Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = photolysis coefficients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8487 KiB  
Article
A Study on the Formation Reactions and Conversion Mechanisms of HONO and HNO3 in the Atmosphere of Daejeon, Korea
by Kyoungchan Kim, Chunsang Lee, Dayeong Choi, Sangwoo Han, Jiwon Eom and Jinseok Han
Atmosphere 2024, 15(3), 267; https://doi.org/10.3390/atmos15030267 - 23 Feb 2024
Cited by 5 | Viewed by 2701
Abstract
Nitrogen oxides (NOX) in the atmosphere cause oxidation reactions with photochemical radicals and volatile organic compounds, leading to the accumulation of ozone (O3). NOX constitutes a significant portion of the NOy composition, with nitrous acid (HONO) and [...] Read more.
Nitrogen oxides (NOX) in the atmosphere cause oxidation reactions with photochemical radicals and volatile organic compounds, leading to the accumulation of ozone (O3). NOX constitutes a significant portion of the NOy composition, with nitrous acid (HONO) and nitric acid (HNO3) following. HONO plays a crucial role in the reaction cycle of NOX and hydrogen oxides. The majority of HNO3 reduction mechanisms result from aerosolization through heterogeneous reactions, having adverse effects on humans and plants by increasing secondary aerosol concentrations in the atmosphere. The investigation of the formation and conversion mechanisms of HONO and HNO3 is important; however, research in this area is currently lacking. In this study, we observed HONO, HNO3, and their precursor gases were observed in the atmosphere using parallel-plate diffusion scrubber-ion chromatography. A 0-D box model simulated the compositional distribution of NOy in the atmosphere. The formation reactions and conversion mechanisms of HONO and HNO3 were quantified using reaction equations and reaction coefficients. Among the various mechanisms, dominant mechanisms were identified, suggesting their importance. According to the calculation results, the produce of HONO was predominantly attributed to heterogeneous reactions, excluding an unknown source. The sink processes were mainly governed by photolysis during daytime and reactions with OH radicals during nighttime. HNO3 showed dominance in its production from N2O5, and in its conversion mechanisms primarily involving aerosolization and deposition. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

16 pages, 4776 KiB  
Article
Evaluation of Nitrogen Oxide Reduction Performance in Permeable Concrete Surfaces Treated with a TiO2 Photocatalyst
by Hyeok-jung Kim and Kinam Hong
Materials 2023, 16(16), 5512; https://doi.org/10.3390/ma16165512 - 8 Aug 2023
Cited by 6 | Viewed by 2176
Abstract
Fine dust, recently classified as a carcinogen, has raised concerns about the health effects of air pollution. Vehicle emissions, particularly nitrogen oxide (NOx), contribute to ultrafine dust formation as a fine dust precursor. A photocatalyst, such as titanium dioxide (TiO2 [...] Read more.
Fine dust, recently classified as a carcinogen, has raised concerns about the health effects of air pollution. Vehicle emissions, particularly nitrogen oxide (NOx), contribute to ultrafine dust formation as a fine dust precursor. A photocatalyst, such as titanium dioxide (TiO2), is a material that causes a catalytic reaction when exposed to light, has exceptional characteristics such as decomposition of pollutants, and can be used permanently. This study aimed to investigate NOx reduction performance by developing ecofriendly permeable concrete with photocatalytic treatment to reduce fine dust generated from road mobile pollution sources. Permeable concrete specimens containing an activated loess and zeolite admixture were prepared and subjected to mechanical and durability tests. All specimens, including the control (CTRL) and admixture, met quality standard SPS-F-KSPIC-001-2006 for road pavement. Slip resistance and permeability coefficient also satisfied the standards, while freeze–thaw evaluation criteria were met only by CTRL and A1Z1 specimens. NOx reduction performance of the permeable concrete treated with TiO2 photocatalyst was assessed using ISO standard and tank chambers. NOx reduction efficiency of up to 77.5% was confirmed in the permeable concrete specimen with TiO2 content of 7.5%. Nitrate concentration measurements indirectly confirmed photolysis of nitrogen oxide. Incorporating TiO2 in construction materials such as roads and sidewalks can improve the atmospheric environment for pedestrians near roads by reducing NOx levels through photocatalysis. Full article
Show Figures

