mediated Synergistic Tumor Starvation and Chemodynamic Therapy. Small 2023, 19, 2206592. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H.; Xing, S.; Zhang, Y.; Shangguan, L.; Wei, C.; Peng, F.; Liu, X. Copper-Zinc Bimetallic Single-Atom Catalysts with Localized Surface Plasmon Resonance-Enhanced Photothermal Effect and Catalytic Activity for Melanoma Treatment and Wound-Healing. Adv. Sci. 2023, 10, 2207342. [Google Scholar] [CrossRef]
- Fu, Y.; Lu, K.; Hu, A.; Huang, J.; Guo, L.; Zhou, J.; Zhao, J.; Prezhdo, O.V.; Liu, M. dz2 Band Links Frontier Orbitals and Charge Carrier Dynamics of Single-Atom Cocatalyst-Aided Photocatalytic H2 Production. J. Am. Chem. Soc. 2023, 145, 28166–28175. [Google Scholar] [CrossRef]
- Liu, H.-X.; Gao, Z.; Yan, H.; Li, S.-Q.; Wang, W.-W.; Qin, X.; Sun, H.; Cui, J.; Jia, C.-J. Ensemble of Single-Atom Catalysis and Defect Engineering in Cu1/CeO2 Nanozymes for Tumor Therapy. Sci. China Chem. 2023, 66, 2590–2599. [Google Scholar] [CrossRef]
- Wen, S.; Zhang, C.; Liu, L.-J.; Wang, Z.; Sun, D.; He, J. Stable and Recyclable Copper Nanoclusters with Exposed Active Sites for Broad-scope Protosilylation in Open Air. Angew. Chem. Int. Ed. 2024, e202416851. [Google Scholar]
- Mu, W.-L.; Li, L.; Cong, X.-Z.; Chen, X.; Xia, P.; Liu, Q.; Wang, L.; Yan, J.; Liu, C. Hierarchical Assembly of High-Nuclearity Copper(I) Alkynide Nanoclusters: Highly Effective CO2 Electroreduction Catalyst toward Hydrocarbons. J. Am. Chem. Soc. 2024, 146, 28131–28140. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Sagadevan, A.; Murugesan, K.; Nastase, S.A.F.; Maity, B.; Bodiuzzaman, M.; Shkurenko, A.; Hedhili, M.N.; Yin, J.; Mohammed, O.F.; et al. Multiple Neighboring Active Sites of an Atomically Precise Copper Nanocluster Catalyst for Efficient Bond-Forming Reactions. Mater. Horiz. 2024, 11, 2494–2505. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Guo, C.; Qin, L.; Wang, L.; Qiao, L.; Chi, K.; Tang, Z. Atomically Precise Cu Nanoclusters: Recent Advances, Challenges, and Perspectives in Synthesis and Catalytic Applications. Nano-Micro Lett. 2025, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Han, B.-L.; Liu, Z.; Feng, L.; Wang, Z.; Gupta, R.K.; Aikens, C.M.; Tung, C.-H.; Sun, D. Polymorphism in Atomically Precise Cu23 Nanocluster Incorporating Tetrahedral [Cu4 ]0 Kernel. J. Am. Chem. Soc. 2020, 142, 5834–5841. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, C.; Han, B.; Wang, Z.; Liu, Y.; Xue, Q.; Tung, C.-H.; Sun, D. Assembly of Air-Stable Copper(I) Alkynide Nanoclusters Assisted by Tripodal Polydentate Phosphoramide Ligands. Nat. Synth. 2024, 3, 517–526. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, Q.-G.; Dong, J.-P.; Zhang, H.; Li, B.; Wang, R.; Zang, S.-Q. Assembly of Copper-Clusters into a Framework: Enhancing the Structural Stability and Photocatalytic HER Performance. Chem. Commun. 2023, 59, 3067–3070. [Google Scholar] [CrossRef]
