Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = photokilling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4551 KiB  
Article
With Blue Light against Biofilms: Berberine as Natural Photosensitizer for Photodynamic Inactivation of Human Pathogens
by Annette Wimmer, Michael Glueck, Jun Liu, Michael Fefer and Kristjan Plaetzer
Photonics 2024, 11(7), 647; https://doi.org/10.3390/photonics11070647 - 8 Jul 2024
Cited by 1 | Viewed by 1934
Abstract
Evolving antibiotic resistance of bacteria is a prevailing global challenge in health care and requires the development of safe and efficient alternatives to classic antibiotics. Photodynamic Inactivation (PDI) has proven to be a promising alternative for treatment of a broad range of microorganisms. [...] Read more.
Evolving antibiotic resistance of bacteria is a prevailing global challenge in health care and requires the development of safe and efficient alternatives to classic antibiotics. Photodynamic Inactivation (PDI) has proven to be a promising alternative for treatment of a broad range of microorganisms. Photodynamic Inactivation uses photoactive molecules that generate reactive oxygen species (ROS) upon illumination and in the presence of oxygen, which immediately kill pathogenic target organisms. Relevant photoactive properties are provided by berberine. Originally extracted from Barberry (Berberis vulgaris), it is a natural compound widely used in Traditional Chinese Medicine for its antimicrobial and anti-inflammatory effects. With this study, we demonstrated the potential of berberine chloride hydrate (Ber) as a photosensitizer for PDI of important human pathogens, Gram(+) Staphylococcus capitis subsp. capitis, Gram(+) Staphylococcus aureus, and Gram(−) Escherichia coli. In vitro experiments on planktonic and biofilm cultures were conducted focusing on Ber activated with visible light in the blue wavelength range. The number of planktonic S. capitis cells was reduced by 7 log10 steps using 100 µM Ber (5 min incubation, illumination with 435 nm LED array, radiant exposure 25 J/cm2). For an antibacterial effect of 4 log10 steps, static S. capitis biofilms required 1 mM Ber, a drug-to-light interval of 60 min, and illumination with 100 J/cm2. Almost all planktonic cells of Staphylococcus aureus could be photokilled using 100 µM Ber (drug-to-light interval of 30 min, radiant exposure 25 J/cm2). Biofilms of S. aureus could be phototreated (3 log10 steps inactivation) when using 1 mM Ber incubated for 5 min and photoactivated with 100 J/cm2. The study is highlighted by the proof that PDI treatment using Ber showed an antibacterial effect on Gram(−) E. coli. Planktonic cells could be reduced by 3 log10 steps with 100 µM Ber (5 min incubation, 435 nm, 25 J/cm2). With 5 mM ethylenediamine tetraacetic acid disodium salt dihydrate (Na2EDTA) or 1.2% polyaspartic acid (PASA) in addition, a relative inactivation of 4 log10 steps and 7 log10 steps, respectively, was detectable. Furthermore, we showed that an antibacterial effect of 3.4 log10 towards E. coli biofilms was given when using 1 mM Ber (5 min incubation, 435 nm, 100 J/cm2). These results underscore the significance of PDI-treatment with Ber as a natural compound in combination with blue light as valuable antimicrobial application. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