Figure 1

15 pages, 1399 KiB  
Article
A Stability-Indicating Assay for Tetrahydrocurcumin-Diglutaric Acid and Its Applications to Evaluate Bioaccessibility in an In Vitro Digestive Model
by Nattapong Jongjitphisut, Worathat Thitikornpong, Wisut Wichitnithad, Thanundorn Thanusuwannasak, Opa Vajragupta and Pornchai Rojsitthisak
Molecules 2023, 28(4), 1678; https://doi.org/10.3390/molecules28041678 - 9 Feb 2023
Cited by 3 | Viewed by 2119
Abstract
A simple and reliable ultra-high-performance liquid chromatographic (UHPLC) method was developed and validated for determination of tetrahydrocurcumin diglutaric acid (TDG) and applied for evaluation of its bioaccessibility. The analytical method was validated to demonstrate as a stability-indicating assay (SIA) according to the ICH [...] Read more.
A simple and reliable ultra-high-performance liquid chromatographic (UHPLC) method was developed and validated for determination of tetrahydrocurcumin diglutaric acid (TDG) and applied for evaluation of its bioaccessibility. The analytical method was validated to demonstrate as a stability-indicating assay (SIA) according to the ICH Q2(R1) guidelines under various force degradation conditions including thermal degradation, moisture, acid and base hydrolysis, oxidation, and photolysis. The developed chromatographic condition could completely separate all degradants from the analyte of interest. The method linearity was verified in the range of 0.4–12 μg/mL with the coefficient of determination (r2) > 0.995. The accuracy and precision of the method provided %recovery in the range of 98.9–104.2% and %RSD lower than 4.97%, respectively. The limit of detection and quantitation were found to be 0.25 μg/mL and 0.40 μg/mL, respectively. This method has been successfully applied for the bioaccessibility assessment of TDG with the bioaccessibility of TDG approximately four fold greater than THC in simulated gastrointestinal fluid. The validated SIA method can also benefit the quality control of TDG raw materials in pharmaceutical and nutraceutical development. Full article
Show Figures

Figure 1

18 pages, 1690 KiB  
Article
Study of the Phytoextraction and Phytodegradation of Sulfamethoxazole and Trimethoprim from Water by Limnobium laevigatum
by Klaudia Stando, Aleksandra Czyż, Magdalena Gajda, Ewa Felis and Sylwia Bajkacz
Int. J. Environ. Res. Public Health 2022, 19(24), 16994; https://doi.org/10.3390/ijerph192416994 - 17 Dec 2022
Cited by 10 | Viewed by 2969
Abstract
Phytoremediation is an environmentally friendly and economical method for removing organic contaminants from water. The purpose of the present study was to use Limnobium laevigatum for the phytoremediation of water from sulfamethoxazole (SMX) and trimethoprim (TRI) residues. The experiment was conducted for 14 [...] Read more.
Phytoremediation is an environmentally friendly and economical method for removing organic contaminants from water. The purpose of the present study was to use Limnobium laevigatum for the phytoremediation of water from sulfamethoxazole (SMX) and trimethoprim (TRI) residues. The experiment was conducted for 14 days, in which the loss of the pharmaceuticals in water and their concentration in plant tissues was monitored. Determination of SMX and TRI was conducted using liquid chromatography coupled with tandem mass spectrometry. The results revealed that various factors affected the removal of the contaminants from water, and their bioaccumulation coefficients were obtained. Additionally, the transformation products of SMX and TRI were identified. The observed decrease in SMX and TRI content after 14 days was 96.0% and 75.4% in water, respectively. SMX removal mainly involved photolysis and hydrolysis processes, whereas TRI was mostly absorbed by the plant. Bioaccumulation coefficients of the freeze-dried plant were in the range of 0.043–0.147 for SMX and 2.369–2.588 for TRI. Nine and six transformation products related to SMX and TRI, respectively, were identified in water and plant tissues. The detected transformation products stemmed from metabolic transformations and photolysis of the parent compounds. Full article
Show Figures