- Jia, T.; Ai, J.; Li, X.; Zhang, M.-M.; Hua, Y.; Li, Y.-X.; Sun, C.-F.; Liu, F.; Huang, R.-W.; Wang, Z.; et al. Atomically Precise Copper Clusters with Dual Sites for Highly Chemoselective and Efficient Hydroboration. Nat. Commun. 2024, 15, 9551. [Google Scholar] [CrossRef]
- Joseph, M.; Rahman Pathiripparambath, M.S.; Thomas, V.; Tharayil, H.; Jayasree, R.S.; Nair, L.V. Porphyrin and Doxorubicin Mediated Nanoarchitectonics of Copper Clusters: A Bimodal Theranostics for Cancer Diagnosis and Treatment in Vitro. J. Mater. Chem. B 2024, 12, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, P.; Wang, T.; Li, J.; Yun, K.; Zhang, X.; Yang, X. A Copper Nanocluster-Based Multifunctional Nanoplatform for Augmented Chemo/Chemodynamic/Photodynamic Combination Therapy of Breast Cancer. Pharmacol. Res. 2023, 187, 106632. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, F.; Shi, L.; Tang, Q.; Li, B.; Wang, X.; Jin, Y. Nanotrains of DNA Copper Nanoclusters That Triggered a Cascade Fenton-like Reaction and Glutathione Depletion to Doubly Enhance Chemodynamic Therapy. ACS Appl. Mater. Interfaces 2022, 14, 37280–37290. [Google Scholar] [CrossRef]
- Xiong, J.; Wu, M.; Yao, L.-Y. Copper(I) Cluster of Aggregation-Induced Emission and X-Ray Scintillator Characteristic. Chem. Res. Chin. Univ. 2024, 40, 887–893. [Google Scholar] [CrossRef]
- Sharma, N.; Mohammad, W.; Le Guével, X.; Shanavas, A. Gold Nanoclusters as High Resolution NIR-II Theranostic Agents. Chem. Biomed. Imaging 2024, 2, 462–480. [Google Scholar] [CrossRef]
- Jia, T.; Guan, Z.-J.; Zhang, C.; Zhu, X.-Z.; Chen, Y.-X.; Zhang, Q.; Yang, Y.; Sun, D. Eight-Electron Superatomic Cu31 Nanocluster with Chiral Kernel and NIR-II Emission. J. Am. Chem. Soc. 2023, 145, 10355–10363. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Shu, Q.; Xu, C.; Zheng, Q.; Guo, Z.; Wang, C.; Hao, Z.; Liu, X.; Wang, G.; et al. Copper Clusters: An Effective Antibacterial for Eradicating Multidrug-Resistant Bacterial Infection In Vitro and In Vivo. Adv. Funct. Mater. 2021, 31, 2008720. [Google Scholar] [CrossRef]
- Akhtar, N.; Choi, C.; Ateeq, M.; Fazil, P.; Shah, N.S.; Khan, J.A.; Al-Sehemi, A.G.; Zada, A.; Ali Shah, M.I.; Ikram, R.; et al. Visible Light Active CdS/CuO Nanocomposites for Photocatalytic Degradation of Ciprofloxacin, H2 Production and Antimicrobial Activity. Chem. Eng. J. 2025, 507, 160336. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, X.; Zhao, Z.; Sun, S.; Cheng, W.; Yu, H.; Chang, X.; Wang, B. CuO Nanozymes Catalyze Cysteine and Glutathione Depletion Induced Ferroptosis and Cuproptosis for Synergistic Tumor Therapy. Small 2024, 20, 2400326. [Google Scholar] [CrossRef]
- Gao, X.; Wei, M.; Ma, D.; Yang, X.; Zhang, Y.; Zhou, X.; Li, L.; Deng, Y.; Yang, W. Engineering of a Hollow-structured Cu2−XS Nano-homojunction Platform for near Infrared-triggered Infected Wound Healing and Cancer Therapy. Adv. Funct. Mater. 2021, 31, 2106700. [Google Scholar] [CrossRef]
