Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (438)

Search Parameters:
Keywords = photoinitiated

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4087 KB  
Review
Oxime Esters as Efficient Initiators in Photopolymerization Processes
by Monika Dzwonkowska-Zarzycka, Alicja Balcerak-Woźniak and Janina Kabatc-Borcz
Molecules 2026, 31(1), 187; https://doi.org/10.3390/molecules31010187 - 4 Jan 2026
Viewed by 402
Abstract
The development of new photoinitiators for photocurable systems has gained increasing interest in response to regulatory and environmental requirements, including efficient absorption in the UV/Vis range and reduced toxicity. Among emerging light-sensitive compounds, oxime esters have attracted growing attention as efficient radical photoinitiators. [...] Read more.
The development of new photoinitiators for photocurable systems has gained increasing interest in response to regulatory and environmental requirements, including efficient absorption in the UV/Vis range and reduced toxicity. Among emerging light-sensitive compounds, oxime esters have attracted growing attention as efficient radical photoinitiators. In this paper, five series of oxime esters based on carbazole, coumarin, carbazole–coumarin, phenothiazine, and triphenylamine scaffolds were described. Their high performance in photopolymerization processes was presented, demonstrating their ability to act as both type I and type II photoinitiators, as confirmed by high monomer conversion degrees. These data highlight oxime esters as versatile photoinitiating systems and provide a basis for further structural optimization aimed at improving water solubility and enabling comprehensive cytotoxicity assessment. Full article
Show Figures

Figure 1

12 pages, 6957 KB  
Article
Trace Detection of Ibuprofen in Solution Based on Surface Plasmon Resonance Technology
by Sijia Han, Zhitao Yang, Songlin Jia, Fenglei Zhao and Zehong Xu
Appl. Sci. 2026, 16(1), 498; https://doi.org/10.3390/app16010498 - 4 Jan 2026
Viewed by 138
Abstract
A surface plasmon resonance (SPR) sensor utilizing a molecularly imprinted polymer (MIP) film as the recognition element was developed for the selective detection of the non-steroidal anti-inflammatory drug ibuprofen (IBU). The molecularly imprinted film on the SPR sensor chip was prepared via photo-initiated [...] Read more.
A surface plasmon resonance (SPR) sensor utilizing a molecularly imprinted polymer (MIP) film as the recognition element was developed for the selective detection of the non-steroidal anti-inflammatory drug ibuprofen (IBU). The molecularly imprinted film on the SPR sensor chip was prepared via photo-initiated in situ polymerization, enabling specific recognition of IBU molecules. Experimental results indicate that the SPR sensor can specifically identify IBU in solution, with a detection limit of 10−11 mol/L for ibuprofen. Within the concentration range of 10−11 to 10−4 mol/L, a linear relationship was observed between the SPR signal and the negative logarithm of the IBU concentration. This method offers the advantages of a low detection limit, wide detection range, and high selectivity, making it suitable for trace detection of IBU in solutions. Full article
Show Figures

Figure 1

15 pages, 3350 KB  
Article
Dynamic Control of Quantum Dot Localization in Nematic Liquid Crystal Matrix by Means of Photoinduced Phase Transition
by Yaroslav Derikov, Alexander Ezhov, Oleg Karpov, Georgiy Shandryuk, Yuri Egorov, Olga Sokolovskaya, Leonid Golovan, Alexey Merekalov and Raisa Talroze
Molecules 2026, 31(1), 131; https://doi.org/10.3390/molecules31010131 - 30 Dec 2025
Viewed by 231
Abstract
The stimulated assembly/disassembly of particles is a technique allowing for precise spatial and temporal control over the resulting structures to be realized. The application of a photosensitive liquid crystal (LC) allows the use of a photo-initiated order–disorder transition for the ordering and redistribution [...] Read more.
The stimulated assembly/disassembly of particles is a technique allowing for precise spatial and temporal control over the resulting structures to be realized. The application of a photosensitive liquid crystal (LC) allows the use of a photo-initiated order–disorder transition for the ordering and redistribution of dispersed nanoparticles. The semiconductor quantum dots (QDs) among them are useful for the imaging of such redistribution through simple luminescent microscopy with excitation by laser radiation at a wavelength of 532 nm. Doping the LC matrix with azo-chromophore molecules allowed us to localize the light-driven phase transition of the LC from the organized to the isotropic phase inside the spot, illuminated by ultraviolet (UV) light through a slit. The phase transition leads to a redistribution of the QDs within the matrix, followed by QD-rich region formation. After the termination of UV illumination, the QDs were found to form droplets in the region where UV illumination resulted in a homogeneous distribution of the QDs. The translation of the sample through the UV-illuminated spot resulted in QD accumulation inside the isotropic phase at the borders of the isotropic phase. The results obtained provide a good agreement with the model calculations of nanoparticle diffusion at the LC phase–isotropic liquid interface. Full article
Show Figures