Figure 1

19 pages, 3290 KiB  
Article
Metronidazole Degradation by UV and UV/H2O2 Advanced Oxidation Processes: Kinetics, Mechanisms, and Effects of Natural Water Matrices
by Rongkui Su, Xiangrong Dai, Hanqing Wang, Zhixiang Wang, Zishi Li, Yonghua Chen, Yiting Luo and Danxia Ouyang
Int. J. Environ. Res. Public Health 2022, 19(19), 12354; https://doi.org/10.3390/ijerph191912354 - 28 Sep 2022
Cited by 41 | Viewed by 3121
Abstract
Advanced oxidation technology represented by hydroxyl radicals has great potential to remove residual antibiotics. In this study, we systematically compared the metronidazole (MTZ) degradation behavior and mechanism in the UV and UV/H2O2 systems at pH 3.00 condition. The results show [...] Read more.
Advanced oxidation technology represented by hydroxyl radicals has great potential to remove residual antibiotics. In this study, we systematically compared the metronidazole (MTZ) degradation behavior and mechanism in the UV and UV/H2O2 systems at pH 3.00 condition. The results show that the initial reaction rates were 0.147 and 1.47 µM min−1 in the UV and UV/H2O2 systems, respectively. The main reason for the slow direct photolysis of MTZ is the relatively low molar absorption coefficient (2645.44 M−1 cm−1) and quantum yield (5.9 × 10−3 mol Einstein−1). Then, we measured kMTZ,OH  as 2.79 (±0.12) × 109 M−1 s−1 by competitive kinetics, and calculated kMTZ,OH  and [OH ]SS as 2.43 (±0.11) × 109 M−1 s−1 and 2.36 × 10−13 M by establishing a kinetic model based on the steady-state hypothesis in our UV/H2O2 system. The contribution of direct photolysis and OH to the MTZ degradation was 9.9% and 90.1%. OH plays a major role in the MTZ degradation, and OH was the main active material in the UV/H2O2 system. This result was also confirmed by MTZ degradation and radicals’ identification experiments. MTZ degradation increases with H2O2 dosage, but excessive H2O2 had the opposite effect. A complex matrix has influence on MTZ degradation. Organic matter could inhibit the degradation of MTZ, and the quenching of the radical was the main reason. NO3 promoted the MTZ degradation, while SO42 and Cl had no effect. These results are of fundamental and practical importance in understanding the MTZ degradation, and to help select preferred processes for the optimal removal of antibiotics in natural water bodies, such as rivers, lakes, and groundwater Full article
Show Figures

Figure 1

13 pages, 1871 KiB  
Article
Investigation of the Gas-Phase Reaction of Nopinone with OH Radicals: Experimental and Theoretical Study
by Gisèle El Dib, Angappan Mano Priya and Senthilkumar Lakshmipathi
Atmosphere 2022, 13(8), 1247; https://doi.org/10.3390/atmos13081247 - 5 Aug 2022
Cited by 6 | Viewed by 2327
Abstract
Monoterpenes are the most essential reactive biogenic volatile organic compounds. Their removal from the atmosphere leads to the formation of oxygenated compounds, such as nopinone (C9H14O), one of the most important first-generation β-pinene oxidation products that play a pivotal [...] Read more.
Monoterpenes are the most essential reactive biogenic volatile organic compounds. Their removal from the atmosphere leads to the formation of oxygenated compounds, such as nopinone (C9H14O), one of the most important first-generation β-pinene oxidation products that play a pivotal role in environmental and biological applications. In this study, experimental and theoretical rate coefficients were determined for the gas-phase reaction of nopinone with hydroxyl radicals (OH). The absolute rate coefficient was measured for the first time using a cryogenically cooled cell along with the pulsed laser photolysis–laser-induced fluorescence technique at 298 K and 7 Torr. The hydrogen abstraction pathways were found by using electronic structure calculations to determine the most favourable H-abstraction position. Pathway 5 (bridgehead position) was more favourable, with a small barrier height of −1.23 kcal/mol. The rate coefficients were calculated based on the canonical variational transition state theory with the small-curvature tunnelling method (CVT/SCT) as a function of temperature. The average experimental rate coefficient (1.74 × 10−11 cm3 molecule−1 s−1) was in good agreement with the theoretical value (2.2 × 10−11 cm3 molecule−1 s−1). Conclusively, the results of this study pave the way to understand the atmospheric chemistry of nopinone with OH radicals. Full article
(This article belongs to the Special Issue Measurements and Chemistry of Atmospheric Radical)
Show Figures