15 pages, 2138 KiB  
Review
Pro-Tumor Activity of Endogenous Nitric Oxide in Anti-Tumor Photodynamic Therapy: Recently Recognized Bystander Effects
by Albert W. Girotti, Jerzy Bazak and Witold Korytowski
Int. J. Mol. Sci. 2023, 24(14), 11559; https://doi.org/10.3390/ijms241411559 - 17 Jul 2023
Cited by 7 | Viewed by 1703
Abstract
Various studies have revealed that several cancer cell types can upregulate inducible nitric oxide synthase (iNOS) and iNOS-derived nitric oxide (NO) after moderate photodynamic treatment (PDT) sensitized by 5-aminolevulinic acid (ALA)-induced protoporphyrin-IX. As will be discussed, the NO signaled cell resistance to photokilling [...] Read more.
Various studies have revealed that several cancer cell types can upregulate inducible nitric oxide synthase (iNOS) and iNOS-derived nitric oxide (NO) after moderate photodynamic treatment (PDT) sensitized by 5-aminolevulinic acid (ALA)-induced protoporphyrin-IX. As will be discussed, the NO signaled cell resistance to photokilling as well as greater growth and migratory aggressiveness of surviving cells. On this basis, it was predicted that diffusible NO from PDT-targeted cells in a tumor might enhance the growth, migration, and invasiveness of non- or poorly PDT-targeted bystander cells. This was tested using a novel approach in which ALA-PDT-targeted cancer cells on a culture dish were initially segregated from non-targeted bystander cells of the same type via impermeable silicone-rimmed rings. Several hours after LED irradiation, the rings were removed, and both cell populations were analyzed in the dark for various responses. After a moderate extent of targeted cell killing (~25%), bystander proliferation and migration were evaluated, and both were found to be significantly enhanced. Enhancement correlated with iNOS/NO upregulation in surviving PDT-targeted cancer cells in the following cell type order: PC3 > MDA-MB-231 > U87 > BLM. If occurring in an actual PDT-challenged tumor, such bystander effects might compromise treatment efficacy by stimulating tumor growth and/or metastatic dissemination. Mitigation of these and other negative NO effects using pharmacologic adjuvants that either inhibit iNOS transcription or enzymatic activity will be discussed. Full article
Show Figures

Figure 1

19 pages, 3661 KiB  
Article
Ιnclusion Complexes of Magnesium Phthalocyanine with Cyclodextrins as Potential Photosensitizing Agents
by Eleni Kavetsou, Charalampos Tsoukalas-Koulas, Annita Katopodi, Alexandros Kalospyros, Eleni Alexandratou and Anastasia Detsi
Bioengineering 2023, 10(2), 244; https://doi.org/10.3390/bioengineering10020244 - 13 Feb 2023
Cited by 8 | Viewed by 2664
Abstract
In this work, the preparation of inclusion complexes, (ICs) using magnesium phthalocyanine (MgPc) and various cyclodextrins (β-CD, γ-CD, HP-β-CD, Me-β-CD), using the kneading method is presented. Dynamic light scattering (DLS) indicated that the particles in dispersion possessed mean size values between 564 to [...] Read more.
In this work, the preparation of inclusion complexes, (ICs) using magnesium phthalocyanine (MgPc) and various cyclodextrins (β-CD, γ-CD, HP-β-CD, Me-β-CD), using the kneading method is presented. Dynamic light scattering (DLS) indicated that the particles in dispersion possessed mean size values between 564 to 748 nm. The structural characterization of the ICs by infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy provides evidence of the formation of the ICs. The release study of the MgPc from the different complexes was conducted at pH 7.4 and 37 °C, and indicated that a rapid release (“burst effect”) of ~70% of the phthalocyanine occurred in the first 20 min. The kinetic model that best describes the release profile is the Korsmeyer–Peppas. The photodynamic therapy studies against the squamous carcinoma A431 cell line indicated a potent photosensitizing activity of MgPc (33% cell viability after irradiation for 3 min with 18 mW/cm2), while the ICs also presented significant activity. Among the different ICs, the γ-CD-MgPc IC exhibited the highest photokilling capacity under the same conditions (cell viability 26%). Finally, intracellular localization studies indicated the enhanced cellular uptake of MgPc after incubation of the cells with the γ-CD-MgPc complex for 4 h compared to MgPc in its free form. Full article
(This article belongs to the Special Issue Targeted Nanodelivery systems for Oncology Applications)
Show Figures

