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Abstract: Due to current climate changes and drought periods, it is recommended to cultivate soybean
in no-plowing tillage systems. The conducted research is to contribute to a partial explanation of the
course of photosynthesis processes in soybean plants, which may facilitate the decision making before
sowing this species in a given tillage system. The aim of the study was to assess the dependence of
photosynthesis on the yield and variable hydrothermal conditions of tillage systems, as well as their
impact on the productivity and quality of soybean. A field experiment was carried out using soybean
cv. Merlin, between 2017 and 2019 in Boguchwała, Poland. The plant tested was soybean cv. Merlin.
The tillage systems—conventional (CT), reduced (RT) and no-tillage (NT)—were the experimental
factors. The use of CT and RT influenced growth in leaf area index (LAI) and soil plant analysis
development (SPAD) and improved the photosynthesis process, which increased the values of the
maximal quantum yield of the photolysis system of the donor side of PSII (Fv/F0), and performance
index of PS II (PI) and net photosynthetic rate (PN), stomatal conductance (gs) parameters, compared
to NT. CT treatment increased the yield of soybean plants to significantly higher compared with NT
treatment, and seeds treated with the CT treatment contained more protein. The content of fat and
phosphorus (P) were significantly higher in the NT system and the content of potassium (K) from RT.
In 2017, under drought conditions (the June–September period), the seed yield of NT was similar
to the yield of CT and significantly higher than the yield of RT. The higher value of hydrothermal
coefficients in 2019 resulted in an increase in photosynthesis parameters, seed yield as well as the
content of fat and elements P and K.

Keywords: soil-tillage systems; LAI; SPAD; chlorophyll fluorescence; gas exchange; yield;
chemical composition

1. Introduction

In Poland, the increased interest in the cultivation of soybeans results mainly from
for higher requirements for vegetable protein in the feed industry, as a source of high-
protein, low-fat and roasted soybean meal used in animal nutrition [1,2]. Due to the high
nutritional value of soybeans, there is growing interest in this species from society looking
for healthy food. Therefore, soybeans are grown not only in a conventional system but
also in an organic system. Climatic conditions, especially temperature and rainfall, and
pathogens, are factors that limit the yields of soybeans [3–7]. Therefore, the reduced-tillage
(RT) or no-tillage (NT) systems not only increase the organic-carbon content in the soil and
minimize the risk of soil erosion, but also improve the water storage and use capacity of
the soil and reduce fluctuations in its temperature [1,8]. According to other studies [5,9–11],
the cultivation of soybean in various tillage systems does not significantly affect the yield
and quality characteristics (protein, fat), nor the mineral composition. The benefits of
using no-tillage systems can be seen in seasons characterised by higher temperatures and
less rainfall, which results in better water retention in the soil caused by less evaporation
and changes in the water permeability of the soil [12,13]. NT can cause some nutrients
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(K, Zn) to accumulate in the topmost layers of to the soil in relation to the lower layers of
the soil profile and, therefore, may be less available to crops. Studies conducted by other
authors prove that conventional tillage (CT), in comparison with reduced tillage systems
(RT, NT), affects a higher yield of soybeans and protein content, and mineral composition
of seeds [5,14]. From the opposing point of view, Toliver et al. [15] demonstrate that, on
loamy soil, the risk of decline in soybean yield at NT is reduced compared to CT on sandy
soil. The studies by Farmaha et al. [3] show that the soybean yield in NT was lower by
0.29 t·ha−1 than in the strip-till system (ST), which combines the benefits of NT and CT. It
is worth emphasizing that the long-term research conducted in Poland by Gawęda et al. [2]
show a higher yield of soybean in CT compared to NT, especially in the years with high
temperatures throughout the growing season and average rainfall throughout the seed-
ripening period. Variable hydrothermal conditions in some regions of the country (Poland)
to a large extent modify not only the yield but also the content of nutrients in soybean [16]
and pea [17] seeds; thus, they eliminate the influence of agrotechnical factors. Soybean is a
plant that is affected by environmental stresses, especially unfavourable temperatures and
not enough rainfall [4,5]. In particular, cold temperatures are a factor that largely decides
the productivity of this plant [18,19]. Therefore, measurements of physiological parameters
were used to evaluate the influence of abiotic stress factors on light-dependent reactions,
taking into account the effects of nitrogen deficiency [20,21], salt and heat stress [22,23],
and herbicides used [22,24]. However, the research conducted so far does not assess the
influence of tillage systems on physiological parameters, and there is little research on the
mineral composition of soybeans. Observation of these research effects may contribute to a
partial explanation of the influence of tillage systems on the photosynthesis rate and other
physiological parameters, as well as the fluctuation in the mineral composition and the
level of soybean yield.