Graphical abstract

24 pages, 7231 KB  
Article
UV Light-Curable Epoxy Coatings with Natural Plant-Based Fillers—Evaluation of Antibacterial and Functional Properties
by Wojciech Żyłka, Barbara Pilch-Pitera, Katarzyna Krawczyk, Ewa Ciszkowicz, Beata Grabowska and Artur Bobrowski
Materials 2025, 18(23), 5464; https://doi.org/10.3390/ma18235464 - 4 Dec 2025
Viewed by 446
Abstract
This article presents the results of research on UV-curable epoxy coatings developed with selected plant modifiers such as garlic (Allium sativum), turmeric (Curcuma longa), common nettle (Urtica dioica), and privet (Ligustrum vulgare). This study aimed [...] Read more.
This article presents the results of research on UV-curable epoxy coatings developed with selected plant modifiers such as garlic (Allium sativum), turmeric (Curcuma longa), common nettle (Urtica dioica), and privet (Ligustrum vulgare). This study aimed to evaluate the influence of these natural components on the functional properties of UV-cured coatings and to assess their potential as bio-based modifiers. The coatings were formulated using Epidian® 5 epoxy resin, a safe and non-toxic material approved for food-contact applications, and cured with a commercial cationic photoinitiator. Their mechanical, surface, optical, and antibacterial properties were investigated. The results showed that all plant-based additives modified both the mechanical and esthetic characteristics of the coatings; however, garlic demonstrated outstanding antibacterial activity, achieving nearly complete inhibition of Staphylococcus aureus growth with a reduction rate of 99.998%. These findings highlight that natural modifiers, especially garlic, can serve as highly effective functional components, while future work should focus on implementing these coatings for surfaces exposed to bacteria, such as public utility items and shop, hospital, sports, and rehabilitation equipment. Full article
Show Figures

Graphical abstract

18 pages, 5421 KB  
Article
Elucidating the Chemistry Behind Thiol-Clickable GelAGE Hydrogels for 3D Culture Applications
by Sara Swank, Peter VanNatta and Melanie Ecker
Gels 2025, 11(11), 874; https://doi.org/10.3390/gels11110874 - 1 Nov 2025
Viewed by 592
Abstract
Although covalently crosslinked gelatin hydrogels have been investigated for use in 3D cell culture due to inherent bioactivity and proliferation within the denatured collagen precursor, the stability of the matrix, and relatively inexpensive synthesis, current systems lack precise control over mechanical properties, including [...] Read more.
Although covalently crosslinked gelatin hydrogels have been investigated for use in 3D cell culture due to inherent bioactivity and proliferation within the denatured collagen precursor, the stability of the matrix, and relatively inexpensive synthesis, current systems lack precise control over mechanical properties, including homogeneity, stiffness, and efficient diffusion of nutrients to embedded cells. Difficulties in modifying gel matrix composition and functionalization have limited the use of covalently crosslinked gelatin hydrogels as a three-dimensional (3D) cell culture medium, lacking the ability to tailor the microenvironment for specific cell types. In addition, the currently utilized chain-growth photopolymerization mechanism for crosslinking hydrogels has a potential for side reactions between the matrix backbone and components of the cell surface, requires a high concentration of radicals for initiation, and only cures with long irradiation times, which could lead to cytotoxicity. To overcome these limitations, a superfast curing reaction mechanism, in which a thiol monomer reacts efficiently with non-homopolymerizable alkenes, is suggested. This mechanism reliably produces a well-defined matrix that does not require a high radical concentration for photoinitiation. Mechanical customization of the hydrogel is largely achievable through variation in degree of functionalization of the gelatin backbone, dependent on reaction conditions such as pH, allyl concentration, and time. This work provides a mechanistic framework for GelAGE hydrogel fabrication by elucidating the molecular mechanism of gelatin functionalization with AGE and the thiol-ene crosslinking reactions controlling network stiffness. These insights provide the foundation for engineering hydrogels that mimic the viscoelastic and structural characteristics of cartilage, enabling advanced in vitro models for osteoarthritis research. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Tissue Engineering Applications)
Show Figures

