Emerging Photo-Initiating Systems in Coatings from Molecular Engineering Perspectives
Abstract
1. Introduction
2. Future Directions in Next-Generation Photoinitiators
3. Photocleavable Type I PIs
3.1. Oxime Esters (OXEs)
3.2. Acylphosphine Oxides (APOs)
3.3. Phenacyl Bromides and Glyoxylates
4. Hydrogen Abstraction Type II PIs
4.1. Onium (ONI) Salts
Chromophore | Absorption Peak (nm) | Molar Extinction Coefficient at Maximum Absorption (M−1 cm−1) | Fluorescence LifeTime (ns) | Fluorescence Quantum Yield | Ref. |
---|---|---|---|---|---|
Squaraine dyes | 569 | 192,000 | ___ | 0.0101 | [39] |
Carbazole-coumarin-ketone dyes | 395 | 22,700 | ___ | 0.15 | [46] |
Capsanthin | 455 | 5018 | 5.87 | ___ | [50] |
Chalcone derivatives (C-TPA) | 405 | 33,600 | ___ | 0.027 | [91] |
Indole-OXEs | 426 | 26,320 | 1.51 | 0.0019 | [92] |
Thiobarbituric acid-aniline derivatives | 491 | 47,650 | 5.63 | 0.0071 | [149] |
4.2. Ketones (Benzophenones, Enones, Benzylidene Ketones, and Chalcones)
4.3. Thioxanthones and Imidazoles
5. Molecular Engineering Tactics
5.1. Extended Π-Conjugation Structures for Long-Wavelength Absorption
5.2. Photobleachable Structures
5.3. Polymerizable Macromolecular Structures
5.4. Silicone- or Auxochrome-Containing Structures
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PI | Photoinitiator |
PS | Photosensitizer |
FRP | Free radical polymerization |
CP | Cationic polymerization |
UV | Ultraviolet |
LED | Light-emitting diode |
OXE | Oxime ester |
APO | Acylphosphine oxide |
TPO | 2,4,6-trimethylbenzoyldiphenylphosphine oxide |
ONI | Onium |
BK | Benzylidene ketone |
BODIPY | Boron-dipyrromethene |
C4 | 2,4-bis [4-(diethylamino)-benzylidene]-cyclopentanone |
References
- Petko, F.; Galek, M.; Hola, E.; Popielarz, R.; Ortyl, J. One-component cationic photoinitiators from tunable benzylidene scaffolds for 3D printing applications. Macromolecules 2021, 54, 7070–7087. [Google Scholar] [CrossRef]
- Hartlieb, M. Photo-iniferter RAFT polymerization. Macromol. Rapid Commun. 2022, 43, 2100514. [Google Scholar] [CrossRef]
- Lee, K.; Corrigan, N.; Boyer, C. Rapid high-resolution 3D printing and surface functionalization via type I photoinitiated RAFT polymerization. Angew. Chem. Int. Ed. 2021, 60, 8839–8850. [Google Scholar] [CrossRef]
- Du, Y.; Jia, S.; Chen, Y.; Zhang, L.; Tan, J. Type I photoinitiator-functionalized block copolymer nanoparticles prepared by RAFT-mediated polymerization-induced self-assembly. ACS Macro Lett. 2021, 10, 297–306. [Google Scholar] [CrossRef]
- Li, L.; Wan, M.; Li, Z.; Luo, Y.; Wu, S.; Liu, X.; Yagci, Y. Coumarinacyl anilinium salt: A versatile visible and NIR photoinitiator for cationic and step-growth polymerizations. ACS Macro Lett. 2023, 12, 263–268. [Google Scholar] [CrossRef]
- Kocaarslan, A.; Kaya, K.; Jockusch, S.; Yagci, Y. Phenacyl bromide as a single-component photoinitiator: Photoinduced step-growth polymerization of N-methylpyrrole and N-methylindole. Angew. Chem. Int. Ed. 2022, 61, e202208845. [Google Scholar] [CrossRef]
- Hughes, R.W.; Lott, M.E.; Olson, S.R.A.; Sumerlin, B.S. Photoiniferter polymerization: Illuminating the history; ascendency, and renaissance. Prog. Polym. Sci. 2024, 156, 101871. [Google Scholar] [CrossRef]