- Chen, X.; Huang, N.; Wang, D.; Zhang, M.; Deng, X.; Guo, F.; Yi, B.; Yuan, C.; Zhou, Q. Sulfated Chitosan-Modified CuS Nanocluster: A Versatile Nanoformulation for Simultaneous Antibacterial and Bone Regenerative Therapy in Periodontitis. ACS Nano 2024, 18, 14312–14326. [Google Scholar] [CrossRef]
- Li, L.; Xie, Y.; Wang, J.; Sun, Q.; Gao, M.; Li, C. Biofilm Microenvironment-Activated Multimodal Therapy Nanoplatform for Effective Anti-Bacterial Treatment and Wound Healing. Acta Biomater. 2024, 183, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; He, D.; Ge, X.; Lu, Y.; Chai, Y.; Zhang, Y.; Mao, Z.; Luo, G.; Deng, J.; Zhang, Y. Construction of Heparin-Based Hydrogel Incorporated with Cu5.4O Ultrasmall Nanozymes for Wound Healing and Inflammation Inhibition. Bioact. Mater. 2021, 6, 3109–3124. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Qiu, Y.; Lin, M.; Cui, K.; Chen, G.; Chen, Y.; Fan, C.; Zhang, Y.; Xu, L.; Chen, H.; et al. CuS Nanoparticles as a Photodynamic Nanoswitch for Abrogating Bypass Signaling to Overcome Gefitinib Resistance. Nano Lett. 2019, 19, 3344–3352. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, L.; Qiu, Y.; Liu, X.; Zhang, J.; Gao, Y.; Ge, L. Hollow Cubic CuSe@CdS with Tunable Size for Plasmon-Induced Vis-NIR Driven Photocatalytic Properties. Nanoscale 2024, 16, 8151–8161. [Google Scholar] [CrossRef]
- Wu, W.; Pu, Y.; Gao, S.; Shen, Y.; Zhou, M.; Yao, H.; Shi, J. Bacterial Metabolism-Initiated Nanocatalytic Tumor Immunotherapy. Nano-Micro Lett. 2022, 14, 220. [Google Scholar] [CrossRef]
- Jia, P.; Zou, Y.; Jiang, J. S-nitrosylated CuS Hybrid Hydrogel Patches with Robust Antibacterial and Repair-promoting Activity for Infected Wound Healing. Small 2024, 20, 2307629. [Google Scholar] [CrossRef]
- Liu, J.; Yu, B.; Rong, M.; Sun, W.; Lu, L. A New Strategy to Fight Tumor Heterogeneity: Integrating Metal-Defect Active Centers within NADH Oxidase Nanozymes. Nano Today 2024, 54, 102113. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Ren, L.; Shen, M.; Yang, K. Study on Antibacterial Performance of Cu-Bearing Cobalt-Based Alloy. Mater. Lett. 2014, 129, 88–90. [Google Scholar] [CrossRef]
- Ning, C.; Wang, X.; Li, L.; Zhu, Y.; Li, M.; Yu, P.; Zhou, L.; Zhou, Z.; Chen, J.; Tan, G.; et al. Concentration Ranges of Antibacterial Cations for Showing the Highest Antibacterial Efficacy but the Least Cytotoxicity against Mammalian Cells: Implications for a New Antibacterial Mechanism. Chem. Res. Toxicol. 2015, 28, 1815–1822. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Li, M.; Yu, P.; Chu, X.; Li, L.; Tan, G.; Wang, Y.; Chen, X.; Zhang, Y.; et al. The Synergistic Antibacterial Activity and Mechanism of Multicomponent Metal Ions-Containing Aqueous Solutions against Staphylococcus Aureus. J. Inorg. Biochem. 2016, 163, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, G.; Li, H.; Yang, L.; Wang, X.; Qin, G.; Zhang, E. Anti-Bacterium Influenced Corrosion Effect of Antibacterial Ti-3Cu Alloy in Staphylococcus aureus Suspension for Biomedical Application. Mater. Sci. Eng. C 2019, 94, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yang, L.; Zhang, L.; Han, Y.; Lu, Z.; Qin, G.; Zhang, E. Effect of Nano/Micro-Ag Compound Particles on the Bio-Corrosion, Antibacterial Properties and Cell Biocompatibility of Ti-Ag Alloys. Mater. Sci. Eng. C 2017, 75, 906–917. [Google Scholar] [CrossRef]