Figure 1

25 pages, 3942 KB  
Article
Porphyrin-Based Bio-Sourced Materials for Water Depollution Under Light Exposure
by Fanny Schnetz, Marc Presset, Jean-Pierre Malval, Yamin Leprince-Wang, Isabelle Navizet and Davy-Louis Versace
Polymers 2025, 17(21), 2882; https://doi.org/10.3390/polym17212882 - 29 Oct 2025
Viewed by 786
Abstract
The photoinitiation properties of two porphyrins were evaluated for the free-radical photopolymerization (FRP) of a bio-based acrylated monomer, i.e., soybean oil acrylate (SOA). Their combination with various co-initiators, such as a tertiary amine as electron donor (MDEA), an iodonium salt as electron acceptor [...] Read more.
The photoinitiation properties of two porphyrins were evaluated for the free-radical photopolymerization (FRP) of a bio-based acrylated monomer, i.e., soybean oil acrylate (SOA). Their combination with various co-initiators, such as a tertiary amine as electron donor (MDEA), an iodonium salt as electron acceptor (Iod), as well as two biosourced co-initiators used as H-donors (cysteamine and N-acetylcysteine), makes them highly efficient photoinitiating systems for FRP under visible light irradiation. Electron paramagnetic resonance spin trapping (EPR ST) demonstrated the formation of highly reactive radical species, and fluorescence and laser flash photolysis highlighted the chemical pathways followed by the porphyrin-based systems under light irradiation. High acrylate conversions up to 96% were obtained with these different systems at different irradiation wavelengths (LEDs@385 nm, 405 nm, 455 nm, and 530 nm), in laminate or under air. The final crosslinked and bio-based porphyrin-based materials were used for the full photo-oxidation in water of an azo-dye (acid red 14) and under UV irradiation. These materials have been involved in three successive depollution cycles without any reduction in their efficiency. Full article
(This article belongs to the Special Issue Advances in Photopolymer Materials)
Show Figures