Figure 1

16 pages, 22610 KiB  
Article
Silver-Doped TiO2-PDMS Nanocomposite as a Possible Coating for the Preservation of Serena Stone: Searching for Optimal Application Conditions
by Marwa Ben Chobba, Maduka L. Weththimuni, Mouna Messaoud, Jamel Bouaziz, Rached Salhi, Filomena De Leo, Clara Urzì and Maurizio Licchelli
Heritage 2022, 5(4), 3411-3426; https://doi.org/10.3390/heritage5040175 - 11 Nov 2022
Cited by 6 | Viewed by 2578
Abstract
The main objective of this research is to determine the optimal application conditions of a newly synthesized multifunctional coating containing Ag-doped TiO2 nanoparticles when used as a possible protective agent for sandstone. Firstly, Ag-TiO2 nanoparticles with anatase structure, spherical shape and [...] Read more.
The main objective of this research is to determine the optimal application conditions of a newly synthesized multifunctional coating containing Ag-doped TiO2 nanoparticles when used as a possible protective agent for sandstone. Firstly, Ag-TiO2 nanoparticles with anatase structure, spherical shape and controllable sizes were prepared using the sol–gel method and characterized. The biocidal activity of Ag-doped TiO2 NPs was studied by comparing its performance to pure TiO2 NPs against two representative Gram-positive and Gram-negative bacterial strains, under both visible irradiation and in the dark; then, the antimicrobial efficiency of two different concentrations of Ag-TiO2 nanoparticles (0.1–1 mol%) was evaluated against two phototrophic strains commonly isolated from deteriorated surfaces. Results showed that the photoactivation and photokilling activity of TiO2 were highly improved by doping with Ag. Next, prepared nanopowders were dispersed in a binder with different powder/PDMS ratios: (0.1, 0.2, 0.5 and 1% w/v TiO2) and then applied in different amounts (2, 3 and 6 g/m2) on Serena stone specimens. Results revealed that the application of 2 g/m2 nanocomposite at powder/binder ratios equal to 1% w/v TiO2 provided a fine hydrophobic character for the stone material with acceptable chromatic variations. Full article
(This article belongs to the Special Issue Metals in Heritage Science)
Show Figures

Figure 1

31 pages, 3221 KiB  
Review
Overview of Nanoparticle-Based Approaches for the Combination of Photodynamic Therapy (PDT) and Chemotherapy at the Preclinical Stage
by Luca Menilli, Celeste Milani, Elena Reddi and Francesca Moret
Cancers 2022, 14(18), 4462; https://doi.org/10.3390/cancers14184462 - 14 Sep 2022
Cited by 21 | Viewed by 4261
Abstract
The widespread diffusion of photodynamic therapy (PDT) as a clinical treatment for solid tumors is mainly limited by the patient’s adverse reaction (skin photosensivity), insufficient light penetration in deeply seated neoplastic lesions, unfavorable photosensitizers (PSs) biodistribution, and photokilling efficiency due to PS aggregation [...] Read more.
The widespread diffusion of photodynamic therapy (PDT) as a clinical treatment for solid tumors is mainly limited by the patient’s adverse reaction (skin photosensivity), insufficient light penetration in deeply seated neoplastic lesions, unfavorable photosensitizers (PSs) biodistribution, and photokilling efficiency due to PS aggregation in biological environments. Despite this, recent preclinical studies reported on successful combinatorial regimes of PSs with chemotherapeutics obtained through the drugs encapsulation in multifunctional nanometric delivery systems. The aim of the present review deals with the punctual description of several nanosystems designed not only with the objective of co-transporting a PS and a chemodrug for combination therapy, but also with the goal of improving the therapeutic efficacy by facing the main critical issues of both therapies (side effects, scarce tumor oxygenation and light penetration, premature drug clearance, unspecific biodistribution, etc.). Therefore, particular attention is paid to the description of bio-responsive drugs and nanoparticles (NPs), targeted nanosystems, biomimetic approaches, and upconverting NPs, including analyzing the therapeutic efficacy of the proposed photo-chemotherapeutic regimens in in vitro and in vivo cancer models. Full article
(This article belongs to the Special Issue Nanoparticle-Based Combination Therapy and Diagnosis for Cancer)
Show Figures