Figure 1

19 pages, 7189 KiB  
Article
Combining Ultraviolet Photolysis with In-Situ Electrochemical Oxidation for Degrading Sulfonamides in Wastewater
by Zhijie Zheng, Julin Yuan, Xinwei Jiang, Gang Han, Yufang Tao and Xiaogang Wu
Catalysts 2022, 12(7), 711; https://doi.org/10.3390/catal12070711 - 29 Jun 2022
Cited by 9 | Viewed by 2275
Abstract
Ultraviolet photolysis (UVC, 254 nm) was coupled with an electrochemical oxidation process to degrade three kinds of veterinary sulfonamide (sulfamethazine [SMZ] tablets, sulfamonomethoxine [SMM] tablets, and compound sulfamethoxazole [SMX] tablets). The treatment was applied using a flat ceramic microfiltration membrane to study the [...] Read more.
Ultraviolet photolysis (UVC, 254 nm) was coupled with an electrochemical oxidation process to degrade three kinds of veterinary sulfonamide (sulfamethazine [SMZ] tablets, sulfamonomethoxine [SMM] tablets, and compound sulfamethoxazole [SMX] tablets). The treatment was applied using a flat ceramic microfiltration membrane to study the effects of photocatalysts. The effectiveness of degradation of the three sulfonamides was evaluated under different conditions. Dissolved oxygen was provided via aeration, but this resulted in a large decrease in the degradation effectiveness due to the inhibition of free chlorine electrogeneration. The photocatalysts had no promotional effect on sulfonamide removal from wastewater due to reduced UV penetration. Because of the different distribution coefficients of sulfonamides, UV irradiation had different effects on different sulfonamide species. For SMZ and SMM, anionic species exhibited a higher degradation rate, whereas for SMX, degradation was most effective for neutral species. In addition, the free chlorine yield increased as the pH increased. Free chlorine conversion reactions occurred under UV irradiation, with the reactions possibly restrained by sulfonamides. Reactive chlorine species promoted SMM degradation. Compared to UV irradiation or electrochemical oxidation alone, the UV/in-situ electrochemical oxidation process was more effective and is suitable for treating real wastewater under various environmental pH levels. Full article
Show Figures