Graphical abstract

12 pages, 5297 KB  
Article
In Situ Hydrogel Growth on Flame-Sprayed Hydroxyapatite (HA)/TiO2-Coated Stainless Steel via TiO2-Photoinitiated Polymerization
by Komsanti Chokethawai, Nattawit Yutimit, Burin Boonsri, Parkpoom Jarupoom, Ketmanee Muangchan, Sahadsawat Tonkaew, Pongpen Kaewdee, Sujitra Tandorn and Chamnan Randorn
Gels 2025, 11(10), 837; https://doi.org/10.3390/gels11100837 - 18 Oct 2025
Viewed by 552
Abstract
Hydroxyapatite (HA) coatings improve implant bioactivity but suffer from brittleness and limited functionality. Here, we report a hybrid coating strategy combining flame-sprayed HA/TiO2 with in situ hydrogel growth. TiO2 incorporated into the HA matrix acted as a photocatalytic initiator for acrylamide [...] Read more.
Hydroxyapatite (HA) coatings improve implant bioactivity but suffer from brittleness and limited functionality. Here, we report a hybrid coating strategy combining flame-sprayed HA/TiO2 with in situ hydrogel growth. TiO2 incorporated into the HA matrix acted as a photocatalytic initiator for acrylamide polymerization under UV. Unlike conventional hydrogel coatings that require added photoinitiators or separate surface modification steps, TiO2 incorporated into the HA layer serves as a built-in photocatalytic initiator, enabling direct polymerization of acrylamide monomers on the sprayed surface. The resulting HA/TiO2–hydrogel coatings exhibited a continuous hydrogel layer with intimate contact to the ceramic surface, as evidenced by SEM cross-sections and elemental mapping. The HA/TiO2 1% coating produced a continuous coverage in close contact with the surface, while excessive TiO2(5%) led to uncontrolled hydrogel growth and partial coating failure. SEM cross-sections revealed a dense, well-adhered coating with homogeneously distributed Ca, P, O, and finely dispersed Ti. Upon immersion in simulated body fluid (SBF), submicron globular deposits progressively developed on the coating surface. EDS showed an increase in Ca/P ratio from ~1.66 (as-sprayed) to ~1.92 (14 days). These findings highlight a straightforward approach for combining flame-sprayed ceramics with photocatalytic hydrogel growth, providing a practical route toward multifunctional implant surface modification. Full article
(This article belongs to the Special Issue Hydrogels for Bone Regeneration (2nd Edition))
Show Figures

Graphical abstract

20 pages, 1365 KB  
Article
Incorporating Carbamate Functionalities in Multifunctional Monomer System Enhances Mechanical Properties of Methacrylate Dental Adhesives
by Burak Korkmaz, Erhan Demirel, Anil Misra, Candan Tamerler and Paulette Spencer
Polymers 2025, 17(20), 2780; https://doi.org/10.3390/polym17202780 - 17 Oct 2025
Viewed by 814
Abstract
Although resin-based composite is the most popular direct restoration material in the U.S., composite restorations can fail shortly after placement. The leading cause of failure is recurrent marginal decay. The adhesive that bonds the composite to the tooth is intended to seal the [...] Read more.
Although resin-based composite is the most popular direct restoration material in the U.S., composite restorations can fail shortly after placement. The leading cause of failure is recurrent marginal decay. The adhesive that bonds the composite to the tooth is intended to seal the margin, but the degradation of the adhesive seal to dentin leads to gaps that are infiltrated by cariogenic bacteria. The development of strategies to mitigate adhesive degradation is an area of intense interest. Recent studies focus on exploiting hydrogen–bond interactions to enhance polymer network stability. This paper presents the preparation and characterization of model adhesives that capitalize on carbamate-functionalized long-chain silane monomers to enhance polymer stability and mechanical properties in wet environments. The adhesive composition is HEMA/BisGMA, 3-component photoinitiator system, carbamate-functionalized long-chain silane monomers, e.g., commercial SHEtMA (Cb1) and newly synthesized SHEMA (Cb2). Polymerization behavior, water sorption, leachates, and dynamic mechanical properties were investigated. The properties of Cb1 and Cb2 were compared to previously studied middle- (SC4) and short-chain (SC5) silane monomers. Cb1- and Cb2-formulations exhibit greater resilience under wet conditions as compared to middle-chain silane monomers. Dental adhesives containing the carbamate-functionalized long-chain silane monomers exhibit reduced flexibility in water-submersed conditions and enhanced stability as a result of increased hydrogen–bond interactions. The results emphasize the critical role of hydrogen bonding in maintaining structural integrity of dental adhesive formulations under conditions that simulate the wet, oral environment. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