Scheme 1

10 pages, 5274 KiB  
Article
Green Synthesis of Immobilized CuO Photocatalyst for Disinfection of Water
by Lev Matoh, Boštjan Žener and Boštjan Genorio
Sustainability 2022, 14(17), 10581; https://doi.org/10.3390/su141710581 - 25 Aug 2022
Cited by 7 | Viewed by 2890
Abstract
A green method for depositing a CuO layer with good adhesion and a large surface area on a support of activated alumina (Al2O3) was evaluated. The relatively simple method consists of adsorption of a copper salt on the surface [...] Read more.
A green method for depositing a CuO layer with good adhesion and a large surface area on a support of activated alumina (Al2O3) was evaluated. The relatively simple method consists of adsorption of a copper salt on the surface of Al2O3, formation of Cu(OH)2, and subsequent decomposition of the hydroxide to CuO. The XRD confirmed that the deposited photocatalyst crystalized at low temperatures (80 °C). Furthermore, BET measurements show a surface area of about 90 m2/g. The large surface area is the result of the speed of the conversion and decomposition reactions. The photokilling properties of the prepared photocatalyst were evaluated using E. coli cells and the leaching of copper ions was determined using ICP-MS. The photocatalytic efficiency was also evaluated by the degradation of an organic azo dye. The prepared photocatalyst shows good activity in the purification and disinfection of treated water. The described method is economical, fast, and can be considered green, since the only byproducts are water and NaCl. Full article
(This article belongs to the Special Issue Sustainable Photocatalytic Water Treatment and Energy Production)
Show Figures

Figure 1

12 pages, 5190 KiB  
Article
Breaking the Rebellion: Photodynamic Inactivation against Erwinia amylovora Resistant to Streptomycin
by Annette Wimmer, Michael Glueck, Wenzi Ckurshumova, Jun Liu, Michael Fefer and Kristjan Plaetzer
Antibiotics 2022, 11(5), 544; https://doi.org/10.3390/antibiotics11050544 - 19 Apr 2022
Cited by 11 | Viewed by 2958
Abstract
Global crop production depends on strategies to counteract the ever-increasing spread of plant pathogens. Antibiotics are often used for large-scale treatments. As a result, Erwinia amylovora, causal agent of the contagious fire blight disease, has already evolved resistance to streptomycin (Sm). Photodynamic [...] Read more.
Global crop production depends on strategies to counteract the ever-increasing spread of plant pathogens. Antibiotics are often used for large-scale treatments. As a result, Erwinia amylovora, causal agent of the contagious fire blight disease, has already evolved resistance to streptomycin (Sm). Photodynamic Inactivation (PDI) of microorganisms has been introduced as innovative method for plant protection. The aim of this study is to demonstrate that E. amylovora resistant to Sm (E. amylovoraSmR) can be killed by PDI. Two photosensitizers, the synthetic B17-0024, and the natural derived anionic sodium magnesium chlorophyllin (Chl) with cell-wall-permeabilizing agents are compared in terms of their photo-killing efficiency in liquid culture with or without 100 µg/mL Sm. In vitro experiments were performed at photosensitizer concentrations of 1, 10 or 100 µM and 5 or 30 min incubation in the dark, followed by illumination at 395 nm (radiant exposure 26.6 J/cm2). The highest inactivation of seven log steps was achieved at 100 µM B17-0024 after 30 min incubation. Shorter incubation (5 min), likely to represent field conditions, reduced the photo-killing to 5 log steps. Chlorophyllin at 100 µM in combination with 1.2% polyaspartic acid (PASA) reduced the number of bacteria by 6 log steps. While PASA itself caused some light independent toxicity, an antibacterial effect (3 log reduction) was achieved only in combination with Chl, even at concentrations as low as 10 µM. Addition of 100 µg/mL Sm to media did not significantly increase the efficacy of the photodynamic treatment. This study proves principle that PDI can be used to treat plant diseases even if causative bacteria are resistant to conventional treatment. Therefore, PDI based on natural photosensitizers might represent an eco-friendly treatment strategy especially in organic farming. Full article
Show Figures

