Impact of Vertical Profiles of Aerosols on the Photolysis Rates in the Lower Troposphere from the Synergy of Photometer and Ceilometer Measurements in Raciborz, Poland, for the Period 2015–2020
Abstract
:1. Introduction
2. Instrumentation and Methodology
2.1. Passive Remote Sensing
2.2. Active Remote Sensing
2.3. GRASP
2.4. MERRA-2 Reanalysis
2.5. Radiative Transfer Model—TUV
- REFERENCE—mean values of columnar AOC (averaging CIMEL observations for the period 2015–2020) and Elterman’s α-profile;
- STANDARD—columnar values of AOD, SSA, ÅE, and AF from each CIMEL observation and Elterman’s α-profile;
- GRASP—as a STANDARD input, but the GRASP α-profile replaced the Elterman’s one; and
- GRASP/MERRA2—as the GRASP input, but the MERRA-2 profile for SSA and ÅE instead of columnar SSA and ÅE.
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanakidou, M.; Crutzen, P.J. The photochemical source of carbon monoxide: Importance, uncertainties and feedbacks. Chemosph. Glob. Chang. Sci. 1999, 1, 91–109. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N. Photochemistry of Important Atmospheric Species. Chem. Up. Low. Atmos. 2000, 4, 86–129. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Shetter, R.E.; Müller, M. Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics mission: Instrumentation description and some results. J. Geophys. Res. Atmos. 1999, 104, 5647–5661. [Google Scholar] [CrossRef]
- Webb, A.R.; Bais, A.F.; Blumthaler, M.; Gobbi, G.P.; Kylling, A.; Schmitt, R.; Thiel, S.; Barnaba, F.; Danielsen, T.; Junkermann, W.; et al. Measuring spectral actinic flux and irradiance: Experimental results from. J. Atmos. Ocean. Technol. 2002, 19, 1049–1062. [Google Scholar] [CrossRef]
- Gerasopoulos, E.; Kazadzis, S.; Vrekoussis, M.; Kouvarakis, G.; Liakakou, E.; Kouremeti, N.; Giannadaki, D.; Kanakidou, M.; Bohn, B.; Mihalopoulos, N. Factors affecting O3 and NO2 photolysis frequencies measured in the eastern Mediterranean during the five-year period 2002–2006. J. Geophys. Res. Atmos. 2012, 117, 22305. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, X.; Shao, M.; Hu, M.; Zeng, L.; Wu, Y.; Tan, T. The impact of aerosols on photolysis frequencies and ozone production in Beijing during the 4-year period 2012–2015. Atmos. Chem. Phys. 2019, 19, 9413–9429. [Google Scholar] [CrossRef] [Green Version]
- Hofzumahaus, A.; Kraus, A.; Kylling, A.; Zerefos, C.S. Solar actinic radiation (280–420 nm) in the cloud-free troposphere between ground and 12 km altitude: Measurements and model results. J. Geophys. Res. Atmos. 2002, 107, PAU 6-1–PAU 6-11. [Google Scholar] [CrossRef]
- Kylling, A. Fast simulation tool for ultraviolet radiation at the earth’s surface. Opt. Eng. 2005, 44, 41012. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations-Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef] [Green Version]
- Madronich, S. The Atmosphere and UV-B Radiation at Ground Level. In Environmental UV Photobiology; Springer: Boston, MA, USA, 1993; pp. 1–39. [Google Scholar] [CrossRef]
- Shettle, E.P. Models of aerosols, clouds and precipitation for atmospheric propagation studies. In Proceedings of the AGARD Conference, Copenhagen, Denmark, 1989; Volume 454, pp. 1–13. [Google Scholar]
- Elterman, L. UV, visible and IR attenuation for alititudes to 50 km. Environ. Res. Paper 1968, 285, 49. [Google Scholar]
- Sukhodolov, T.; Rozanov, E.; Ball, W.T.; Bais, A.; Tourpali, K.; Shapiro, A.I.; Telford, P.; Smyshlyaev, S.; Fomin, B.; Sander, R.; et al. Evaluation of simulated photolysis rates and their response to solar irradiance variability. J. Geophys. Res. Atmos. 2016, 121, 6066–6084. [Google Scholar] [CrossRef] [Green Version]
- Molero, F.; Fernández, A.J.; Revuelta, M.A.; Martínez-Marco, I.; Pujadas, M.; Artíñano, B. Effect of Vertical Profile of Aerosols on the Local Shortwave Radiative Forcing Estimation. Atmosphere 2021, 12, 187. [Google Scholar] [CrossRef]