16 pages, 1974 KB  
Article
Color Change in Commercial Resin Composites with Different Photoinitiators
by Feng Gao and David W. Berzins
Bioengineering 2025, 12(10), 1047; https://doi.org/10.3390/bioengineering12101047 - 28 Sep 2025
Viewed by 1426
Abstract
The yellowing effect of camphorquinone (CQ) has led manufacturers to add alternative initiators into resin composites (RCs) to reduce the amount of CQ used. The aim of this study was to investigate the color change in commercial RCs with alternative photoinitiators besides CQ. [...] Read more.
The yellowing effect of camphorquinone (CQ) has led manufacturers to add alternative initiators into resin composites (RCs) to reduce the amount of CQ used. The aim of this study was to investigate the color change in commercial RCs with alternative photoinitiators besides CQ. Color change upon polymerization and aging in air and artificial saliva for up to 3 months was tested for seven commercial RCs (traditional and bulk-fill) with either CQ only or CQ and additional photoinitiators (CQ+). Color measurements were obtained with a spectrophotometer. Color change (ΔE) was calculated using the CIELab and CIEDE2000 formulae. ANOVA and a post hoc SNK test were conducted for statistical analysis. Upon polymerization, the ΔE of CQ+ was greater than that of CQ only, except in the case of dual-cure HyperFIL. The storage conditions did not affect the color change within 24 h for either air or artificial saliva, whereas they did have an influence on color stability when RCs were aged for 1 month and 3 months. The color changes in the RCs aged in artificial saliva were considered clinically acceptable for all RCs tested except HyperFIL. Additional photoinitiator systems tended to result in a greater color change upon polymerization but did not affect color change upon aging. During shade selection, especially when additional photoinitiators besides CQ are used, a guide reflecting the color after polymerization should be used. Full article
(This article belongs to the Special Issue Advanced Dental Materials for Restorative Dentistry)
Show Figures

Graphical abstract

16 pages, 3709 KB  
Article
The Influence of the Photoinitiating System on Residual Monomer Contents and Photopolymerization Rate of a Model Pigmented UV/LED Nail Gel Formulation
by Paulina Bednarczyk and Kamil Rożniakowski
Coatings 2025, 15(10), 1125; https://doi.org/10.3390/coatings15101125 - 28 Sep 2025
Cited by 1 | Viewed by 2236
Abstract
This study investigates the influence of photoinitiating systems on the degree of methacrylate group conversion and the rate of polymerization in UV/LED-curable nail gel formulations. Camphorquinone and Eosin Y, commonly used in medical and dental applications, were evaluated in bimolecular systems with onium [...] Read more.
This study investigates the influence of photoinitiating systems on the degree of methacrylate group conversion and the rate of polymerization in UV/LED-curable nail gel formulations. Camphorquinone and Eosin Y, commonly used in medical and dental applications, were evaluated in bimolecular systems with onium and iodonium salts, thiols, and amines as co-initiators. Real-time FT-IR spectroscopy was employed to monitor polymerization under dual-LED irradiation (365 nm and 405 nm). The results demonstrate that the tested systems, inspired by photocurable medical products, exhibit significant potential for application in highly pigmented nail gels, achieving efficient curing with low residual monomer content. Full article
(This article belongs to the Special Issue Advances in Polymer Composites, Coatings and Adhesive Materials)
Show Figures