Figure 1

11 pages, 2746 KiB  
Article
Enhanced Photocatalytic and Photokilling Activities of Cu-Doped TiO2 Nanoparticles
by Yumatorn Mingmongkol, Dang Trung Tri Trinh, Patcharaporn Phuinthiang, Duangdao Channei, Khakhanang Ratananikom, Auppatham Nakaruk and Wilawan Khanitchaidecha
Nanomaterials 2022, 12(7), 1198; https://doi.org/10.3390/nano12071198 - 3 Apr 2022
Cited by 31 | Viewed by 4666
Abstract
In this work, metal-doped titanium dioxide (TiO2) was synthesised with the aim of improving photocatalytic degradation and antimicrobial activities; TiO2 was doped with copper (Cu) ranging from 0.1 to 1.0 wt%. The physical and chemical properties of the Cu-doped TiO [...] Read more.
In this work, metal-doped titanium dioxide (TiO2) was synthesised with the aim of improving photocatalytic degradation and antimicrobial activities; TiO2 was doped with copper (Cu) ranging from 0.1 to 1.0 wt%. The physical and chemical properties of the Cu-doped TiO2 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller method (BET) and diffuse reflection spectroscopy (DRS). The results revealed that the anatase phase of TiO2 was maintained well in all the Cu-doped TiO2 samples. No significant difference in the particle sizes or the specific surface areas was caused by increasing Cu doping. However, the band gap decreased continuously from 3.20 eV for undoped TiO2 to 3.12 eV for 1.0 wt.% Cu-doped TiO2. In addition, the 0.1 wt.% Cu-doped TiO2 displayed a much greater photocatalytic degradation of methylene blue (MB) and excellent antibacterial ability for Escherichia coli (E. coli) compared to undoped TiO2. On the other hand, the high Cu doping levels had negative impacts on the surface charge of nanoparticles and charge transfer for OH• generation, resulting in decreasing MB degradation and E. coli photokilling for 1.0 wt.% Cu-doped TiO2. Full article
Show Figures

Figure 1

21 pages, 6671 KiB  
Article
Photosensitive EGFR-Targeted Nanocarriers for Combined Photodynamic and Local Chemotherapy
by Elena de las Heras, M. Lluïsa Sagristá, Montserrat Agut and Santi Nonell
Pharmaceutics 2022, 14(2), 405; https://doi.org/10.3390/pharmaceutics14020405 - 13 Feb 2022
Cited by 10 | Viewed by 2425
Abstract
The major limitation of any cancer therapy lies in the difficulty of precisely controlling the localization of the drug in the tumor cells. To improve this drawback, our study explores the use of actively-targeted chemo-photo-nanocarriers that recognize and bind to epidermal growth factor [...] Read more.
The major limitation of any cancer therapy lies in the difficulty of precisely controlling the localization of the drug in the tumor cells. To improve this drawback, our study explores the use of actively-targeted chemo-photo-nanocarriers that recognize and bind to epidermal growth factor receptor-overexpressing cells and promote the local on-demand release of the chemotherapeutic agent doxorubicin triggered by light. Our results show that the attachment of high concentrations of doxorubicin to cetuximab-IRDye700DX-mesoporous silica nanoparticles yields efficient and selective photokilling of EGFR-expressing cells mainly through singlet oxygen-induced release of the doxorubicin from the nanocarrier and without any dark toxicity. Therefore, this novel triply functionalized nanosystem is an effective and safe nanodevice for light-triggered on-demand doxorubicin release. Full article
(This article belongs to the Special Issue Drug Delivery in Photodynamic Therapy (PDT))
Show Figures

Graphical abstract

17 pages, 3757 KiB  
Article
An Intelligent Wired Capsule for the Treatment of Helicobacter pylori
by Anna Luzzi and Giuseppe Tortora
Appl. Sci. 2022, 12(1), 28; https://doi.org/10.3390/app12010028 - 21 Dec 2021
Cited by 4 | Viewed by 3552
Abstract
An endoscopic capsule is a miniaturized ingestible video camera used to acquire images of the gastrointestinal tract wirelessly. Being morphologically equivalent to any ingestible pill, they can be simply swallowed. Endoscopic capsules therefore present an inviting alternative to the traditional endoscope for the [...] Read more.
An endoscopic capsule is a miniaturized ingestible video camera used to acquire images of the gastrointestinal tract wirelessly. Being morphologically equivalent to any ingestible pill, they can be simply swallowed. Endoscopic capsules therefore present an inviting alternative to the traditional endoscope for the examination of the gastrointestinal tract as well for therapeutic purposes. Endoscopic capsules are considered a disruptive technology, as they have revolutionized the examination of the gastrointestinal tract in a relatively short time. The implementation of an active locomotion system can improve the performance of a capsule and, in the solution proposed in this paper, allows providing the capsule the needed power for therapeutic purposes. Alternative therapeutic solutions, based on optical solutions and capsule endoscopy can be applied to patients affected by Helicobacter pylori, a bacterium of the stomach that affects about half of the world population, mainly in developing countries. The infection can be asymptomatic or associated with slight symptomatology. In some cases, it can take to major pathologies or death. The literature reports results deriving from recent applications of photodynamic treatments to H. pylori. Specific wavelengths have been found to exhibit photo-killing capabilities toward the bacterium. Some solutions have been proposed based on the use of endoscopic devices and capsules capable of administering photodynamic therapy inside the stomach. The proposed treatments, however, are invasive and insufficient to achieve long-term eradication. In this work, the administration of photodynamic therapy is proposed, aimed at the eradication of H. pylori by means of an active endoscopic capsule with LED emission. The capsule design, in addition to the therapeutic module aimed at administering an appropriate light intensity at specific wavelengths already demonstrated in the literature, integrates an active locomotion system aimed at maximizing the efficiency of the treatment. Full article
(This article belongs to the Special Issue Autonomous Robots for Medical and Social Applications)
Show Figures