- Tie, X.; Madronich, S.; Walters, S.; Zhang, R.; Rasch, P.; Collins, W. Effect of clouds on photolysis and oxidants in the troposphere. J. Geophys. Res. Atmos. 2003, 108, D20. [Google Scholar] [CrossRef]
- Hall, S.R.; Ullmann, K.; Prather, M.J.; Flynn, C.M.; Murray, L.T.; Fiore, A.M.; Correa, G.; Strode, S.A.; Steenrod, S.D.; Lamarque, J.F.; et al. Cloud impacts on photochemistry: Building a climatology of photolysis rates from the Atmospheric Tomography mission. Atmos. Chem. Phys. 2018, 18, 16809–16828. [Google Scholar] [CrossRef] [Green Version]
- Fountoulakis, I.; Natsis, A.; Siomos, N.; Drosoglou, T.; Bais, A.F. Deriving aerosol absorption properties from solar ultraviolet radiation spectral measurements at Thessaloniki, Greece. Remote Sens. 2019, 11, 2179. [Google Scholar] [CrossRef] [Green Version]
- Markowicz, K.M.; Flatau, P.J.; Kardas, A.E.; Remiszewska, J.; Telmaszczyk, K.; Woeste, L. Ceilometer retrieval of the boundary layer vertical aerosol extinction structure. J. Atmos. Ocean. Technol. 2008, 25, 928–944. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Wang, X.; Yamaji, K.; Takigawa, M.; Kanaya, Y.; Pochanart, P.; Liu, Y.; Irie, H.; Hu, B.; et al. Impacts of aerosols on summertime tropospheric photolysis frequencies and photochemistry over Central Eastern China. Atmos. Environ. 2011, 45, 1817–1829. [Google Scholar] [CrossRef]
- Real, E.; Sartelet, K. Modeling of photolysis rates over Europe: Impact on chemical gaseous species and aerosols. Atmos. Chem. Phys. 2011, 11, 1711–1727. [Google Scholar] [CrossRef] [Green Version]
- Péré, J.C.; Bessagnet, B.; Pont, V.; Mallet, M.; Minvielle, F. Influence of the aerosol solar extinction on photochemistry during the 2010 Russian wildfires episode. Atmos. Chem. Phys. 2015, 15, 10983–10998. [Google Scholar] [CrossRef] [Green Version]
- Ruggaber, A.; Dlugi, R.; Nakajima, T. Modelling radiation quantities and photolysis frequencies in the troposphere. J. Atmos. Chem. 1994, 18, 171–210. [Google Scholar] [CrossRef]
- Liao, H.; Yung, Y.L.; Seinfeld, J.H. Effects of aerosols on tropospheric photolysis rates in clear and cloudy atmospheres. J. Geophys. Res. Atmos. 1999, 104, 23697–23707. [Google Scholar] [CrossRef] [Green Version]
- Kylling, A.; Webb, A.R.; Bais, A.F.; Blumthaler, M.; Schmitt, R.; Thiel, S.; Kazantzidis, A.; Kift, R.; Misslbeck, M.; Schallhart, B.; et al. Actinic flux determination from measurements of irradiance. J. Geophys. Res. Atmos. 2003, 108, 4506. [Google Scholar] [CrossRef]
- Ångström, A. On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geogr. Ann. 1929, 11, 156–166. [Google Scholar] [CrossRef]
- Dickerson, R.R.; Kondragunta, S.; Stenchikov, G.; Civerolo, K.L.; Doddridge, B.G.; Holben, B.N. The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 1997, 278, 827–830. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Błaszczak, B.; Zioła, N.; Mathews, B.; Klejnowski, K.; Słaby, K. The Role of PM2.5 Chemical Composition and Meteorology during High Pollution Periods at a Suburban Background Station in Southern Poland. Aerosol Air Qual. Res. 2020, 20, 2433–2447. [Google Scholar] [CrossRef]
- Szkop, A.; Pietruczuk, A. Analysis of aerosol transport over southern Poland in August 2015 based on a synergy of remote sensing and backward trajectory techniques. J. Appl. Remote Sens. 2017, 11, 016039. [Google Scholar] [CrossRef] [Green Version]
- Szkop, A.; Pietruczuk, A. Synergy of satellite-based aerosol optical thickness analysis and trajectory statistics for determination of aerosol source regions. Int. J. Remote Sens. 2019, 40, 8450–8464. [Google Scholar] [CrossRef]
- Goloub, P.; Li, Z.; Dubovik, O.; Blarel, L.; Podvin, T.; Jankowiak, I.; Lecoq, R.; Deroo, C.; Chatenet, B.; Morel, J.P.; et al. In Proceedings of the PHOTONS/AERONET Sunphotometer Network Overview: Description, Activities, Results, Orlando, FL, USA, 22 April 2008. [CrossRef] [Green Version]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- AERONET Data Download Tool. Available online: https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_inv_v3 (accessed on 15 December 2021).