- Liu, R.; Tang, Y.; Zeng, L.; Zhao, Y.; Ma, Z.; Sun, Z.; Xiang, L.; Ren, L.; Yang, K. In Vitro and in Vivo Studies of Anti-Bacterial Copper-Bearing Titanium Alloy for Dental Application. Dent. Mater. 2018, 34, 1112–1126. [Google Scholar] [CrossRef] [PubMed]
- Lock, J.Y.; Wyatt, E.; Upadhyayula, S.; Whall, A.; Nuñez, V.; Vullev, V.I.; Liu, H. Degradation and Antibacterial Properties of Magnesium Alloys in Artificial Urine for Potential Resorbable Ureteral Stent Applications. J. Biomed. Mater. Res. 2014, 102, 781–792. [Google Scholar] [CrossRef]
- Padan, E.; Bibi, E.; Ito, M.; Krulwich, T.A. Alkaline pH Homeostasis in Bacteria: New Insights. Biochim. Biophys. Acta (BBA)—Biomembr. 2005, 1717, 67–88. [Google Scholar] [CrossRef]
- Burne, R.A.; Marquis, R.E. Alkali Production by Oral Bacteria and Protection against Dental Caries. FEMS Microbiol. Lett. 2000, 193, 1–6. [Google Scholar] [CrossRef]
- Reece, S.Y.; Nocera, D.G. Proton-Coupled Electron Transfer in Biology: Results from Synergistic Studies in Natural and Model Systems. Annu. Rev. Biochem. 2009, 78, 673–699. [Google Scholar] [CrossRef]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Xia, Z.; Huang, X.; Liu, J.; Dai, W.; Luo, L.; Jiang, Z.; Gong, S.; Zhao, Y.; Li, Z. Designing Ni2MnSn Heusler Magnetic Nanoprecipitate in Copper Alloy for Increased Strength and Electromagnetic Shielding. Nat. Commun. 2024, 15, 10494. [Google Scholar] [CrossRef]
- Qin, S.; Sun, G.; Mao, X.; Zhang, X.; Zhou, B.; Li, M.; Chang, Y.; Zhang, Y.; Wang, L.; Li, M. Ultrafine-Grained Copper Alloy with Remarkable Improvement in Strength and Thermal Stability at High Temperatures. Mater. Sci. Eng. A 2024, 908, 146763. [Google Scholar] [CrossRef]
- Ciliveri, S.; Bandyopadhyay, A. Additively Manufactured SiO2 and Cu-Added Ti Implants for Synergistic Enhancement of Bone Formation and Antibacterial Efficacy. ACS Appl. Mater. Interfaces 2024, 16, 3106–3115. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Xie, G.; Wu, Y.; Chen, C. Studies on Thermal Stability, Softening Behavior and Mechanism of an ADS Copper Alloy at Elevated Temperatures. J. Mater. Sci. Technol. 2024, 186, 79–90. [Google Scholar] [CrossRef]
- Ke, J.G.; Liu, R.; Xie, Z.M.; Zhang, L.C.; Wang, X.P.; Fang, Q.F.; Liu, C.S.; Wu, X.B. Ultrahigh Strength, Thermal Stability and High Thermal Conductivity in Hierarchical Nanostructured Cu-W Alloy. Acta Mater. 2024, 264, 119547. [Google Scholar] [CrossRef]