- Wu, Z.; Boyer, C. Near-infrared light-induced reversible deactivation radical polymerization: Expanding frontiers in photopolymerization. Adv. Sci. 2023, 10, 2304942. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, S.; Chen, Y.; Zhang, L.; Tan, J. Switching between thermal initiation and photoinitiation redirects RAFT-mediated polymerization-induced self-assembly. Macromolecules 2021, 54, 2948–2959. [Google Scholar] [CrossRef]
- Zakrzewski; Ryu, C.Y.; Bae, C.; Picu, C.R. Photopolymerization-induced phase separation kinetics explored by intermittent irradiation. Polymer 2024, 290, 126526. [Google Scholar] [CrossRef]
- Hu, P.; Xu, H.; Pan, Y.; Sang, X.; Liu, R. Upconversion particle-assisted NIR polymerization enables microdomain gradient photopolymerization at inter-particulate length scale. Nat. Commun. 2023, 14, 3653. [Google Scholar] [CrossRef]
- Chandra, R.; Soni, R.K. Studies on kinetics of bulk polymerization of divinyl ester by radical-initiated thermal and photo-polymerization. Polym. Int. 1993, 31, 239–245. [Google Scholar] [CrossRef]
- Andrzejewska, E.; Lindén, L.-Å.; Rabek, J.F. Modelling the kinetics of photoinitiated polymerization of di (meth) acrylates. Polym. Int. 1997, 42, 179–187. [Google Scholar] [CrossRef]
- Lecamp, L.; Youssef, B.; Bunel, C.; Lebaudy, P. Photoinitiated polymerization of a dimethacrylate oligomer: 2. Kinetic studies. Polymer 1999, 40, 1403–1409. [Google Scholar] [CrossRef]
- Morancho, J.M.; Cadenato, A.; Fernández-Francos, X.; Salla, J.M.; Ramis, X. Isothermal kinetics of photopolymerization and thermal polymerization of bis-GMA/TEGDMA resins. J. Therm. Anal. Calorim. 2008, 92, 513–522. [Google Scholar] [CrossRef]
- Kamachi, M.; Kajiwara, A. Difference in propagation rate constants between photo-and thermal-initiated polymerization of styrene–effects of light irradiation. Macromol. Chem. Phys. 1997, 198, 787–795. [Google Scholar] [CrossRef]
- Perkowski, A.J.; You, W.; Nicewicz, D.A. Visible light photoinitiated metal-free living cationic polymerization of 4-methoxystyrene. J. Am. Chem. Soc. 2015, 137, 7580–7583. [Google Scholar] [CrossRef]
- Gardiner, J.; Hornung, C.H.; Tsanaktsidis, J.; Guthrie, D. Continuous flow photo-initiated RAFT polymerisation using a tubular photochemical reactor. Eur. Polym. J. 2016, 80, 200–207. [Google Scholar] [CrossRef]
- Shim, S.-H.; Ham, M.-K.; Huh, J.; Kwon, Y.-K.; Kwark, Y.-J. Simultaneous control over the molecular weight and tacticity of poly(vinyl acetate) using a low-temperature photoinitiated RAFT process in fluoroalcohols. Polym. Chem. 2013, 4, 5449–5455. [Google Scholar] [CrossRef]
- Allushi, A.; Jockusch, S.; Yilmaz, G.; Yagci, Y. Photoinitiated metal-free controlled/living radical polymerization using polynuclear aromatic hydrocarbons. Macromolecules 2016, 49, 7785–7792. [Google Scholar] [CrossRef]
- Su, X.; Zhao, Z.; Li, H.; Li, X.; Wu, P.; Han, Z. Stereocontrol during photo-initiated controlled/living radical polymerization of acrylamide in the presence of Lewis acids. Eur. Polym. J. 2008, 44, 1849–1856. [Google Scholar] [CrossRef]
- Zheng, J.; Lin, S.; Liu, J.; Yu, H.; Pan, Z.; Zheng, R.; Yi, H.; Wei, Y. Photochemical fabrication of responsive block copolymer nanoparticles: A self-assembly approach for temperature-sensitive applications. Chem. Pap. 2025, 79, 3895–3907. [Google Scholar] [CrossRef]