Figure 1

15 pages, 2166 KB  
Article
Spectroscopic and Rheological Characterization of Polyvinyl Alcohol/Hyaluronic Acid-Based Systems: Effect of Polymer Ratio and Riboflavin on Hydrogel Properties
by Iulia Matei, Marius Alexandru Mihai, Sorina-Alexandra Leau, Ludmila Aricov, Anca Ruxandra Leonties, Elvira Alexandrescu and Gabriela Ionita
Gels 2025, 11(10), 773; https://doi.org/10.3390/gels11100773 - 25 Sep 2025
Viewed by 762
Abstract
We report a systematic investigation on the physicochemical properties of polymer systems consisting of polyvinyl alcohol (PVA) and hyaluronic acid (HA) mixed in various volume ratios (1/4, 2/3, 1/1, 3/2, and 4/1). At PVA/HA ratios above 1/1, in the presence of glutaraldehyde and [...] Read more.
We report a systematic investigation on the physicochemical properties of polymer systems consisting of polyvinyl alcohol (PVA) and hyaluronic acid (HA) mixed in various volume ratios (1/4, 2/3, 1/1, 3/2, and 4/1). At PVA/HA ratios above 1/1, in the presence of glutaraldehyde and divinyl sulfone as crosslinking agents, hydrogels are formed. Their swelling behavior is dependent on the polymer ratio, with the highest water uptake determined for PVA/HA 4/1. The in situ generation of reactive oxygen species (HO radicals) under UV-A irradiation, in the presence of riboflavin as a photoinitiator, is evidenced by electron paramagnetic resonance (EPR) spectroscopy. The diffusion of small paramagnetic molecules across the interface of two PVA/HA 4/1 gel pieces placed in direct contact reveals the occurrence of molecular exchange, which could indicate some degree of self-repair of the hydrogel network. When the paramagnetic moiety is attached to the HA polymer by spin labeling, the absence of diffusion demonstrates the stability of the crosslinked HA chains within the PVA/HA network. The structural modifications induced by crosslinking, by the presence of riboflavin, and by exposure to UV-A light, and the resulting alterations in the mechanical behavior of the hydrogels are monitored by infrared spectroscopy and rheology. Only a slight decrease in the viscoelastic moduli values is noted, indicating that the formation of HO radicals has minimal impact on the macroscopic properties of the hydrogels. Full article
(This article belongs to the Special Issue State-of-the-Art Gel Research in Romania)
Show Figures

Figure 1

15 pages, 2419 KB  
Article
Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder
by Giovanna Colucci, Francesca Sacchi, Marta Checchi, Marianna Barbalinardo, Francesca Chiarini, Federica Bondioli, Carla Palumbo and Massimo Messori
J. Compos. Sci. 2025, 9(9), 479; https://doi.org/10.3390/jcs9090479 - 3 Sep 2025
Viewed by 1009
Abstract
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization [...] Read more.
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization (VP) using a Liquid Crystal Display (LCD) 3D printer. Formulation viscosity was studied because of its important role in a VP process able to influence the printability of the final parts. Different 3D printed architectures were successfully realized with good resolution and accuracy, high level of detail, and flexibility. The effect of OP addition was investigated by thermal (TGA and DSC), morphological (SEM and PSD), viscoelastic (DMA), and mechanical (tensile testing) characterization. The filler led to an increase in the Tg, storage modulus, and tensile properties, underlining the stiffening effect induced by the OP particles onto the polymeric starting resin. This underlines the possibility to apply these bio-based composites in many application fields by valorizing agro-wastes, developing more sustainable materials, and taking advantages of VP 3D printing, such as low costs, minimal wastage, and customized geometry. Biocompatibility tests were also successfully carried out. The results clearly indicate that the AESO-based composites promote cell adhesion and viability. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Graphical abstract

30 pages, 4020 KB  
Review
Emerging Photo-Initiating Systems in Coatings from Molecular Engineering Perspectives
by Lijun Cao, Xinyan Dai, Yonggang Wu and Xinwu Ba
Coatings 2025, 15(9), 1028; https://doi.org/10.3390/coatings15091028 - 2 Sep 2025
Cited by 1 | Viewed by 2829
Abstract
Photoinitiators (PIs) are pivotal in enabling energy-efficient, spatiotemporally controlled photopolymerization for coatings. To address application-specific demands of coatings, diverse systems of Norrish-Type I (e.g., oxime esters, acylphosphine oxides) and Type II (e.g., onium salts, ketones) PIs have been engineered through systematic molecular design [...] Read more.
Photoinitiators (PIs) are pivotal in enabling energy-efficient, spatiotemporally controlled photopolymerization for coatings. To address application-specific demands of coatings, diverse systems of Norrish-Type I (e.g., oxime esters, acylphosphine oxides) and Type II (e.g., onium salts, ketones) PIs have been engineered through systematic molecular design strategies. A comprehensive review necessitates highlighting recent achievements in designing PIs by various molecular engineering approaches. The π-conjugation extension, push–pull structures, and auxochrome incorporation boost strong and long-wavelength absorption; unimolecular PI systems with hydrogen-donor modifications improve reactivity and reduce oxygen inhibition; photobleaching via cleavable bonds and blocking conjugation enables colorless coating and deep-penetration curing; polymerizable macromolecular designs enhance migration resistance; organosilicon-functionalized structures optimize monomer compatibility. These strategies bridge molecular innovations with advanced applications in biomedical and deep-cured coatings. Full article
Show Figures