Figure 1

18 pages, 3539 KiB  
Article
Photodynamic Effect of 5,10,15,20-Tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin towards the Human Pathogen Candida albicans under Different Culture Conditions
by Paula V. Cordero, Darío D. Ferreyra, María E. Pérez, María G. Alvarez and Edgardo N. Durantini
Photochem 2021, 1(3), 505-522; https://doi.org/10.3390/photochem1030033 - 3 Dec 2021
Cited by 3 | Viewed by 2478
Abstract
Photocytotoxic activity sensitized by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin (TAPC) was investigated in Candida albicans under different culture conditions. Planktonic cells incubated with 2.5 μM TAPC were eradicated after 5 min irradiation with white light. Studies in the presence of reactive oxygen species scavengers indicated [...] Read more.
Photocytotoxic activity sensitized by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin (TAPC) was investigated in Candida albicans under different culture conditions. Planktonic cells incubated with 2.5 μM TAPC were eradicated after 5 min irradiation with white light. Studies in the presence of reactive oxygen species scavengers indicated the involvement of mainly a type II mechanism. Furthermore, cell growth of C. albicans was suppressed in the presence of 5 μM TAPC. A decrease in pseudohyphae survival of 5 log was found after 30 min irradiation. However, the photokilling of this virulence factor reached a 1.5 log reduction in human serum. The uptake of TAPC by pseudohyphae decreased in serum due to the interaction of TAPC with albumin. The binding constant of the TAPC-albumin complex was ~104 M−1, while the bimolecular quenching rate constant was ~1012 s−1 M−1, indicating that this process occurred through a static process. Thus, the photoinactivation of C. albicans was considerably decreased in the presence of albumin. A reduction of 2 log in cell survival was observed using 4.5% albumin and 30 min irradiation. The results allow optimizing the best conditions to inactivate C. albicans under different culture conditions. Full article
Show Figures

Graphical abstract

14 pages, 2624 KiB  
Article
Light Energy Dose and Photosensitizer Concentration Are Determinants of Effective Photo-Killing against Caries-Related Biofilms
by Abdulrahman A. Balhaddad, Mohammed S. AlQranei, Maria S. Ibrahim, Michael D. Weir, Frederico C. Martinho, Hockin H. K. Xu and Mary Anne S. Melo
Int. J. Mol. Sci. 2020, 21(20), 7612; https://doi.org/10.3390/ijms21207612 - 15 Oct 2020
Cited by 21 | Viewed by 3505
Abstract
Caries-related biofilms and associated complications are significant threats in dentistry, especially when biofilms grow over dental restorations. The inhibition of cariogenic biofilm associated with the onset of carious lesions is crucial for preventing disease recurrence after treatment. This in vitro study defined optimized [...] Read more.
Caries-related biofilms and associated complications are significant threats in dentistry, especially when biofilms grow over dental restorations. The inhibition of cariogenic biofilm associated with the onset of carious lesions is crucial for preventing disease recurrence after treatment. This in vitro study defined optimized parameters for using a photosensitizer, toluidine blue O (TBO), activated via a red light-emitting diode (LED)-based wireless device to control the growth of cariogenic biofilms. The effect of TBO concentrations (50, 100, 150, and 200 μg/mL) exposed to light or incubated in the dark was investigated in successive cytotoxicity assays. Then, a mature Streptococcus mutans biofilm model under sucrose challenge was treated with different TBO concentrations (50, 100, and 150 μg/mL), different light energy doses (36, 108, and 180 J/cm2), and different incubation times before irradiation (1, 3, and 5 min). The untreated biofilm, irradiation with no TBO, and TBO incubation with no activation represented the controls. After treatments, biofilms were analyzed via S. mutans colony-forming units (CFUs) and live/dead assay. The percentage of cell viability was within the normal range compared to the control when 50 and 100 μg/mL of TBO were used. Increasing the TBO concentration and energy dose was associated with biofilm inhibition (p < 0.001), while increasing incubation time did not contribute to bacterial elimination (p > 0.05). Irradiating the S. mutans biofilm via 100 μg/mL of TBO and ≈180 J/cm2 energy dose resulted in ≈3-log reduction and a higher amount of dead/compromised S. mutans colonies in live/dead assay compared to the control (p < 0.001). The light energy dose and TBO concentration optimized the bacterial elimination of S. mutans biofilms. These results provide a perspective on the determining parameters for highly effective photo-killing of caries-related biofilms and display the limitations imposed by the toxicity of the antibacterial photodynamic therapy’s chemical components. Future studies should support investigations on new approaches to improve or overcome the constraints of opportunities offered by photodynamic inactivation of caries-related biofilms. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