- Stevens, L.M.; Almada, N.T.; Kim, H.S.; Page, Z.A. Visible-light-fueled polymerizations for 3D printing. Accounts of Chemical Research. Acc. Chem. Res. 2025, 58, 250–260. [Google Scholar] [CrossRef]
- Liu, D.; Chen, Y.; Zhang, L.; Tan, J. Photoinitiated RAFT dispersion polymerization: A straightforward approach toward highly monodisperse functional microspheres. Macromolecules 2020, 53, 9725–9735. [Google Scholar] [CrossRef]
- Cao, L.; Jiang, Y.; Dai, X.; Zhang, X.; Peng, Y.; Liu, X. Using azo-compounds to endow biobased thermosetting coatings with potential application for reversible information storage. ACS Appl. Polym. Mater. 2020, 2, 4551–4558. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, Y.; Cao, L.; Jing, Y.; Xu, Z.; Tang, G.; Shu, Y.; Liu, X.; Zhang, X. Design and study of azobenzene-modified AESO photopolymerization coating for information reversible storage performance. J. Appl. Polym. Sci. 2025, 142, e56550. [Google Scholar] [CrossRef]
- Giannopoulos, I.; Mochi, I.; Vockenhuber, M.; Ekinci, Y.; Kazazis, D. Extreme ultraviolet lithography reaches 5 nm resolution. Nanoscale 2024, 16, 15533–15543. [Google Scholar] [CrossRef]
- Ding, C.; Liu, X.; Liu, Q.; Zhu, D.; Luo, M.; Gao, X.; Yang, Z.; Sun, Q.; Qian, Q.; Shen, X.; et al. Subdiffraction 3D nanolithography by two-Photon two-step absorption and photoinhibition. Photonics Rev. 2024, 18, 2300645. [Google Scholar] [CrossRef]
- Won, S.; Kim, T.; Choi, S.; Kim, B.; Kim, S.; Lee, J.; Kim, Y. Ultraviolet beam pattern control in second and third harmonic generation by spatial wavefront modulation of near-infrared driving wavelength. Nonlinear Freq. Gener. Convers. Mater. Devices XXIII 2024, 12869, 133–136. [Google Scholar]
- Garra, P.; Fouassier, J.P.; Lakhdar, S.; Yagci, Y.; Lalevée, J. Visible light photoinitiating systems by charge transfer complexes: Photochemistry without dyes. Prog. Polym. Sci. 2020, 107, 101277. [Google Scholar] [CrossRef]
- Crivello, J.V.; Sangermano, M. Visible and long-wavelength photoinitiated cationic polymerization. J. Polym. Sci. Part A 2001, 39, 343–356. [Google Scholar] [CrossRef]
- Noirbent, G.; Dumur, F. Photoinitiators of polymerization with reduced environmental impact: Nature as an unlimited and renewable source of dyes. Eur. Polym. J. 2021, 142, 110109. [Google Scholar] [CrossRef]
- Hola, E.; Morlet-Savary, F.; Lalevée, J.; Ortyl, J. Photoinitiator or photosensitizer? Dual behaviour of m-terphenyls in photopolymerization processes. Eur. Polym. J. 2023, 189, 111971. [Google Scholar] [CrossRef]
- Al Mousawi, A.; Lara, D.M.; Noirbent, G.; Dumur, F.; Toufaily, J.; Hamieh, T.; Bui, T.-T.; Goubard, F.; Graff, B.; Gigmes, D.; et al. Carbazole derivatives with thermally activated delayed fluorescence property as photoinitiators/photoredox catalysts for LED 3D printing technology. Macromolecules 2017, 50, 4913–4926. [Google Scholar] [CrossRef]
- Hammoud, F.; Hijazi, A.; Schmitt, M.; Dumur, F.; Lalevée, J. A review on recently proposed oxime ester photoinitiators. Eur. Polym. J. 2023, 188, 111901. [Google Scholar] [CrossRef]
- Niederst, L.; Allonas, X.; Morone, M.; van den Branden, S. Employing singlet-singlet energy transfer for boosting the reactivity of Type I photoinitiators in radical photopolymerization. Angew. Chem. Int. Ed. 2024, 63, e202412625. [Google Scholar] [CrossRef]