Graphical abstract

14 pages, 2060 KiB  
Article
Photosynthesis, Yield and Quality of Soybean (Glycine max (L.) Merr.) under Different Soil-Tillage Systems
by Jan Buczek, Dorota Bobrecka-Jamro and Marta Jańczak-Pieniążek
Sustainability 2022, 14(9), 4903; https://doi.org/10.3390/su14094903 - 19 Apr 2022
Cited by 9 | Viewed by 2890
Abstract
Due to current climate changes and drought periods, it is recommended to cultivate soybean in no-plowing tillage systems. The conducted research is to contribute to a partial explanation of the course of photosynthesis processes in soybean plants, which may facilitate the decision making [...] Read more.
Due to current climate changes and drought periods, it is recommended to cultivate soybean in no-plowing tillage systems. The conducted research is to contribute to a partial explanation of the course of photosynthesis processes in soybean plants, which may facilitate the decision making before sowing this species in a given tillage system. The aim of the study was to assess the dependence of photosynthesis on the yield and variable hydrothermal conditions of tillage systems, as well as their impact on the productivity and quality of soybean. A field experiment was carried out using soybean cv. Merlin, between 2017 and 2019 in Boguchwała, Poland. The plant tested was soybean cv. Merlin. The tillage systems—conventional (CT), reduced (RT) and no-tillage (NT)—were the experimental factors. The use of CT and RT influenced growth in leaf area index (LAI) and soil plant analysis development (SPAD) and improved the photosynthesis process, which increased the values of the maximal quantum yield of the photolysis system of the donor side of PSII (Fv/F0), and performance index of PS II (PI) and net photosynthetic rate (PN), stomatal conductance (gs) parameters, compared to NT. CT treatment increased the yield of soybean plants to significantly higher compared with NT treatment, and seeds treated with the CT treatment contained more protein. The content of fat and phosphorus (P) were significantly higher in the NT system and the content of potassium (K) from RT. In 2017, under drought conditions (the June–September period), the seed yield of NT was similar to the yield of CT and significantly higher than the yield of RT. The higher value of hydrothermal coefficients in 2019 resulted in an increase in photosynthesis parameters, seed yield as well as the content of fat and elements P and K. Full article
(This article belongs to the Special Issue Plant Nutrition, Plant-Soil Relationships and Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 3618 KiB  
Article
Impact of Vertical Profiles of Aerosols on the Photolysis Rates in the Lower Troposphere from the Synergy of Photometer and Ceilometer Measurements in Raciborz, Poland, for the Period 2015–2020
by Aleksander Pietruczuk, Alnilam Fernandes, Artur Szkop and Janusz Krzyścin
Remote Sens. 2022, 14(5), 1057; https://doi.org/10.3390/rs14051057 - 22 Feb 2022
Cited by 2 | Viewed by 1959
Abstract
The effect of the aerosol vertical distribution on photolysis frequencies of O3 and NO2 is studied. Aerosol measurements in Raciborz (50.08° N, 18.19° E), Poland, made using the CIMEL Sun photometer and collocated CHM-15k “Nimbus” ceilometer are analyzed for the period [...] Read more.
The effect of the aerosol vertical distribution on photolysis frequencies of O3 and NO2 is studied. Aerosol measurements in Raciborz (50.08° N, 18.19° E), Poland, made using the CIMEL Sun photometer and collocated CHM-15k “Nimbus” ceilometer are analyzed for the period 2015–2020. Vertical profiles of the aerosol extinction are derived from the Generalized Retrieval of Atmosphere and Surface Properties (GRASP) algorithm combining the ceilometer measurements of the aerosol backscattering coefficient with the collocated CIMEL measurements of the columnar characteristics of aerosols. The photolysis frequencies are calculated at the three levels in the lower troposphere (the surface and 0.5 and 2 km above the surface) using a radiative transfer model, Tropospheric Ultraviolet and Visible (TUV), for various settings of aerosol optical properties in the model input. The importance of the aerosol vertical distribution on photolysis frequencies is inferred by analyzing statistics of the differences between the output of the model, including the extinction profile from the GRASP algorithm, and the default TUV model (based on columnar aerosol characteristics by the CIMEL Sun photometer and Elterman’s extinction profile). For model levels above the surface, standard deviation, 2.5th percentile, 97.5th percentile, and the extremes, calculated from relative differences between these input settings, are comparable with the pertaining statistical values for the input pair providing changes of photolysis frequencies only due to the variability of the columnar aerosol characteristics. This indicates that the vertical properties of aerosols affect the distribution of the photolysis frequencies in the lower troposphere on a similar scale to that due to variations in columnar aerosol characteristics. Full article
(This article belongs to the Special Issue Optical and Laser Remote Sensing of Atmospheric Composition)
Show Figures

