Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons
Abstract
:1. Introduction
2. Methods
2.1. In Situ Measurements and Data Analysis
2.2. Model Configuration
3. Results
3.1. Observed PM2.5–O3 Correlations
3.2. Model Evaluation
3.3. Underlying Reasons and Mechanisms
3.3.1. PM2.5 Suppressing O3 Generation by Reducing Photolysis Rates
3.3.2. NO Suppressing O3 Production through the NO Titration Effect
3.3.3. High O3 Concentration and Active Photochemical Activity Promoting Secondary PM2.5 Formation
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maji, K.J.; Dikshit, A.K.; Arora, M.; Deshpande, A. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. Sci. Total Environ. 2018, 612, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, J.; He, M.Z.; Kinney, P.L.; Li, T. A county-level estimate of PM2.5 related chronic mortality risk in china based on multi-model exposure data. Env. Int. 2018, 110, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Jeensorn, T.; Apichartwiwat, P.; Jinsart, W. PM10 and PM2.5 from haze smog and visibility effect in Chiang Mai Province, Thailand. App. Envi. Res. 2018, 40, 1–10. [Google Scholar]
- Li, Y.C.; Shu, M.; Ho, S.S.H.; Yu, J.-Z.; Yuan, Z.-B.; Wang, X.-X.; Zhao, X.-Q.; Liu, Z.-F. Effects of chemical composition of PM2.5 on visibility in a semi-rural city of sichuan basin. Aerosol Air Qual. Res. 2018, 18, 957–968. [Google Scholar] [CrossRef]
- Yang, C.; Yang, H.; Guo, S.; Wang, Z.; Xu, X.; Duan, X.; Kan, H. Alternative ozone metrics and daily mortality in Suzhou: The China air pollution and health effects study (CAPES). Sci. Total Env. 2012, 426, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.P.K.; Martin, M.V.; Heald, C.L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Chang. 2014, 4, 817–821. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Unger, N. Ozone vegetation damage effects on gross primary productivity in the United States. Atmos. Chem. Phys. 2014, 14, 9137–9153. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Dahlquist, M.; Lind, T.; Ljungman, P.L.S. Susceptibility to short-term ozone exposure and cardiovascular and respiratory mortality by previous hospitalizations. Env. Health 2018, 17, 37. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhang, M. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games. J. Env. Sci. 2012, 24, 50–61. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Liu, Z.; Wang, L.; Wang, P.; Xia, X.; Tao, M.; Zhu, L. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog–haze event over the North China Plain. Atmos. Chem. Phys. 2015, 15, 4279–4295. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Hao, J.; Luo, M. Seasonal and spatial variability of surface ozone over China: Contributions from background and domestic pollution. Atmos. Chem. Phys. 2011, 11, 3511–3525. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liao, H.; Zhu, J.; Moch, J.M. Implications of RCP emissions on future PM2.5 air quality and direct radiative forcing over China. J. Geophys. Res. Atmos. 2016, 121, 12985–13008. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in china: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Env. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Chen, L.; Wang, Z.; Wang, J.; Tao, J.; Wang, X. Did the widespread haze pollution over China increase during the last decade? A satellite view from space. Env. Res. Lett. 2016, 11, 054019. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.; Xiong, X.; Zhang, M.; Ma, P.; Tao, J.; Wang, Z. Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate. Atmos. Env. 2014, 98, 417–425. [Google Scholar] [CrossRef]
- Stadtler, S.; Simpson, D.; Schröder, S.; Taraborrelli, D.; Bott, A.; Schultz, M. Ozone impacts of gas–aerosol uptake in global chemistry transport models. Atmos. Chem. Phys. 2018, 18, 3147–3171. [Google Scholar] [CrossRef]
- Pathak, R.K.; Wu, W.S.; Wang, T. Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 2009, 9, 1711–1722. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, B.; Fu, Q.; Zhao, Q.; Zhang, Q.; Chen, J.; Yang, X.; Duan, Y.; Li, J. Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: Observations at a rural site in eastern Yangtze River Delta of China. Sci. Total Env. 2016, 571, 1454–1466. [Google Scholar] [CrossRef]