- Kanchana, D.; Carroll, J.A.; Giacoletto, N.; Gigmes, D.; Kim, J.; Unterreiner, A.N.; Mundsinger, K.; Tuten, B.T.; Barner-Kowollik, C. Wavelength-resolved oxime ester photoinitiator decay in radical polymerization. Macromolecules 2024, 57, 9779–9787. [Google Scholar] [CrossRef]
- Ju, X.; Hu, X.; Gao, Y.; Nie, J.; Sun, F. Two hydrogen donor-containing naphthalimide benzyl thioether photoinitiators for LED photopolymerization. Prog. Org. Coat. 2022, 162, 106562. [Google Scholar] [CrossRef]
- Balcerak, A.; Kwiatkowska, D.; Kabatc, J. Novel photoinitiators based on difluoroborate complexes of squaraine dyes for radical polymerization of acrylates upon visible light. Polym. Chem. 2022, 13, 220–234. [Google Scholar] [CrossRef]
- Moreno, V.F.; Barboza, B.H.; Martins, L.M.; Gaglieri, C.; Bannach, G.; Batagin-Neto, A.; da Silva-Filho, L.C. Novel quinoline photoinitiators for dimethacrylate monomer photopolymerization under UV and blue light. Eur. Polym. J. 2024, 218, 113331. [Google Scholar] [CrossRef]
- Bao, B.; You, J.; Li, D.; Zhan, H.; Zhang, L.; Li, M.; Wang, T. Double benzylidene ketones as photoinitiators for visible light photopolymerization. J. Photochem. Photobiol. A Chem. 2022, 429, 113938. [Google Scholar] [CrossRef]
- Topa-Skwarczyńska, M.; Galek, M.; Jankowska, M.; Morlet-Savary, F.; Graff, B.; Lalevée, J.; Popielarz, R.; Ortyl, J. Development of the first panchromatic BODIPY-based one-component iodonium salts for initiating the photopolymerization processes. Polym. Chem. 2021, 12, 6873–6893. [Google Scholar] [CrossRef]
- Petko, F.; Galek, M.; Hola, E.; Topa-Skwarczyn, M.; Tomal, W.; Jankowska, M.; Pilch, M.; Popielarz, R.; Graff, B.; Morlet-Savary, F. Symmetric iodonium salts based on benzylidene as one-component photoinitiators for applications in 3D printing. Chem. Mater. 2022, 34, 10077–10092. [Google Scholar] [CrossRef]
- Dumur, F. The future of visible light photoinitiators of polymerization for photocrosslinking applications. Eur. Polym. J. 2023, 187, 111883. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on Anthraquinone-based photoinitiators of polymerization. Eur. Polym. J. 2023, 191, 112039. [Google Scholar] [CrossRef]
- Guo, X.; Mao, H.; Bao, C.; Wan, D.; Jin, M. Fused carbazole–coumarin–ketone dyes: High performance and photobleachable photoinitiators in free radical photopolymerization for deep photocuring under visible LED light irradiation. Polym. Chem. 2022, 13, 3367–3376. [Google Scholar] [CrossRef]
- Liao, W.; Liao, Q.; Xiong, Y.; Li, Z.; Tang, H. Design, synthesis and properties of carbazole-indenedione based photobleachable photoinitiators for photopolymerization. J. Photochem. Photobiol. A Chem. 2023, 435, 114297. [Google Scholar] [CrossRef]
- You, J.; Cao, D.; Hu, T.; Ye, Y.; Jia, X.; Li, H.; Hu, X.; Dong, Y.; Ma, Y.; Wang, T. Novel Norrish type I flavonoid photoinitiator for safe LED light with high activity and low toxicity by inhibiting the ESIPT process. Dye. Pigment. 2021, 184, 108865. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, D.; Kavalli, T.; Xiao, P.; Schmitt, M.; Lalevée, J. Photopolymerization using bio-sourced photoinitiators. Polym. Chem. 2023, 14, 3543–3568. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.; Chen, Y.; Deng, J.; Yuan, H.; Lian, H.; Xia, C. Capsanthin-iodonium salt system for free radical photopolymerization under LED irradiation. Dye. Pigment. 2024, 230, 112347. [Google Scholar] [CrossRef]