15 pages, 1389 KiB  
Article
Photodynamic Activity of Tribenzoporphyrazines with Bulky Periphery against Wound Bacteria
by Magdalena Stolarska, Arleta Glowacka-Sobotta, Dariusz T. Mlynarczyk, Jolanta Dlugaszewska, Tomasz Goslinski, Jadwiga Mielcarek and Lukasz Sobotta
Int. J. Mol. Sci. 2020, 21(17), 6145; https://doi.org/10.3390/ijms21176145 - 26 Aug 2020
Cited by 15 | Viewed by 2259
Abstract
Magnesium(II) tribenzoporphyrazines with phenoxybutylsulfanyl substituents were evaluated as photosensitizers in terms of their optical properties against wound bacteria. In the UV-vis spectra of analyzed tribenzoporphyrazines, typical absorption ranges were found. However, the emission properties were very weak, with fluorescence quantum yields in the [...] Read more.
Magnesium(II) tribenzoporphyrazines with phenoxybutylsulfanyl substituents were evaluated as photosensitizers in terms of their optical properties against wound bacteria. In the UV-vis spectra of analyzed tribenzoporphyrazines, typical absorption ranges were found. However, the emission properties were very weak, with fluorescence quantum yields in the range of only 0.002–0.051. What is important, they revealed moderate abilities to form singlet oxygen with the quantum yields up to 0.27. Under irradiation, the macrocycles decomposed via photobleaching mechanism with the quantum yields up to 8.64 × 10−5. The photokilling potential of tribenzoporphyrazines was assessed against Streptococcus pyogenes, Staphylococcus epidermidis, as well as various strains of Staphylococcus aureus, including methicillin-sensitive and-resistant bacteria. Both evaluated photosensitizers revealed high photodynamic potential against studied bacteria (>3 logs). S.aureus growth was reduced by over 5.9 log, methicillin-resistant S. aureus by 5.1 log, S.epidermidis by over 5.7 log, and S. pyogenes by over 4.7 log. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