The purpose of the research was to evaluate the result of tillage systems (CT, RT and
NT) on yielding and seed quality as well as the physiological parameters of soybean under
various hydrothermal conditions.

2. Materials and Methods
2.1. Experiment and Cultivation Management

The field experiment was conducted between 2017 and 2019. It was situated at
Advisory Center in Boguchwała (49◦59′ N, 21◦56′ E), Podkarpackie province, Poland. The
experiment was conducted in 3 replications in a randomised block design (8 × 100 m),
divided into 3 split plots. The tested factor was tillage systems: conventional (CT), reduced
tillage (RT), and direct seeding—no tillage (NT) (Table 1).

Table 1. Characteristics of the soil-tillage systems evaluated in this study.

Tillage System
Soil Treatment

After-Harvest Autumn Spring

CT
shallow plowing
(10–12 cm deep),

harrowing

plowing
(25–30 cm deep)

combined tillage unit
(cultivator and string

roller)

RT disking (13–15 cm
deep) combined tillage unit (cultivator and string roller)

NT glyphosate at dose
of 4.0 dm3 ha−1 no plowing

sown directly into the
stubble with a seeder

with double disc
coulters

CT—conventional tillage, RT—reduced tillage, NT—no-tillage.

The breeder of Glycine max cv. Merlin was the Saatbau Poland Sp. z o.o, Środa Śląska,
Poland. Before sowing, soybeans were treated using Fix Fertig technology. For starting
fertilization with nitrogen, ammonium nitrate 34% was used, at a rate of 30 N kg·ha−1.
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Phosphorus (P: triple superphosphate 46% P2O5) and potassium (K: potassium salt 60%
K2O) fertilizers were applied in the amount of 30 P kg·ha−1 and 55 K kg·ha−1. In all the
years of research, soybeans were sown between April 25 and May 5, at a sowing density
of 65 seeds.m2 with row spacing of g 30 cm, to a depth of 3–4 cm. Winter wheat was the
previous crop. Dispersive Afalon 450 SC (linuron- 1.5 dm−3·ha−1, Adama Polska Sp. z o.o.,
Warszawa, Poland) was used for weed control. Mineral-fertilization and plant-protection
products were used in the appropriate developmental stages of soybean, according to the
BBCH scales [25].

2.2. Morpho-Physiological Measurements

Soil plant analysis development (SPAD), leaf area index (LAI), chlorophyll fluores-
cence, and gas exchange measurements were performed in the morning in the flowering
phase (65 BBCH) of soybeans.

2.2.1. LAI and SPAD

Measurement of LAI was carried out using the LAI 2000 apparatus (LI-COR, Lincoln,
NE, USA), by taking 1 measurement over the crop and 4 measurements inside the crop [26].
Measurements of SPAD were carried out with the use of apparatus SPAD-502 P Konica
Minolta (Tokyo, Japan) on 20 randomly selected plants [27].

2.2.2. Chlorophyll Fluorescence

Chlorophyll a fluorescence measurements were performed using a portable chloro-
phyll fluorescence meter (Pocket PEA, Norfolk, United Kingdom). Soybean leaves were
dark-adapted using leaf clips for 30 min [28]. Chlorophyll fluorescence measurements were
performed on four randomly selected plants. The following parameters were analysed:
the maximal quantum yield of photolysis system of the donor side (Fv/F0), the maximal
quantum yield of PS II (Fv/Fm) and the performance index of PS II (PI).