Figure 1

21 pages, 11834 KB  
Article
Influence of the Ozonation Process on Expanded Graphite for Textile Gas Sensors
by Paulina Rzeźniczak, Ewa Skrzetuska, Mohanapriya Venkataraman and Jakub Wiener
Sensors 2025, 25(17), 5328; https://doi.org/10.3390/s25175328 - 27 Aug 2025
Viewed by 885
Abstract
In view of the growing demand for flexible, conductive and functional materials for textile gas sensor applications, the effects of ozonation on the properties of expanded graphite (EG) in textile structures were analyzed. Four types of fabrics (cotton, polyamide, viscose, para-aramid) coated with [...] Read more.
In view of the growing demand for flexible, conductive and functional materials for textile gas sensor applications, the effects of ozonation on the properties of expanded graphite (EG) in textile structures were analyzed. Four types of fabrics (cotton, polyamide, viscose, para-aramid) coated with pastes containing EG, which had previously been subjected to a 15-min and 30-min ozonation process, were examined. The paste was prepared using Ebecryl 2002 and the photoinitiator Esacure DP250 and then applied by screen printing. Surface resistance, scanning microscopy and wetting angle analyses were performed. The results showed that short-term ozonation (15 min) notably improved the electrical conductivity and adhesion of EG to the textile substrate, while longer exposure (30 min) led to deterioration of the conductive properties due to excessive functionalization and fragmentation of the conductive layer. The lowest surface resistance was observed in the sample subjected to 15 min of ozonation. The conclusions indicate that a properly controlled ozonation process can increase the usability of EG in sensor applications, especially in the context of smart clothing; however, the optimization of the modification time is crucial for maintaining the integrity and durability of the conductive layer. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

12 pages, 1767 KB  
Article
Thioxanthone Skeleton-Based One-Component Macro-Photoinitiator Reduces Oxygen Inhibition and Migration Through Cooperative Effect
by Yiyun Du, Jingyan Zhang, Tianyi Han and Yi Zhu
Polymers 2025, 17(16), 2252; https://doi.org/10.3390/polym17162252 - 20 Aug 2025
Viewed by 1127
Abstract
The oxygen inhibition and migration of micromolecules which stem from photoinitiators (PIs) remain two critical challenges to address in radical photocuring. In this work, we reported a one-step ternary copolymerization strategy to construct a one-component macromolecular photoinitiator (PPI) using polymerizable thioxanthone (TX), amine [...] Read more.
The oxygen inhibition and migration of micromolecules which stem from photoinitiators (PIs) remain two critical challenges to address in radical photocuring. In this work, we reported a one-step ternary copolymerization strategy to construct a one-component macromolecular photoinitiator (PPI) using polymerizable thioxanthone (TX), amine (N), and fluorinated alkane (F) as monomers. Then, we utilize the low surface energy of F unit and macromolecular skeleton to reduce oxygen inhibition and migration. Compared to micromolecule TX, PPI also exhibits a broad absorption in the 250–430 nm range, and a higher molar extinction coefficient. The effects of the TX, N, and F component ratios on the photoinitiation efficiency of PPI were systematically investigated, and the photopolymerization kinetics revealed that the increased content of F unit can eliminate the oxygen inhibition of PPI. As a result, PPI demonstrates the more superior photoinitiation efficiency compared to the traditional TX/N two-component macromolecule photoinitiation system. Migration experiments indicated that there is a 60% reduction in the migration rate for PPI compared to the TX/N photoinitiation system. This work provides an effective strategy to address oxygen inhibition and micromolecule migration issues in radical photocuring, showing potential applications in food and pharmaceutical packaging fields. Full article
(This article belongs to the Special Issue Recent Advances in Polymer-Based Organic Coatings)
Show Figures

Graphical abstract

Back to TopTop