- AERONET Data Download Tool. Available online: https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3 (accessed on 15 December 2021).
- Valenzuela, A.; Olmo, F.J.; Lyamani, H.; Antón, M.; Titos, G.; Cazorla, A.; Alados-Arboledas, L. Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain). Atmos. Res. 2015, 154, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.; Pietruczuk, A.; Szkop, A.; Krzyścin, J. Aerosol Layering in the Free Troposphere over the Industrial City of Raciborz in Southwest Poland and Its Influence on Surface UV Radiation. Atmosphere 2021, 12, 812. [Google Scholar] [CrossRef]
- CHM 15k Datasheet. Available online: http://cedadocs.ceda.ac.uk/1243/1/CHM15k_Datasheet.pdf (accessed on 15 December 2021).
- Wiegner, M.; Geiß, A. Aerosol profiling with the Jenoptik ceilometer CHM15kx. Atmos. Meas. Tech. 2012, 5, 1953–1964. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2011, 4, 975–1018. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Lapyonok, T.; Litvinov, P.; Herman, M.; Fuertes, D.; Ducos, F.; Torres, B.; Derimian, Y.; Huang, X.; Lopatin, A.; et al. GRASP: A versatile algorithm for characterizing the atmosphere. In SPIE Newsroom; Society of Photo-Optical Instrumentation Engineers: Bellingham, WA, USA, 2014; p. 4. [Google Scholar]
- Ou, Y.; Li, L.; Li, Z.; Zhang, Y.; Dubovik, O.; Derimian, Y.; Chen, C.; Fuertes, D.; Xie, Y.; Lopatin, A.; et al. Spatio-Temporal Variability of Aerosol Components, Their Optical and Microphysical Properties over North China during Winter Haze in 2012, as Derived from POLDER/PARASOL Satellite Observations. Remote Sens. 2021, 13, 2682. [Google Scholar] [CrossRef]
- Li, L.; Dubovik, O.; Derimian, Y.; Schuster, G.L.; Lapyonok, T.; Litvinov, P.; Ducos, F.; Fuertes, D.; Chen, C.; Li, Z.; et al. Retrieval of aerosol components directly from satellite and ground-based measurements. Atmos. Chem. Phys. 2019, 19, 13409–13443. [Google Scholar] [CrossRef] [Green Version]
- Lopatin, A.; Dubovik, O.; Chaikovsky, A.; Goloub, P.; Lapyonok, T.; Tanré, D.; Litvinov, P. Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: The GARRLiC algorithm. Atmos. Meas. Tech. 2013, 6, 2065–2088. [Google Scholar] [CrossRef] [Green Version]
- Lopatin, A.; Dubovik, O.; Fuertes, D.; Stenchikov, G.; Lapyonok, T.; Veselovskii, I.; Wienhold, F.G.; Shevchenko, I.; Hu, Q.; Parajuli, S. Synergy processing of diverse ground-based remote sensing and in situ data using the GRASP algorithm: Applications to radiometer, lidar and radiosonde observations. Atmos. Meas. Tech. 2021, 14, 2575–2614. [Google Scholar] [CrossRef]