2.2.3. Gas Exchanges

Portable photosynthesis measurement system LCpro-SD (ADC BioScientific Ltd., Hod-
desdon, UK) was used to perform gas-exchange measurements. The following parameters
were analysed during the measurements: net CO2 assimilation (PN, µmol CO2 m−2 s−1),
transpiration rate (E, mmol H2O m−2 s−1), stomatal conductance (gs, mmol H2O m−2 s−1)
and intracellular CO2 concentration (Ci, µmol CO2 m−2 s−1). Water-use efficiency (WUE)
was calculated as PN divided by E. Gas-exchange measurements were performed on four
randomly selected plants. When taking measurements, the light intensity was 1500 mol
m−2 s −1

, and the leaf-chamber temperature was 28 ◦C [29,30].

2.3. Laboratory Analysis

The protein and fat content were determined by near-infrared spectroscopy (NIRS)
using an MPA FT-NIR spectrometer (Bruker, Billerica, MA, USA). The MPA FT-NIR spec-
trometer was calibrated using appropriate standard files of known composition using
referenced analytical methods. For the measurements, the infrared-light spectrum was
used with wavelengths of 2.18 µm for protein and 2.31 and 2.33 µm for fat. The yield of
these components were calculated from the product of the seed yield and the percentage of
protein and fat. Seed yield per 1 ha was calculated, taking into account 15% moisture [31,32].

To determine macroelements and microelements, plant samples were mineralized in a
20:5:1 mixture of concentrated acids HNO3:HClO4:HS2O4. Determinations were carried
out in an open system, in a Tecator heating block. The content of Ca, K, Mg, Zn, Mn, Cu,
Fe in the mineralized samples was determined using the method of atomic-absorption
spectroscopy (FAAS), with the Hitachi Z-2000 apparatus (Tokyo, Japan). The content of
P was determined with colorimetry with the vanadium–molybdenum method, using a
UV-VIS spectrophotometer (Shimadzu, Kyoto, Japan). For determination of Ca, Mg and K,
an addition of lanthanum (La) was used (to a concentration of 0.1% in solution).



Sustainability 2022, 14, 4903 4 of 14

2.4. Soil and Meteorological Conditions

The experiment was founded in sandy-loam soil, Fluvic Cambisols (CMfv) according
to the WRB FAO [33]. The soil was neutral, from 7.10 to 7.18 mol L−1 KCl. Corg content
(with Tiurin’s method) was moderate (from 0.99 to 1.05%). The amount of N min (in
0.01 CaCl2 solution) varied from 54.1 to 64.5 kg·ha−1. The content of available P, K and Mg
were very high or high and micronutrients were medium (Table 2).

Table 2. Results of soil analysis (0–60 m).

Years
P K Mg Fe Zn Mn Cu

[mg kg−1]

2017 203.0 274.1 26.2 2277.0 13.8 398.0 6.1
2018 130.2 181.0 51.2 2514.0 13.9 252.1 6.3
2019 74.0 251.2 55.7 2219.0 12.7 262.8 6.8

P—phosphorus, K—potassium, Mg—magnesium, Fe—iron, Zn—zinc, Mn—manganese, Cu—copper. According
to the methods: P, K—Egner–Riehm (0.04 mol/L C6H10CaO6); Mg—Schachtschabel (0.0125 mol/L CaCl2); Fe, Zn,
Mn, Cu—Rinkis (1 mol/L HCl).

The average air temperature in the years of the study was higher than the long-term
average, with May in 2019 and September in 2018 being cooler (Figure 1). Each year, the
rainfall was lower compared to the long-term total, and May 2019 and July 2018 were
particularly rainy. The thermal and rainfall conditions in the spring–summer vegetation
period in 2017 and 2018 can be classified as very dry (k = 0.6) and dry (k = 0.9), and, in 2019,
as optimal (k = 1.3) (Table 3).
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Figure 1. Weather conditions during the vegetation periods of 2017–2019.
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Table 3. Sielianinov’s hydrothermal index (k) in the spring–summer vegetation period.

Year
Month

Mean
April May June July August September

2017 1.25 rd 1.00 d 0.38 ed 0.61 vd 0.23 ed 0.37 ed 0.65 vd
2018 0.21 ed 1.30 rd 0.95 d 1.87 rh 0.65 vd 0.36 ed 0.89 d
2019 1.74 rh 2.60 vh 0.98 d 0.68 vd 0.85 d 0.92 d 1.30 rd

long term 1.76 rh 1.85 rh 1.60 o 1.58 o 1.25 rd 1.00 d 1.51 o

Sielianinov’s index (k = (p × 10)/Σt), classification according to Skowera et al. [34]: ed/vd/d/rd–extremely
dry/very dry/dry/rather dry, o—optimal, rh/h/vh/eh—rather humid/humid/very humid/extremely humid.