12 pages, 5033 KiB  
Article
Simultaneous Enhancement of Photocatalytic Bactericidal Activity and Strength Properties of Acrylonitrile-Butadiene-Styrene Plastic Via a Facile Preparation with Silane/TiO2
by Kunlanan Kiatkittipong, Jun Wei Lim, Chin Kui Cheng, Worapon Kiatkittipong and Suttichai Assabumrungrat
Polymers 2020, 12(4), 917; https://doi.org/10.3390/polym12040917 - 16 Apr 2020
Cited by 5 | Viewed by 3555
Abstract
This work aims to enhance the photocatalytic antibacterial performance of plastics according to the JIS Z 2801:2010 standard, and to determine their mechanical properties by studying: (i) the influence of calcination on titanium dioxide (TiO2); (ii) modification with different TiO2 [...] Read more.
This work aims to enhance the photocatalytic antibacterial performance of plastics according to the JIS Z 2801:2010 standard, and to determine their mechanical properties by studying: (i) the influence of calcination on titanium dioxide (TiO2); (ii) modification with different TiO2 concentrations, and; (iii) the effect of silane as a coupling agent. Acrylonitrile-butadiene-styrene plastics (ABS) and Escherichia coli (E. coli) were chosen as the model plastic and bacteria, respectively. The 500 °C calcined TiO2 successfully provided the best photoantibacterial activity, with an approximately 62% decrease of E. coli colony counts following 30 min of exposure. Heat treatment improved the crystallinity of anatase TiO2, resulting in low electron-hole recombination, while effectively adsorbing reactants on the surface. ABS with 500 °C-calcined TiO2 at the concentration of 1 wt % gave rise to the highest performance due to the improved distribution of TiO2. At this point, blending silane coupling agent could further improve the efficacy of photoantibacterial activity up to 75% due to greater interactions with the polymer matrix. Moreover, it could promote a 1.6-fold increase of yield strength via increased adherent bonding between TiO2 and the ABS matrix. Excellent photocatalytic and material stability can be achieved, with constant photocatalytic efficiency remaining for up to five reuse cycles without loss in the yield strength. Full article
Show Figures

Graphical abstract

13 pages, 5589 KiB  
Article
In the Right Light: Photodynamic Inactivation of Microorganisms Using a LED-Based Illumination Device Tailored for the Antimicrobial Application
by Martina Hasenleitner and Kristjan Plaetzer
Antibiotics 2020, 9(1), 13; https://doi.org/10.3390/antibiotics9010013 - 30 Dec 2019
Cited by 23 | Viewed by 6040
Abstract
Drug-resistant bacteria threaten the health of people world-wide and cause high costs to their health systems. According to Scientific American, the number of regrettable fatalities due to the bacteria that are resistant to conventional antibiotics will sum up to 300 million until 2050 [...] Read more.
Drug-resistant bacteria threaten the health of people world-wide and cause high costs to their health systems. According to Scientific American, the number of regrettable fatalities due to the bacteria that are resistant to conventional antibiotics will sum up to 300 million until 2050 if the problem is not tackled immediately. Photodynamic Inactivation (PDI) has proven effective against microorganisms irrespective of their resistance to conventional treatment, but for the translation into clinical practice, economic, homogenous and powerful light sources holding approval as medical devices are needed. In this study we present two novel light emitting diode (LED)-based lamps (Repuls7PDI-red and Repuls7PDI-blue) tailored for application in PDI and demonstrate their photodynamic efficiency upon using either methylene blue (MB), a photoactive compound widely used in PDI, or Sodium Magnesium Chlorophyllin (CHL), a water-soluble derivative of chlorophyll, which holds approval as food additive E140, against bacteria and fungi. Gram+ Staphylococcus aureus, Gram− Escherichia coli and the yeast Candida albicans serve as model systems. Repuls7PDI-red emits a wavelength of 635 nm and an intensity of 27.6 ± 2.4 mW·cm−2 at a distance of 13.5 cm between the light source and the target, while the Repuls7PDI-blue allows an exposure at 433 nm (within the range of violet light) (6.4 ± 0.5 mW·cm−2 at 13.5 cm). Methylene blue was photoactivated with the Repuls7PDI-red at 635 nm (25.6 J·cm−2) and allows for photokilling of E. coli by more than 6 log10 steps at a concentration of 10 µM MB. Using equal parameters, more than 99.99999% of S. aureus (20 µM MB) and 99.99% of C. albicans (50 µM MB) were killed. If blue light (Repuls7PDI-blue, 433 nm, 6.6 J·cm2) is used to trigger the production of reactive oxygen species (ROS), a photoinactivation of S. aureus (5 µM CHL, CFU reduction > 7 log10) and C. albicans (>7 log10) below the detection limit is achieved. PDI based on CHL (10 µM) using red light activation reduces the number of viable S. aureus by more than 6 log10. Our data prove that both LED-based light sources are applicable for Photodynamic Inactivation. Their easy-to-use concept, high light output and well-defined wavelength might facilitate the translation of PDI into clinical practice. Full article
(This article belongs to the Special Issue Photodynamic Therapy in the Inactivation of Microorganisms)
Show Figures

Figure 1

Back to TopTop