- Román, R.; Benavent-Oltra, J.A.; Casquero-Vera, J.A.; Lopatin, A.; Cazorla, A.; Lyamani, H.; Denjean, C.; Fuertes, D.; Pérez-Ramírez, D.; Torres, B.; et al. Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code. Atmos. Res. 2018, 204, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Titos, G.; Ealo, M.; Román, R.; Cazorla, A.; Sola, Y.; Dubovik, O.; Alastuey, A.; Pandolfi, M. Retrieval of aerosol properties from ceilometer and photometer measurements: Long-term evaluation with in situ data and statistical analysis at Montsec (southern Pyrenees). Atmos. Meas. Tech. 2019, 12, 3255–3267. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Colarco, P.; Da Silva, A.; Chin, M.; Diehl, T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. Atmos. 2010, 115, 14207. [Google Scholar] [CrossRef] [Green Version]
- Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Colarco, P.R.; Nowottnick, E.P.; Randles, C.A.; Yi, B.; Yang, P.; Kim, K.M.; Smith, J.A.; Bardeen, C.G. Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index. J. Geophys. Res. Atmos. 2014, 119, 753–786. [Google Scholar] [CrossRef]
- Meng, Z.; Yang, P.; Kattawar, G.W.; Bi, L.; Liou, K.N.; Laszlo, I. Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations. J. Aerosol Sci. 2010, 41, 501–512. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley: New York, NY, USA, 1993. [Google Scholar] [CrossRef] [Green Version]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 inst3_3d_aer_Nv: 3d,3-Hourly,Instantaneous,Model-Level,Assimilation,Aerosol Mixing Ratio V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. Available online: https://disc.gsfc.nasa.gov/datasets/M2I3NVAER_5.12.4/summary (accessed on 15 December 2021).
- Global Modeling and Assimilation Office (GMAO). MERRA-2 inst3_3d_asm_Np: 3d,3-Hourly,Instantaneous,Pressure-Level,Assimilation,Assimilated Meteorological Fields V5.12.4; Goddard Earth Sciences Data and Information Services Cente: Greenbelt, MD, USA, 2015. Available online: https://disc.gsfc.nasa.gov/datasets/M2I3NPASM_5.12.4/summary (accessed on 15 December 2021).
- Tropospheric Ultraviolet and Visible (TUV) Radiation Model|Atmospheric Chemistry Observations & Modeling (ACOM). Available online: https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model (accessed on 15 December 2021).
- Madronich, S. Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res. Atmos. 1987, 92, 9740–9752. [Google Scholar] [CrossRef]
Statistics | Mean ± SD | Median | Percentile Range [2.5th%:97.5th%] | Minimum | Maximum |
---|---|---|---|---|---|
TCO3 (DU) | 312 ± 34 | 303 | 259:399 | 248 | 427 |
TMP_surface (°C) | 17.5 ± 7.5 | 18.6 | 1.2:30.2 | −9.1 | 32.0 |