2.5. Statistical Analysis

The obtained results were subjected to an analysis of variance (ANOVA). Significant
differences were analysed with Tukey’s (LSD—least significant difference) test (p = 0.05)
using TIBCO Statistica 13.3 program (TIBCO Software Inc, Palo Alto, CA, USA).

3. Results and Discussion
3.1. Physiological Parameters

Chlorophyll is one of the most important plant pigments, and its content significantly
determines the photosynthesis process and influences chlorophyll fluorescence [35]. Mea-
surement of chlorophyll content with the use of the SPAD chlorophyll meters is therefore
an effective method of assessing the nutritional status of plants grown under various
environmental conditions [36]. The leaf area index (LAI), which describes the ratio of the
leaf area to the unit of soil area, is an important parameter presenting the growth and
development rate of crops and determines the efficiency of the photosynthesis process.
Therefore, this parameter is important in the assessment of the state of field growth and the
yielding potential of crops [37]. The SPAD and LAI values’ indices reached significantly
higher values in the CT system in comparison to RT and NT. The value of the SPAD index
in CT was higher in comparison to RT and NT and amounted to 6.1 and 10.8%, respectively,
and the LAI index 13.0 and 9.6%. However, no significant differences were found between
RT and NT in the SPAD and LAI measurements. Research conducted by Houx et al. [1]
showed that the better nutrition of soybean plants in CT, compared to RT and NT, resulted
from a higher nutrient uptake, due to lower soil compaction. The studies of Tang et al. [38]
indicated an increase in SPAD and LAI values in soybean in CT compared to NT by as
much as 55.0 and 9.1%, with the cultivation of soybean in CT combining with drip irrigation
technology (Table 4). The content of chlorophyll in soybean grown in various tillage sys-
tems is also influenced by the weather conditions during the experiment, which, similarly
to the authors’ own research, was also demonstrated in the work of Sabo et al. [39].

According to Murchie and Lawson [40], chlorophyll a fluorescence is an important
indicator of photosynthesis and provides information about the functioning of the photo-
synthetic apparatus in plants in response to changing environmental and agrotechnical
conditions. Measurements of chlorophyll fluorescence can therefore be used to identify
drought-tolerant plant genotypes that react otherwise under different cultivation condi-
tions [41]. The use of CT and RT in the experiment stimulated the functioning of photosyn-
thesis, which resulted in the obtained higher values of chlorophyll fluorescence parameters
(Fv/F0 and PI) compared to NT. On the other hand, tillage systems did not significantly
influence the values of the Fv/Fm index. Stronger stress in the dull soybean flowering
phase (BBCH 65) resulted in significantly lower values of Fv/F0 and PI parameters in
the case of cultivation in NT, as compared to RT and CT. Studies carried out by Hussain
et al. [42] indicated that, under and without shading conditions, the value of the Fv/Fm is
similar. On the other hand, research conducted by Khalid et al. [43], in pots, on soybean
plants grown under of various shading conditions, indicated a lower value of the Fv/Fm
parameter compared to the control.
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Table 4. Field measurements of the stand and selected chlorophyll-fluorescence indicators.

Specification SPAD LAI Fv/Fm Fv/F0 PI

Tillage (T)

CT 47.3 a 5.62 a 0.764 a 3.44 a 5.54 a

RT 44.1 b 4.89 b 0.762 a 3.37 a 5.28 a

NT 42.2 b 5.08 b 0.731a 3.03 b 4.22 b

Year (Y)

2017 40.3 b 4.99 b 0.766 a 2.42 b 4.49 b

2018 42.9 b 5.19 ab 0.701 a 3.63 a 5.11 b

2019 50.3 a 5.41 a 0.791 a 3.79 a 5.44 a

Mean 44.5 5.20 0.753 3.28 5.01

ANOVA

T *** ** ns * *
Y * * ns * *

T × Y *** ns ns ** **

***, **, * and ‘ns’ indicate signifficant difference, p < 0.001, p < 0.01 and p < 0.05 and non-significant differences,
respectively, according to the Tukey’s honestly significant difference (LSD) post hoc test. Different letters in
columns indicate a statistical difference. SPAD—soil plant analysis development, LAI—leaf area index, Fv/Fm—
maximal quantum yield of PS II, Fv/F0—maximal quantum yield of photolysis system of the donor site of PSII,
PI—performance index of PS II, CT—conventional tillage; RT—reduced tillage; NT—no tillage.