- Ding, A.J.; Fu, C.B.; Yang, X.Q.; Sun, J.N.; Zheng, L.F.; Xie, Y.N.; Herrmann, E.; Nie, W.; Petäjä, T.; Kerminen, V.M.; et al. Ozone and fine particle in the western Yangtze River Delta: An overview of 1 yr data at the SORPES station. Atmos. Chem. Phys. 2013, 13, 5813–5830. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Env. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, T.; Cheng, X.; Gong, S.; Zhang, X.; Tang, L.; Liu, D.; Wu, X.; Wang, L.; Chen, Y. Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of east China. Atmosphere 2017, 8, 59. [Google Scholar] [CrossRef]
- Tang, B.Y.; Xin, J.Y.; Gao, W.K.; Shao, P.; Su, H.J.; Wen, T.X.; Song, T.; Fan, G.Z.; Wang, S.G.; Wang, Y.S. Characteristics of complex air pollution in typical cities of North China. Atmos. Ocean. Sci. Lett. 2018, 11, 29–36. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Y.; Li, C. spatiotemporal distribution of PM2.5 and O3 and their interaction during the summer and winter seasons in Beijing, China. Sustainability 2018, 10, 4519. [Google Scholar] [CrossRef]
- Chen, H.; Zhuang, B.; Liu, J.; Wang, T.; Li, S.; Xie, M.; Li, M.; Chen, P.; Zhao, M. Characteristics of ozone and particles in the near-surface atmosphere in the urban area of the Yangtze River Delta, China. Atmos. Chem. Phys. 2019, 19, 4153–4175. [Google Scholar] [CrossRef] [Green Version]
- Tie, X.X.; Madronich, S.; Walters, S.; Edwards, D.P.; Ginoux, P.; Mahowald, N.; Zhang, R.Y.; Lou, C.; Brasseur, G. Assessment of the global impact of aerosols on tropospheric oxidants. J. Geophys. Res. 2005, 110, D03204. [Google Scholar] [CrossRef]
- Menon, S.; Unger, N.; Koch, D.; Francis, J.; Garrett, T.; Sednev, I.; Shindell, D.; Streets, D. Aerosol climate effects and air quality impacts from 1980 to 2030. Env. Res. Lett. 2008, 3, 024004. [Google Scholar] [CrossRef]
- Unger, N.; Menon, S.; Koch, D.M.; Shindell, D.T. Impacts of aeroso-cloud interaction on past and future changes in tropospheric composition. Atmos. Chem. Phys. 2009, 9, 4115–4130. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Wang, X.; Yamaji, K.; Takigawa, M.; Kanaya, Y.; Pochanart, P.; Liu, Y.; Irie, H.; Hu, B.; et al. Impacts of aerosols on summertime tropospheric photolysis frequencies and photochemistry over Central Eastern China. Atmos. Env. 2011, 45, 1817–1829. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Xie, M.; Li, S.; Zhuang, B.; Chen, P.; Huang, X.; Han, Y. Agricultural fire impacts on ozone photochemistry over the Yangtze River Delta region, East China. J. Geophys. Res.-Atmos. 2018, 123, 6605–6623. [Google Scholar] [CrossRef]
- Real, E.; Sartelet, K. Modeling of photolysis rates over Europe: Impact on chemical gaseous species and aerosols. Atmos. Chem. Phys. 2011, 11, 1711–1727. [Google Scholar] [CrossRef]
- Khoder, M.I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 2002, 49, 675–684. [Google Scholar] [CrossRef]
- Chang, S.C.; Lee, C.T. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003. Atmos. Env. 2007, 41, 4002–4017. [Google Scholar] [CrossRef]
- Li, L.; Chen, C.H.; Huang, C.; Huang, H.Y.; Zhang, G.F.; Wang, Y.J.; Wang, H.L.; Lou, S.R.; Qiao, L.P.; Zhou, M.; et al. Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system. Atmos. Chem. Phys. 2012, 12, 10971–10987. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Xu, X.; Shi, X.; Xie, L.; Ding, G.; Miao, Q.; Ma, J.; Zheng, X. Spatial characteristics of urban gaseous and particulate pollutants in winter and summer. Sci. China Ser. D 2005, 35, 53–65. [Google Scholar] [CrossRef]
- Xiao, Z.M.; Zhang, Y.F.; Hong, S.M.; Bi, X.H.; Jiao, L.; Feng, Y.C.; Wang, Y.Q. Estimation of the main factors influencing haze, based on a long-term monitoring campaign in Hangzhou, China. Aerosol Air Qual. Res. 2011, 11, 873–882. [Google Scholar] [CrossRef]
- Shi, C.; Wang, S.; Liu, R.; Zhou, R.; Li, D.; Wang, W.; Li, Z.; Cheng, T.; Zhou, B. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China. Atmos. Res. 2015, 153, 235–249. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jia, Y.; Li, M.; Hou, L.A. Spatiotemporal variations and relationship of PM and gaseous pollutants based on gray correlation analysis. J. Env. Sci. Health A Tox. Hazard. Subst. Env. Eng. 2018, 53, 139–145. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Wang, X.; Dickinson, R.E.; Su, L.; Zhou, C.; Wang, K. PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. B. Am. Meteorol. Soc. 2018, 99, 105–119. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, X.; Wang, Y.; Wang, J.; Shen, X.; Zhang, H.; Wang, T.; Xie, Z.; Liu, C.; Zhang, H.; et al. The two-way feedback mechanism between unfavorable meteorological conditions and cumulative aerosol pollution in various haze regions of China. Atmos. Chem. Phys. 2019, 19, 3287–3306. [Google Scholar] [CrossRef] [Green Version]