TMP_0.5 km (°C) | 15.3 ± 7.7 | 16.7 | −2.9:28.0 | −10.1 | 29.7 |
TMP_2 km (°C) | 5.1 ± 5.9 | 6.3 | −9.5:15.3 | −12.0 | 16.0 |
ALB_440 nm | 0.06 ± 0.03 | 0.05 | 0.04:0.07 | 0.04 | 0.53 |
AOD_340 nm | 0.30 ± 0.15 | 0.26 | 0.12:0.63 | 0.07 | 1.25 |
AOD_440 nm | 0.22 ± 0.11 | 0.19 | 0.09:0.50 | 0.05 | 0.91 |
SSA_440 nm | 0.93 ± 0.04 | 0.93 | 0.85:0.99 | 0.76 | 1.00 |
AF_440 nm | 0.70 ± 0.02 | 0.70 | 0.66:0.75 | 0.65 | 0.80 |
ÅE_340–440 nm | 1.23 ± 0.21 | 1.24 | 0.70:1.63 | 0.25 | 1.71 |
Level | Mean ± SD | Median | Percentile Range [2.5th:97.5th] | Minimum | Maximum |
---|---|---|---|---|---|
j (O1D)—GRASP | |||||
surface | 0.724 × 10−5 ± 0.600 × 10−5 | 0.575 × 10−5 | 0.655 × 10−6:0.206 × 10−4 | 0.190 × 10−6 | 0.240 × 10−4 |
surface + 0.5 km | 0.860 × 10−5 ± 0.710 × 10−5 | 0.706 × 10−5 | 0.820 × 10−6:0.244 × 10−4 | 0.235 × 10−6 | 0.285 × 10−5 |
surface + 2.0 km | 0.114 × 10−4 ± 0.916 × 10−5 | 0.961 × 10−5 | 0.115 × 10−5:0.315 × 10−4 | 0.320 × 10−4 | 0.315 × 10−4 |
j (O1D)—REFERENCE | |||||
surface | 0.730 × 10−5 ± 0.613 × 10−5 | 0.612 × 10−5 | 0.648 × 10−6:0.209 × 10−4 | 0.192 × 10−6 | 0.250 × 10−4 |
surface + 0.5 km | 0.880 × 10−5 ± 0.729 × 10−5 | 0.749 × 10−5 | 0.816 × 10−6:0.248 × 10−4 | 0.229 × 10−6 | 0.296 × 10−4 |
surface + 2.0 km | 0.113 × 10−4 ± 0.909 × 10−5 | 0.945 × 10−5 | 0.113 × 10−5:0.315 × 10−4 | 0.317 × 10−6 | 0.380 × 10−4 |
j (NO2)—GRASP | |||||
surface | 0.519 × 10−2 ± 0.189 × 10−2 | 0.562 × 10−2 | 0.204 × 10−2:0.798 × 10−2 | 0.103 × 10−2 | 0.838 × 10−2 |
surface + 0.5 km | 0.587 × 10−2 ± 0.202 × 10−2 | 0.637 × 10−2 | 0.238 × 10−2:0.876 × 10−2 | 0.134 × 10−2 | 0.907 × 10−2 |
surface + 2.0 km | 0.750 × 10−2 ± 0.219 × 10−2 | 0.810 × 10−2 | 0.357 × 10−2:0.105 × 10−1 | 0.194 × 10−2 | 0.111 × 10−1 |
j (NO2)—REFERENCE | |||||
surface | 0.520 × 10−2 ± 0.196 × 10−2 | 0.561 × 10−2 | 0.196 × 10−2:0.814 × 10−2 | 0.102 × 10−2 | 0.833 × 10−2 |
surface + 0.5 km | 0.600 × 10−2 ± 0.209 × 10−2 | 0.652 × 10−2 | 0.241 × 10−2:0.902 × 10−2 | 0.126 × 10−2 | 0.922 × 10−2 |
surface + 2.0 km | 0.746 × 10−2 ± 0.222 × 10−2 | 0.813 × 10−2 | 0.347 × 10−2:0.105 × 10−1 | 0.185 × 10−2 | 0.106 × 10−1 |
Level | Mean ± SD | Median | Percentile Range [2.5th:97.5th] | Minimum | Maximum |
---|---|---|---|---|---|
Δ[j (O1D)]: REFERENCE versus STANDARD | |||||
surface | 0.06 ± 6.70 | −0.25 | −9.95:12.06 | −45.48 | 23.65 |
surface + 0.5 km | 0.00 ± 4.19 | 0.00 | −5.88:6.94 | −37.28 | 15.97 |
surface + 2.0 km | −0.03 ± 2.50 | 0.00 | −3.31:3.74 | −24.80 | 9.15 |
Δ[j (O1D)]: GRASP versus STANDARD | |||||
surface | 0.08 ± 0.71 | 0.04 | −1.00:1.02 | −2.04 | 8.23 |