In own research, soybean plants in the NT system produced leaves containing thinner
palisade tissue, which resulted in a reduction in photosynthetic capacity, which reduced the
provision of photosynthetic products, as pointed out by Gong et al. [20]. Gratani et al. [44]
indicated that, under the conditions of different row spacing, the mutual cover of each other
reduces the access to light for soybean plants and ultimately it reduces photosynthetic rate.
The lowest values of LAI, SPAD (Figure 2a) as well as Fv/F0 (Figure 2b) and PI (Figure 2c)
were obtained in 2017, when the growing season was very dry (k = 0.6). Under conditions
of drought stress, soybean reacts with a smaller number of newly formed leaves with a
smaller LAI area and a higher rate of their falling, and the Fv/Fm and PI parameters are
reduced [41,45].
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Figure 2. (a–c) Effect of tillage systems on SPAD and selected chlorophyll-fluorescence parameters.
Means denoted by a different letter indicate significant differences according to ANOVA (followed
by Tukey’s LSD test, p = 0.05). SPAD—soil plant analysis development, Fv/Fm—maximal quantum
yield, PI—performance index of PS II, CT—conventional tillage; RT—reduced tillage; NT—no tillage.
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The analysis of gas-exchange parameters, apart from chlorophyll fluorescence, is also
an important and non-invasive method of evaluating the course of the photosynthesis
process [46] and it can be used in field studies of crops growing in variable tillage sys-
tems [47]. In drought conditions, the stomata are closed, which is the plant’s response
to an insufficient amount of water in the soil. This process results in a reduction in the
efficiency of photosynthesis as a result of the inhibition of carbon fixation in the Calvin–
Benson cycle [48]. The highest values of PN, gs, and E were in the CT system, which may
prove a more efficient gas exchange between the leaf and the environment in this tillage
system. There were no statistically significant differences between the CT system and RT
systems for the PN parameter. The decrease in PN in NT and RT to CT was 9.0 and 12.3%,
respectively. In addition, the values of gs and E parameters for RT and NT systems did not
differ statistically. Similarly, the research by Bojarszczuk [49] with Pisum sativum showed
the lowest values (11.1 mmol CO2 m−2 s−1) of photosynthesis activity, and the decrease
in PN values in the RT and NT systems compared to CT was 5.0 and 14.0%. Yao et al. [50]
showed that the appropriate soil mulching and straw fertilization of soybean in the NT
system compared to CT reduces the PN, E and WUE parameters (Table 5).

Table 5. Selected gas-exchange indicators.

Specification
PN

(µmol (CO2)
m−2 s−1)

gs
(mol (H2O)
m−2 s−1)

E
(mmol (H2O)

m−2 s−1)

Ci
(mmol L−1)

WUE
(mmol
mol−1)

Tillage (T)

CT 22.0 a 0.611 a 3.99 a 214.7 a 5.52 b

RT 21.2 a 0.543 b 3.69 ab 216.4 a 5.74 a

NT 19.3 b 0.537 b 3.39 b 217.8 a 5.71 a

Year (Y)

2017 20.0 b 0.501 b 3.45 b 217.7 a 5.81 a

2018 20.6 b 0.525 b 3.58 b 216.2 a 5.76 a

2019 21.9 a 0.665 a 4.05 a 214.9 a 5.41 b

Mean 20.8 0.564 3.69 216.3 5.66

ANOVA

T *** ** ** ** **
Y * * *** ns **

T × Y * * *** *** ***
***, **, * and ‘ns’ indicate signifficant difference p < 0.001, p < 0.01 and p < 0.05 and non-significant differences,
respectively, according to the Tukey’s honestly significant difference (LSD) post hoc test. Different letters in
columns indicate a statistical difference. PN—net CO2 assimilation, gs—stomatal conductance, E—transpiration
rate, Ci—intracellular CO2 concentration, WUE—water-use efficiency, CT—conventional tillage; RT—reduced
tillage; NT—no tillage.