Figure 1

23 pages, 5721 KiB  
Article
Observations by Ground-Based MAX-DOAS of the Vertical Characters of Winter Pollution and the Influencing Factors of HONO Generation in Shanghai, China
by Shiqi Xu, Shanshan Wang, Men Xia, Hua Lin, Chengzhi Xing, Xiangguang Ji, Wenjing Su, Wei Tan, Cheng Liu and Qihou Hu
Remote Sens. 2021, 13(17), 3518; https://doi.org/10.3390/rs13173518 - 4 Sep 2021
Cited by 12 | Viewed by 3694
Abstract
Analyzing vertical distribution characters of air pollutants is conducive to study the mechanisms under polluted atmospheric conditions. Nitrous acid (HONO) is a kind of crucial species in photochemical cycles. Exploring the influence and sources of HONO in air pollution at different altitudes offers [...] Read more.
Analyzing vertical distribution characters of air pollutants is conducive to study the mechanisms under polluted atmospheric conditions. Nitrous acid (HONO) is a kind of crucial species in photochemical cycles. Exploring the influence and sources of HONO in air pollution at different altitudes offers some insights into the research of tropospheric oxidation chemistry processes. Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were conducted in Shanghai, China, from December 2017 to March 2018 to investigate vertical distributions and diurnal variations of trace gases (NO2, HONO, HCHO, SO2, and water vapor) and aerosol extinction coefficient in the boundary layer. Aerosol and NO2 showed decreasing profile exponentially, SO2 and HCHO concentrations were observed relatively high values in the middle layer. SO2 was caused by industrial emissions, while HCHO was from secondary sources. As for HONO, below 0.82 km, the heterogeneous reactions of NO2 impacted on forming HONO, while in the upper layers, vertical diffusion might be the dominant source. The contribution of OH production from HONO photolysis at different altitudes was mainly controlled by the concentration of HONO. MAX-DOAS measurements characterize the vertical structure of air pollutants in Shanghai and provide further understanding for HONO formation, which can help deploy advanced measurement platforms of regional air pollution over eastern China. Full article
(This article belongs to the Special Issue Optical and Laser Remote Sensing of Atmospheric Composition)
Show Figures

Graphical abstract

12 pages, 1772 KiB  
Article
Ketone Number and Substitution Effect of Benzophenone Derivatives on the Free Radical Photopolymerization of Visible-Light Type-II Photoinitiators
by Tung-Liang Huang and Yung-Chung Chen
Polymers 2021, 13(11), 1801; https://doi.org/10.3390/polym13111801 - 29 May 2021
Cited by 14 | Viewed by 3893
Abstract
Three novel visible-light absorbing benzophenone-based hydrogen acceptors (BPD-D, BPDM-D and BPDP-D) were designed on the basis of a donor–benzophenone–donor structural backbone. Mono or diketone units and double diphenylamine electron-donating groups in para-or meta-positions were introduced to comprehend the electronic and structural effects on [...] Read more.
Three novel visible-light absorbing benzophenone-based hydrogen acceptors (BPD-D, BPDM-D and BPDP-D) were designed on the basis of a donor–benzophenone–donor structural backbone. Mono or diketone units and double diphenylamine electron-donating groups in para-or meta-positions were introduced to comprehend the electronic and structural effects on free radical photopolymerization (FRPP). Such a structural change leads not only to a red-shift of the absorption maxima but strongly enhances their molar extinction coefficients compared to the commercial phototinitiators such as benzophenone (BP) and 4,4′-bis(diethylamino) benzophenone (EMK). In addition, excellent melting points and thermal decomposition temperatures were achieved for those novel compounds. Further, the photochemical reaction behavior was studied by cyclic voltammograms (CV), photolysis and electron spin resonance (ESR) spectroscopy. Finally, benzophenone derivatives in combination with an amine (TEA, triethylamine) as a co-initiator were prepared and initiated the FRPP of trimethylolpropane trimethacrylate (TMPTMA) using a UV lamp as a light source. When used in stoichiometric amounts, the BPDP-D/TEA had the best double bond conversion efficiency among all the compounds studied, and were even superior to the reference compounds of BP/TEA and EMK/TEA. The results and conclusions could provide the fundamental rules applicable for the structural design of benzophenone derivative-based photoinitiators. Full article
(This article belongs to the Special Issue Photoinitiators and Photopolymerization Technology)
Show Figures