surface + 0.5 km | −1.89 ± 2.58 | −1.68 | −8.13:3.09 | −10.7 | 6.70 |
surface + 2.0 km | 1.17 ± 2.97 | 1.13 | −7.25:6.61 | −13.5 | 11.0 |
Δ[j (O1D)]: GRASP/MERRA versus STANDARD | |||||
surface | −1.21 ± 2.77 | −1.16 | −7.10:3.81 | −12.4 | 8.75 |
surface + 0.5 km | −2.62 ± 4.05 | −2.26 | −12.2:4.44 | −19.7 | 9.00 |
surface + 2.0 km | 0.78 ± 3.68 | 0.97 | −7.28:7.36 | −16.7 | 10.5 |
Δ[j (NO2)]: REFERENCE versus STANDARD | |||||
surface | −0.04 ± 7.79 | −0.18 | −14.26:16.59 | −38.64 | 33.39 |
surface + 0.5 km | −0.03 ± 4.78 | 0.16 | −9.25:9.19 | −31.85 | 21.27 |
surface + 2.0 km | 0.16 ± 2.81 | 0.33 | −4.72:4.49 | −22.49 | 9.61 |
Δ[j (NO2)]: GRASP versus STANDARD | |||||
surface | −0.03 ± 0.11 | −0.02 | −0.29:0.18 | −0.48 | 0.41 |
surface + 0.5 km | −2.16 ± 3.02 | −1.79 | −9.68:4.28 | −13.6 | 8.6 |
surface + 2.0 km | 0.84 ± 3.39 | 0.70 | −8.42:7.91 | −15.9 | 12.4 |
Δ[j (NO2)]: GRASP/MERRA versus STANDARD | |||||
surface | −0.38 ± 2.07 | −0.59 | −4.38:3.63 | −6.26 | 7.25 |
surface + 0.5 km | −2.51 ± 3.80 | −2.40 | −11.4:4.40 | −15.5 | 10.9 |
surface + 2.0 km | 0.23 ± 3.81 | 0.27 | −8.38:8.07 | −17.8 | 11.8 |
Level | Date (UTC) yy mm dd hh mm | SZA deg | O3 DU | TMP °C | AOD | SSA | AF | ÅE | Δ % |
---|---|---|---|---|---|---|---|---|---|
Δ[ j (O1D)]: GRASP versus STANDARD | |||||||||
Surf. | 18 08 29 16 11 | 77.0 | 303 | 22.5 | 0.66 | 0.96 | 0.67 | 0.62 | −2.0 |
Surf. + 0.5 km | 18 08 29 16 11 | 77.0 | 303 | 21.4 | 0.66 | 0.96 | 0.67 | 0.62 | −10.7 |
Surf. + 2.0 km | 18 04 12 06 27 | 67.0 | 348 | 3.3 | 0.50 | 0.93 | 0.71 | 1.22 | −13.5 |
Δ[ j (O1D)]: GRASP/MERRA versus STANDARD | |||||||||
Surf. | 18 08 29 16 11 | 77.0 | 303 | 22.5 | 0.66 | 0.96 | 0.67 | 0.62 | −12.4 |
Surf. + 0.5 km | 18 08 29 16 11 | 77.0 | 303 | 21.4 | 0.66 | 0.96 | 0.67 | 0.62 | −19.7 |
Surf. + 2.0 km | 18 08 29 16 11 | 77.0 | 303 | 6.0 | 0.66 | 0.96 | 0.67 | 0.62 | −16.7 |
Δ[ j (NO2)]: GRASP versus STANDARD | |||||||||
Surf. | 18 05 21 16 31 | 72.6 | 358 | 17.9 | 0.27 | 0.95 | 0.66 | 1.40 | −0.5 |
Surf. + 0.5 km | 18 08 04 05 04 | 75.2 | 291 | 23.3 | 0.62 | 0.96 | 0.73 | 1.27 | −13.6 |
Surf. + 2.0 km | 18 04 12 06 27 | 67.6 | 348 | 3.3 | 0.50 | 0.93 | 0.70 | 1.22 | −15.9 |
Δ[ j (NO2)]: GRASP/MERRA versus STANDARD | |||||||||
Surf. | 15 08 10 09 07 | 40.6 | 300 | 29.9 | 1.25 | 0.96 | 0.74 | 1.24 | −6.6 |
Surf. + 0.5 km | 18 08 29 16 11 | 77.0 | 303 | 21.4 | 0.66 | 0.96 | 0.67 | 0.62 | −15.5 |
Surf. + 2.0 km | 18 04 12 06 27 | 67.6 | 348 | 3.3 | 0.50 | 0.93 | 0.71 | 1.22 | −17.8 |
Level | Date (UTC) yy mm dd hh mm | SZA deg | O3 DU | TMP °C | AOD | SSA | AF | ÅE | Δ % |
---|---|---|---|---|---|---|---|---|---|