According to Lawlor [51], the intensity of parameters PN, gs, and E can be highly
variable, which can be explained by different plant needs for photosynthesis products,
depending on the development stage, variety, genetic properties of the plant and the
external environment.

In our own research, the tillage systems were not differentiated by Ci parameter, but in
NT was indicated the highest, 217.8 mmol CO2·m−2·s−1, and in CT the lowest, 214.7 mmol
CO2 m−2·s−1. According to Liu et al. [52], a higher Ci value and reduction in PN in the
NT system, compared to CT, may limit the access to substrates needed in the assimilation
process, which affects the intensity of photosynthesis. In addition, Bojarszczuk [49] showed
that, in the NT compared to the CT system, the decrease in PN in Pisum sativum leaves was
associated with an increase in Ci, which consequently resulted in the closure of the stomata
and decreased gs values, which was also proven in our own research with soybean.

In the CT system were indicated the lowest, by 3.8%, value of the WUE index compared
to RT, and by 3.3% in the case of NT. There were no significant differences in WUE values
between the RT and NT systems. Research by Bărdaş et al. [53] confirms the increase in
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WUE in soybean in the RT system compared to CT system, by as much as 37.0%, and this
value depended on the variety and year of research. According to Lamptey et al. [54],
the NT system increases the storage of water in the soil by reducing the negative effects
associated with ploughing in the CT system, which include the destruction of the aggregate
structure and the reduction in organic matter, which intensifies water loss. The higher
values of WUE in the RT and NT systems than in CT prove a kind of compromise between
CO2 uptake and H2O loss, i.e., effective water management by plants in NT, especially
during a drought period [55]. In our own research, in the growing season of 2019, compared
to 2018 and 2017, the gas-exchange parameters (PN, gs and E) were significantly higher
(Figure 3a–d). In the extremely dry (k = 0.2) and dry (k = 0.6) years of 2017 and 2018, the
WUE value was not statistically different in the RT and NT systems, and was significantly
higher than in the CT system (Figure 3e). This proves that no-tillage crops (RT and NT)
alleviate drought stress during the growing season of soybeans.
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Figure 3. (a–e). Effect of tillage systems on selected gas-exchange parameters. Means denoted by
a different letter indicate significant differences according to ANOVA (followed by Tukey’s LSD
test, p = 0.05). PN—net CO2 assimilation, gs—stomatal conductance, E—transpiration rate, Ci—
intracellular CO2 concentration, WUE—water-use efficiency. CT—conventional tillage; RT—reduced
tillage; NT—no tillage.
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3.2. Protein and Fat Content

The protein and fat content of soybeans were influenced by the tillage systems. The
use of CT and RT caused an increase in protein content in seeds by 4.4 and 5.5% compared
to NT (Table 6).

Table 6. Selected seed-quality elements and yield.

Specification
Protein
Content
(% DM)

Protein Yield
(kg ha−1)

Fat Content
(% DM)

Fat Yield
(kg ha−1)

Seed Yield
(t ha−1)

Tillage (T)

CT 34.1 a 1179.0 a 22.8 b 794.0 a 3.47 a

RT 34.5 a 1080.9 ab 22.4 b 705.6 a 3.14 b

NT 32.6 b 998.8 b 24.4 a 755.3 a 3.08 b

Year (Y)

2017 35.7 a 1036.8 a 22.1 c 640.5 b 2.90 c

2018 33.9 b 1075.0 a 23.4 b 739.3 ab 3.17 b

2019 31.6 c 1146.8 a 24.2 a 875.1 a 3.62 a

Mean 33.7 1082.6 23.2 751.6 3.23

ANOVA

T ** ** ** ns ***
Y *** ns * ** ***

T × Y ns ns ** ns **
***, **, * and ‘ns’ indicate signifficant difference at p < 0.001, p < 0.01 and p < 0.05 and non-significant differences,
respectively, according to the Tukey’s honestly significant difference (LSD) post hoc test. Different letters in
columns indicate a statistical difference. CT—conventional tillage; RT—reduced tillage; NT—no tillage, DM—
dry matter.