Graphical abstract

17 pages, 3144 KiB  
Article
Oxidative Repair of Pyrimidine Cyclobutane Dimers by Nitrate Radicals (NO3): A Kinetic and Computational Study
by Tomas Haddad, Joses G. Nathanael, Jonathan M. White and Uta Wille
Chemistry 2020, 2(2), 453-469; https://doi.org/10.3390/chemistry2020027 - 9 May 2020
Viewed by 3393
Abstract
Pyrimidine cyclobutane dimers are hazardous DNA lesions formed upon exposure of DNA to UV light, which can be repaired through oxidative electron transfer (ET). Laser flash photolysis and computational studies were performed to explore the role of configuration and constitution at the cyclobutane [...] Read more.
Pyrimidine cyclobutane dimers are hazardous DNA lesions formed upon exposure of DNA to UV light, which can be repaired through oxidative electron transfer (ET). Laser flash photolysis and computational studies were performed to explore the role of configuration and constitution at the cyclobutane ring on the oxidative repair process, using the nitrate radical (NO3) as oxidant. The rate coefficients of 8–280 × 107 M−1 s−1 in acetonitrile revealed a very high reactivity of the cyclobutane dimers of N,N’-dimethylated uracil (DMU), thymine (DMT), and 6-methyluracil (DMU6-Me) towards NO3, which likely proceeds via ET at N(1) as a major pathway. The overall rate of NO3 consumption was determined by (i) the redox potential, which was lower for the syn- than for the anti-configured dimers, and (ii) the accessibility of the reaction site for NO3. In the trans dimers, both N(1) atoms could be approached from above and below the molecular plane, whereas in the cis dimers, only the convex side was readily accessible for NO3. The higher reactivity of the DMT dimers compared with isomeric DMU dimers was due to the electron-donating methyl groups on the cyclobutane ring, which increased their susceptibility to oxidation. On the other hand, the approach of NO3 to the dimers of DMU6-Me was hindered by the methyl substituents adjacent to N(1), making these dimers the least reactive in this series. Full article
Show Figures

Graphical abstract

15 pages, 2469 KiB  
Article
Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons
by Jia Zhu, Lei Chen, Hong Liao and Ruijun Dang
Atmosphere 2019, 10(7), 352; https://doi.org/10.3390/atmos10070352 - 27 Jun 2019
Cited by 134 | Viewed by 8026
Abstract
We investigated the spatial-temporal characteristics of the correlations between observed PM2.5 and O3 over China at a national-scale level, and examined the underlying reasons for the varying PM2.5–O3 correlations by using a chemical transport model. The PM2.5 [...] Read more.
We investigated the spatial-temporal characteristics of the correlations between observed PM2.5 and O3 over China at a national-scale level, and examined the underlying reasons for the varying PM2.5–O3 correlations by using a chemical transport model. The PM2.5 concentrations were positively correlated with O3 concentrations for most regions and seasons over China, while negative correlations were mainly observed in northern China during winter. The strongest positive PM2.5–O3 correlations with correlation coefficients (r) larger than +0.7 existed in southern China during July, and the strongest negative correlations (r < −0.5) were observed in northern China during January. It was a very interesting phenomenon that the positive PM2.5–O3 correlations prevailed for high air temperature samples, while the negative correlations were generally found in cold environments. Together, the effective inhibitory effect of PM2.5 on O3 generation by reducing photolysis rates and the strong titration effect of freshly emitted NO with O3 contributed to the strongest negative PM2.5–O3 correlations in northern China during January (i.e., in cold environments). The strongest positive correlations in southern China during July (i.e., at high temperature), however, were mainly attributed to the promoting effect of high O3 concentration and active photochemical activity on secondary particle formation. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