Δ[ j (O1D)]: GRASP versus STANDARD | |||||||||
Surf. | 20 03 28 15 18 | 72.5 | 402 | 14.3 | 0.55 | 0.90 | 0.68 | 1.25 | 8.2 |
Surf. + 0.5 km | 20 01 25 11 14 | 69.2 | 284 | −2.6 | 0.25 | 0.98 | 0.76 | 0.25 | 6.7 |
Surf. + 2.0 km | 16 09 10 15 10 | 71.5 | 280 | 7.9 | 0.43 | 0.95 | 0.70 | 1.43 | 11.0 |
Δ[ j (O1D)]: GRASP/MERRA versus STANDARD | |||||||||
Surf. | 20 03 28 15 18 | 72.5 | 402 | 14.3 | 0.55 | 0.90 | 0.68 | 1.25 | 8.8 |
Surf. + 0.5 km | 18 11 17 13 38 | 80.4 | 320 | −0.8 | 0.24 | 0.80 | 0.68 | 1.10 | 9.0 |
Surf. + 2.0 km | 16 09 12 15 05 | 71.5 | 286 | 7.9 | 0.41 | 0.91 | 0.68 | 1.29 | 10.5 |
Δ[ j (NO2)]): GRASP versus STANDARD | |||||||||
Surf. | 18 11 17 13 38 | 80.4 | 320 | 3.3 | 0.24 | 0.80 | 0.68 | 1.10 | 0.4 |
Surf. + 0.5 km | 20 01 25 11 14 | 69.2 | 284 | −2.6 | 0.25 | 0.98 | 0.76 | 0.25 | 8.6 |
Surf. + 2.0 km | 16 09 10 15 10 | 71.5 | 280 | 7.9 | 0.43 | 0.95 | 0.70 | 1.43 | 12.4 |
Δ[ j (NO2)]: GRASP/MERRA versus STANDARD | |||||||||
Surf. | 17 01 23 09 03 | 74.0 | 298 | −2.7 | 0.14 | 0.76 | 0.76 | 0.94 | 7.3 |
Surf. + 0.5 km | 18 11 17 13 38 | 80.4 | 320 | −0.8 | 0.24 | 0.80 | 0.68 | 1.10 | 10.9 |
Surf. + 2.0 km | 16 09 15 15 30 | 76.4 | 276 | 6.9 | 0.39 | 0.92 | 0.72 | 1.21 | 11.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietruczuk, A.; Fernandes, A.; Szkop, A.; Krzyścin, J. Impact of Vertical Profiles of Aerosols on the Photolysis Rates in the Lower Troposphere from the Synergy of Photometer and Ceilometer Measurements in Raciborz, Poland, for the Period 2015–2020. Remote Sens. 2022, 14, 1057. https://doi.org/10.3390/rs14051057
Pietruczuk A, Fernandes A, Szkop A, Krzyścin J. Impact of Vertical Profiles of Aerosols on the Photolysis Rates in the Lower Troposphere from the Synergy of Photometer and Ceilometer Measurements in Raciborz, Poland, for the Period 2015–2020. Remote Sensing. 2022; 14(5):1057. https://doi.org/10.3390/rs14051057
Chicago/Turabian StylePietruczuk, Aleksander, Alnilam Fernandes, Artur Szkop, and Janusz Krzyścin. 2022. "Impact of Vertical Profiles of Aerosols on the Photolysis Rates in the Lower Troposphere from the Synergy of Photometer and Ceilometer Measurements in Raciborz, Poland, for the Period 2015–2020" Remote Sensing 14, no. 5: 1057. https://doi.org/10.3390/rs14051057
APA StylePietruczuk, A., Fernandes, A., Szkop, A., & Krzyścin, J. (2022). Impact of Vertical Profiles of Aerosols on the Photolysis Rates in the Lower Troposphere from the Synergy of Photometer and Ceilometer Measurements in Raciborz, Poland, for the Period 2015–2020. Remote Sensing, 14(5), 1057. https://doi.org/10.3390/rs14051057