The lowest protein content (32.6%) and the highest fat content (24.4%) were found in
NT compared to CT and RT. In CT, protein yield was significantly higher than in NT. No
significant differences were found in the protein yield between CT and RT and between
RT and NT. Fat yield did not depend on tillage systems. Adamič and Leskovšek [9]
achieved higher protein and fat content in soybeans in the CT and RT systems compared to
NT system.

Research conducted by Gawęda et al. [2] showed a lower protein and higher fat
content in soybean seeds in CT in relation to NT cultivated in monoculture. According to
Szwejkowska [17], the protein content in legumes may be influenced by several factors,
including cultivar, climatic conditions and management factors (e.g., nitrogen fertilization).
Sobko et al. [10] and Popowič et al. [56] indicated that both the protein and fat content
are mainly shaped by weather conditions in the years of the research, which was also
confirmed by their own research. The accumulation of protein in the seeds was favoured
by a higher average daily temperature and a shortage of precipitation in 2017, while the
accumulation of fat was favoured by a lower average daily temperature and an increased
amount of precipitation in 2019. The highest protein and fat yields were achieved in 2019.

3.3. Seed Yield

The yield of soybeans significantly depended on the tillage systems and years of
research (Table 6). The highest yield was obtained in CT in compared to RT (by 4.5%) and
the NT system (by 3.5%). Research conducted by Gawęda et al. [2] verified the increase
in the yield of soybeans by 6.8% in the CT system compared to the NT system. Monsefi
et al. [14] achieved a significantly lower value of soybean yields (up to 26.0%) in NT
compared to CT, while Adamič and Leskovšek [9] achieved an average yield of 4.34 t·ha−1,
which was similar in CT and RT.
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The highest seed yield, 3.86 t·ha−1, was achieved in CT in 2019, when favourable
thermal and precipitation conditions (k = 1.3) occurred throughout the period of pod
formation and seed ripening. In 2018, the seed yield in CT was higher by 10.0% than in RT
and by 13.0% than in NT. In 2017, when the period from June to September was extremely
dry (k = 0.2) and dry (k = 0.6), the seed yield in CT and NT was similar and higher than in
RT (Figure 4). In the case of 2017, where the period from June to September was extremely
dry (k = 0.2) and dry (k = 0.6), the seed yield in CT and NT was similar and higher than
in RT. According to Thiagalingam et al. [8], the higher seeds yields of soybean plants in
NT can be achieved, in particular, in growing seasons characterised by lower rainfall and
higher temperatures, which results in stable temperature conditions in the soil (0–15 cm
layer) and better soybean emergence. Moreover, according to Fecák et al. [57], the reduction
in the soybean yield in no-tillage systems (RT, NT) on heavy soils is caused by a reduction
in water infiltration and nutrient absorption, and a lower soil temperature due to the soil
being covered with post-harvest residues. Similar relationships were found in the research
by Piper and Boote [5], where drought stress in the years of the research caused a significant
reduction in soybean productivity, especially when, in the seed formation phase, the water
deficit in the soil occurred.
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Figure 4. Effect of tillage systems on seed yield. Means denoted by a different letter indicate
significant differences according to ANOVA followed by Tukey’s LSD test, p = 0.0. CT—conventional
tillage; RT—reduced tillage; NT—no tillage.

3.4. Mineral Composition

Compared to the CT and NT, the soybean grown in RT contained more K. The dif-
ferences in K content between RT and the other systems ranged from 3.2 to 3.4 g·kg−1

(Table 7). On the other hand, the NT system, compared to CT and RT, increased the P in
seeds (1.6–1.8 g·kg−1). According to Rodrigues et al. [58], the absence of soil rotations in
NT decreases the contact between the applied P and the soil colloids, and thus increases
the availability of P to soybean plants. In addition, Fernández et al. [59] showed higher
K absorption in the topsoil in NT, especially when there is periodic rainfall during the
growing season. Farmaha et al. [3] reported that, in CT, excessive drying of the soil, in
particular throughout the soybean ripening period, may decrease the absorption of P and
K and reduce the content of these macronutrients in seeds.
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Table 7. The nutrient content of seeds.