- Mahmoudi, P.; Akbarpour, M.R.; Lakeh, H.B.; Jing, F.; Hadidi, M.R.; Akhavan, B. Antibacterial Ti–Cu Implants: A Critical Review on Mechanisms of Action. Mater. Today Bio 2022, 17, 100447. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Chen, L.; Gong, F.; Yang, X.; Han, Z.; Wang, Y.; Ge, J.; Gao, X.; Li, Y.; Zhong, X.; et al. PtCu Nanosonosensitizers with Inflammatory Microenvironment Regulation for Enhanced Sonodynamic Bacterial Elimination and Tissue Repair. Adv. Funct. Mater. 2023, 33, 2212489. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Su, L.; Wang, M.; Jiang, Y.; Gong, S.; Xiao, Z.; Li, Z. The Electrochemical Corrosion Behavior and Antibacterial Properties of Cu-xFe Alloy. J. Mater. Res. Technol. 2024, 33, 698–713. [Google Scholar] [CrossRef]
- Ju, J.; Zan, R.; Shen, Z.; Wang, C.; Peng, P.; Wang, J.; Sun, B.; Xiao, B.; Li, Q.; Liu, S.; et al. Remarkable Bioactivity, Bio-Tribological, Antibacterial, and Anti-Corrosion Properties in a Ti-6Al-4V-xCu Alloy by Laser Powder Bed Fusion for Superior Biomedical Implant Applications. Chem. Eng. J. 2023, 471, 144656. [Google Scholar] [CrossRef]
Nanozymes | Antimicrobial Mechanism | Pathogen | Ref. |
---|---|---|---|
(WA)3GQA8C | Membrane disruption | MRSA | [17] |
FeOMo6@WOx | Generation of ROS | MRSA | [18] |
VMSNT | Membrane disruption | MRSA | [19] |
In2S3/MBene | Generation of ROS | MRSA | [20] |
BBR/CGA | Membrane disruption | S. aureus MRSA | [21] |
DMAE | DNA damage | MRSA | [22] |
CuGA-VAN | Disruption to bacterial signaling | E.coli MRSA | [15] |
Ga2O3 NPs | Generation of ROS | MDR E. coli MDR S. aureus | [23] |
Hb-Naf@RBCM NPs | Generation of ROS | MRSA | [24] |
Au44(MBA)18 | Membrane disruption DNA damage | VRE | [25] |
F3FT N3FT | Membrane disruption Generation of ROS | Clinically resistant bacteria | [26] |
NCefoTs | Membrane disruption Inhibition of enzyme activity | MDR E. coli | [27] |
E–Au NPs | Membrane disruption Generation of ROS | MRSA | [28] |
ZnBq/Ce6 @ZIF-8@OMV | Membrane disruption | A. baumannii | [29] |
CAMO | Inhibition of enzyme activity | H. pylori | [30] |
AP@Bi2S3 | Membrane disruption Interference with bacterial metabolism | E. coli MRSA | [31] |
Man-Zn2+/Van NPs | Membrane disruption Interference with bacterial metabolism | MRSA | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Liang, Z.; Liu, X.; Zhang, W. Employing Copper-Based Nanomaterials to Combat Multi-Drug-Resistant Bacteria. Microorganisms 2025, 13, 708. https://doi.org/10.3390/microorganisms13040708
Zhai Y, Liang Z, Liu X, Zhang W. Employing Copper-Based Nanomaterials to Combat Multi-Drug-Resistant Bacteria. Microorganisms. 2025; 13(4):708. https://doi.org/10.3390/microorganisms13040708
Chicago/Turabian StyleZhai, Yujie, Zhuxiao Liang, Xijun Liu, and Weiqing Zhang. 2025. "Employing Copper-Based Nanomaterials to Combat Multi-Drug-Resistant Bacteria" Microorganisms 13, no. 4: 708. https://doi.org/10.3390/microorganisms13040708
APA StyleZhai, Y., Liang, Z., Liu, X., & Zhang, W. (2025). Employing Copper-Based Nanomaterials to Combat Multi-Drug-Resistant Bacteria. Microorganisms, 13(4), 708. https://doi.org/10.3390/microorganisms13040708