- Travis, K.R.; Jacob, D.J.; Fisher, J.A.; Kim, P.S.; Marais, E.A.; Zhu, L.; Yu, K.; Miller, C.C.; Yantosca, R.M.; Sulprizio, M.P.; et al. Why do models overestimate surface ozone in the Southeast United States? Atmos. Chem. Phys. 2016, 16, 13561–13577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.-I.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Mu, Q.; Liao, H. Simulation of the interannual variations of aerosols in China: Role of variations in meteorological parameters. Atmos. Chem. Phys. 2014, 14, 9597–9612. [Google Scholar] [CrossRef]
- Yang, Y.; Liao, H.; Lou, S. Decadal trend and interannual variation of outflow of aerosols from East Asia: Roles of variations in meteorological parameters and emissions. Atmos. Env. 2015, 100, 141–153. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, L.; Wu, S.; Mickley, L.; He, J.; Hao, J. Sensitivity of surface ozone over China to 2000–2050 global changes of climate and emissions. Atmos. Env. 2013, 75, 374–382. [Google Scholar] [CrossRef]
- Zhu, J.; Liao, H. Future ozone air quality and radiative forcing over China owing to future changes in emissions under the Representative Concentration Pathways (RCPs). J. Geophys. Res.-Atmos. 2016, 121, 1978–2001. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Liao, H.; Mao, Y.; Yang, Y.; Jiang, H. Interannual variation, decadal trend, and future change in ozone outflow from East Asia. Atmos. Chem. Phys. 2017, 17, 3729–3747. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Zhu, K.; Wang, T.; Chen, P.; Han, Y.; Li, S.; Zhuang, B.; Shu, L. Temporal characterization and regional contribution to O3 and NOx at an urban and a suburban site in Nanjing, China. Sci. Total Environ. 2016, 551, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Clapp, L.J.; Jenkin, M.E. Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmos. Env. 2001, 35, 6391–6405. [Google Scholar] [CrossRef]
- Colbeck, I.; Harrison, R.M. Ozone—Secondary aerosol—Visibility relationships in North-West England. Sci. Total Env. 1984, 34, 87–100. [Google Scholar] [CrossRef]
- Du, H.; Kong, L.; Cheng, T.; Chen, J.; Du, J.; Li, L.; Xia, X.; Leng, C.; Huang, G. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmos. Env. 2011, 45, 5131–5137. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, X.; Ma, Y.; Wang, L.; Wu, R.; Chen, B.; Wang, W. The concentrations, formations, relationships and modeling of sulfate, nitrate and ammonium (SNA) aerosols over China. Aerosol Air Qual. Res. 2017, 17, 84–97. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, X.; Shi, A.; Huang, Y.; Yan, J.; Nie, T.; Yan, X.; Li, X. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmos. Env. 2018, 177, 275–282. [Google Scholar] [CrossRef]
- Ravishankara, A.R. Heterogeneous and multiphase chemistry in the troposphere. Science 1997, 276, 1058–1065. [Google Scholar] [CrossRef]
- Martin, R.V.; Jacob, D.J.; Yantosca, R.M.; Chin, M.; Ginoux, P. Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J. Geophys. Res. Atmos. 2003, 108, 4097. [Google Scholar] [CrossRef]
- Deng, J.; Wang, T.; Liu, L.; Jiang, F. Modeling heterogeneous chemical processes on aerosol surface. Particuology 2010, 8, 308–318. [Google Scholar] [CrossRef]
- Lou, S.; Liao, H.; Zhu, B. Impacts of aerosols on surface-layer ozone concentrations in China through heterogeneous reactions and changes in photolysis rates. Atmos. Env. 2014, 85, 123–138. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Chen, L.; Liao, H.; Dang, R. Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons. Atmosphere 2019, 10, 352. https://doi.org/10.3390/atmos10070352
Zhu J, Chen L, Liao H, Dang R. Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons. Atmosphere. 2019; 10(7):352. https://doi.org/10.3390/atmos10070352
Chicago/Turabian StyleZhu, Jia, Lei Chen, Hong Liao, and Ruijun Dang. 2019. "Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons" Atmosphere 10, no. 7: 352. https://doi.org/10.3390/atmos10070352
APA StyleZhu, J., Chen, L., Liao, H., & Dang, R. (2019). Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons. Atmosphere, 10(7), 352. https://doi.org/10.3390/atmos10070352