Specification
P K Ca Mg Fe Cu Mn Zn

[g kg−1 DM] [mg kg−1 DM]

Tillage (T)

CT 6.3 a 15.0 b 0.8 a 2.0 a 115.4 a 20.9 a 21.5 a 52.1 a

RT 6.5 b 18.2 a 1.0 a 2.4 a 114.9 a 20.1 a 20.4 a 50.3 a

NT 8.1 b 14.8 b 0.7 a 2.1 a 117.7 a 19.8 a 19.6 a 49.9 a

Year (Y)

2017 6.4 b 14.6 b 0.6 a 1.5 a 114.3 a 26.9 a 24.3 a 57.9 a

2018 7.0 b 16.0 b 0.8 a 2.3 a 117.4 a 16.4 b 20.4 b 52.1 b

2019 7.5 a 17.5 a 1.0 a 2.6 a 116.2 a 17.4 b 16.8 c 42.3 c

Mean 7.0 16.0 0.8 2.1 116.0 20.2 20.5 50.8

ANOVA

T ** ** ns ns ns ns ns ns
Y ** ** ns ns ns ** *** ***

T × Y ns ns ns ns ns ns ns ns

***, **, and ‘ns’ indicate signifficant difference ata p < 0.001, p < 0.01 and p < 0.05 and non-significant differences,
respectively, according to the Tukey’s honestly significant difference (LSD) post hoc test. Different letters in
columns indicate a statistical difference. P—phosphorus, K—potassium, Mg—magnesium, Fe—iron, Zn—zinc,
Mn—manganese, Cu—copper, CT—conventional tillage; RT—reduced tillage; NT—no tillage, DM—dry matter.

In our own research, the mean Ca and Mg content were 0.8 and 2.2 g·kg−1 and were
not influenced by the tillage systems. A comparable content of these elements for cv Merlin
soybean was achieved by Biel et al. [16] in the organic and conventional systems, and a
higher content was obtained by Szostak et al. [60], from 1.63 to 2.07 g·kg−1 Ca and from 3.20
to 3.60 g·kg−1 Mg, depending on the fertilisation dose of N. In the presented research, the
content of Cu, Mn, and Zn in soybeans increased in CT > RT > NT, and Fe content decreased
in NT < RT < CT. These dependencies were not statistically significant. In addition, Houx
et al. [1], in soybean seeds cultivated in CT, found a significantly lower Fe content (by 7.7%),
and a Zn content higher (by 5.5%) than in NT. The differences in the content of Cu and
Mn between the CT and NT systems were insignificant. Biel et al. [16] showed a higher
content of Mn and Cu in soybeans from the conventional than the organic system. Jarecki
et al. [61], using a bacterial modifier in combination with a nitrogen dose and microelement
fertilization, increased the content of Fe, and no changes in the content of Cu, Mn, and Zn
in soybeans occurred. In our own conducted study, the mineral composition of soybeans
was variable over the years of the experiment. In the very dry 2017 (k = 0.6) and dry 2018
(k = 0.9) years of experiment, significantly more Cu, Mn and Zn in seeds were stated [4]. In
2019 (k = 1.3), which was characterised by optimal thermal and precipitation conditions,
a better accumulation of P and K in soybeans was observed, which was also observed by
Houx et al. [1].

4. Conclusions

The decisive influences on the photosynthesis process and the yield and quality of
soybean seeds had the variability of hydrothermal conditions in the research years and the
tillage systems. More advantageous hydrothermal conditions in the research years resulted
in a higher seed yield, and the better values of physiological parameters and the amount of
protein in the CT system. In the NT and CT systems, with rainfall deficiencies, a similar
seed yield was obtained; furthermore, the seeds contained more fat (in particular in NT),
P and K. This study has presented that, in soybean cultivation, systems RT and NT may
be a better option than CT, especially in regions exposed to unfavourable hydrothermal
conditions during the vegetation season. The evaluation of the photosynthesis of soybean
plants is, therefore, an indicator of the species’ response to various hydrothermal conditions.
Moreover, the knowledge of these physiological parameters will make it easier for the
producer (farmer) to decide on the choice of tillage system, but also the appropriate plant
density, sowing amount, and row spacing of this species.
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