15 pages, 2268 KiB  
Article
Response of Surface Ultraviolet and Visible Radiation to Stratospheric SO2 Injections
by Sasha Madronich, Simone Tilmes, Ben Kravitz, Douglas G. MacMartin and Jadwiga H. Richter
Atmosphere 2018, 9(11), 432; https://doi.org/10.3390/atmos9110432 - 7 Nov 2018
Cited by 22 | Viewed by 7737
Abstract
Climate modification by stratospheric SO2 injections, to form sulfate aerosols, may alter the spectral and angular distributions of the solar ultraviolet and visible radiation that reach the Earth’s surface, with potential consequences to environmental photobiology and photochemistry. We used modeling results from [...] Read more.
Climate modification by stratospheric SO2 injections, to form sulfate aerosols, may alter the spectral and angular distributions of the solar ultraviolet and visible radiation that reach the Earth’s surface, with potential consequences to environmental photobiology and photochemistry. We used modeling results from the CESM1(WACCM) stratospheric aerosol geoengineering large ensemble (GLENS) project, following the RCP8.5 emission scenario, and one geoengineering experiment with SO2 injections in the stratosphere, designed to keep surface temperatures at 2020 levels. Zonally and monthly averaged vertical profiles of O3, SO2, and sulfate aerosols, at 30 N and 70 N, served as input into a radiative transfer model, to compute biologically active irradiances for DNA damage (iDNA), UV index (UVI), photosynthetically active radiation (PAR), and two key tropospheric photodissociation coefficients (jO1D for O3 + hν (λ < 330 nm) → O(1D) + O2; and jNO2 for NO2 + hν (λ < 420 nm) → O(3P) + NO). We show that the geoengineering scenario is accompanied by substantial reductions in UV radiation. For example, comparing March 2080 to March 2020, iDNA decreased by 25% to 29% in the subtropics (30 N) and by 26% to 33% in the polar regions (70 N); UVI decreased by 19% to 20% at 30 N and 23% to 26% at 70 N; and jO1D decreased by 22% to 24% at 30 N and 35% to 40% at 70 N, with comparable contributions from sulfate scattering and stratospheric O3 recovery. Different responses were found for processes that depend on longer UV and visible wavelengths, as these are minimally affected by ozone; PAR and jNO2 were only slightly lower (9–12%) at 30 N, but much lower at 70 N (35–40%). Similar reductions were estimated for other months (June, September, and December). Large increases in the PAR diffuse-direct ratio occurred in agreement with previous studies. Absorption by SO2 gas had a small (~1%) effect on jO1D, iDNA, and UVI, and no effect on jNO2 and PAR. Full article
(This article belongs to the Special Issue Radiative Transfer in the Earth Atmosphere)
Show Figures

Figure 1

15 pages, 223 KiB  
Article
Stability-Indicating RP-HPLC Method for the Determination of Ambrisentan and Tadalafil in Pharmaceutical Dosage Form
by Jayvadan K. PATEL and Nilam K. PATEL
Sci. Pharm. 2014, 82(4), 749-764; https://doi.org/10.3797/scipharm.1403-22 - 22 May 2014
Cited by 24 | Viewed by 2904
Abstract
A simple, rapid, and highly selective RP-HPLC method was developed for the simultaneous determination of Ambrisentan (AMB) and Tadalafil (TADA) drug substances in the fixed dosage strength of 10 mg and 40 mg, respectively. Effective chromatographic separation was achieved using a Hypersil GOLD [...] Read more.
A simple, rapid, and highly selective RP-HPLC method was developed for the simultaneous determination of Ambrisentan (AMB) and Tadalafil (TADA) drug substances in the fixed dosage strength of 10 mg and 40 mg, respectively. Effective chromatographic separation was achieved using a Hypersil GOLD C18 column (150 mm × 4.6 mm internal diameter, 5 μm particle size) with a mobile phase composed of methanol, water, and acetonitrile in the ratio of 40:40:20 (by volume). The mobile phase was pumped using a gradient HPLC system at a flow rate of 0.5 mL/min, and quantification of the analytes was based on measuring their peak areas at 260 nm. The retention times for Ambrisentan and Tadalafil were about 2.80 and 7.10 min, respectively. The reliability and analytical performance of the proposed HPLC procedure were statistically validated with respect to system suitability, linearity, ranges, precision, accuracy, specificity, robustness, detection, and quantification limits. Calibration curves were linear in the ranges of 1–20 μg/mL for Ambrisentan and 4–80 μg/mL for Tadalafil with correlation coefficients >0.990. The proposed method proved to be selective and stability-indicating by the resolution of the two analytes from the forced degradation (hydrolysis, oxidation, and photolysis) products. The validated HPLC method was successfully applied to the analysis of AMB and TADA in pharmaceutical dosage form. Full article
Back to TopTop