- Li, M.; Du, Y.; Zhan, H.; Zhang, L.; Wu, H.; Zhao, D.; Wang, Q.; Wang, T. Synthesis and photochemistry of flavonol camphorsulfonates photoinitiator with different substituents. Prog. Org. Coat. 2023, 183, 107810. [Google Scholar] [CrossRef]
- Li, J.; Ding, Q.; Cao, K.; Chen, Y.; Fu, Z.; Nie, J. Pyrrolidone based one-component photoinitiator for improving the storage stability of photocurable materials to sunlight via two beams of light excitation. Eur. Polym. J. 2023, 196, 112291. [Google Scholar] [CrossRef]
- Nakayama, A.; Kumamoto, Y.; Minoshima, M.; Kikuchi, K.; Taguchi, A.; Fujita, K. Photoinitiator-free two-photon polymerization of biocompatible materials for 3D micro/nanofabrication. Adv. Opt. Mater. 2022, 10, 2200474. [Google Scholar] [CrossRef]
- Li, R.; Guo, H.; Luo, X.; Wang, Q.; Pang, Y.; Li, S.; Liu, S.; Li, J.; Strehmel, B.; Chen, Z. Type I photoinitiator based on sustainable carbon dots. Angew. Chem. Int. Ed. 2024, 63, e202404454. [Google Scholar] [CrossRef]
- Luo, X.; Zhai, Y.; Wang, P.; Tian, B.; Liu, S.; Li, J.; Yang, C.; Strehmel, V.; Li, S.; Matyjaszewski, K.; et al. light-mediated polymerization catalyzed by carbon nanomaterials. Angew. Chem. Int. Ed. 2024, 63, e202316431. [Google Scholar] [CrossRef] [PubMed]
- Riad, K.B.; Kholghy, M.R.; Wood-Adams, P.M. Photo-polymerization using quantum dots for stable epoxy coatings. Ind. Chem. Mater. 2024, 2, 644–650. [Google Scholar] [CrossRef]
- Demina, P.A.; Khaydukov, K.V.; Sochilina, A.V.; Rocheva, V.V.; Ivanov, A.V.; Akasov, R.A.; Lin, Q.; Generalova, A.N.; Khaydukov, E.V. Role of energy transfer in a nanoinitiator complex for upconversion-driven polymerization. Mater. Today Adv. 2023, 19, 100388. [Google Scholar] [CrossRef]
- Zhu, Y.; Egap, E. Light-mediated polymerization induced by semiconducting nanomaterials: State-of-the-art and future perspectives. ACS Polym. Au 2021, 1, 76–99. [Google Scholar] [CrossRef] [PubMed]
- Breloy, L.; Alcay, Y.; Yilmaz, I.; Breza, M.; Bourgon, J.; Brezová, V.; Yagci, Y.; Versace, D.-L. Dimethyl amino phenyl substituted silver phthalocyanine as a UV- and visible-light absorbing photoinitiator: In situ preparation of silver/polymer nanocomposites. Polym. Chem. 2021, 12, 1273–1285. [Google Scholar] [CrossRef]
- Yi, B.; Ai, L.; Hou, C.; Lv, D.; Cao, C.; Yao, X. Liquid metal nanoparticles as a highly efficient photoinitiator to develop multifunctional hydrogel composites. ACS Appl. Mater. Interfaces 2022, 14, 29315–29323. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Y.; Launay, V.; Le Dot, M.; Liu, S.; Lalevée, J. How to overcome the light penetration issue in photopolymerization? An example for the preparation of high content iron-containing opaque composites and application in 3D printing. Eur. Polym. J. 2022, 165, 111011. [Google Scholar] [CrossRef]
- Li, B.; Lalevée, J.; Mazur, L.M.; Matczyszyn, K.; Ravaine, S.; Jradi, S. Copper complex-based photoinitiator for high resolution two-photon polymerization. Addit. Manuf. 2023, 75, 103741. [Google Scholar]
- Ma, G.; Qu, J. Synthesis and properties of acyldiphenylphosphine oxides photoinitiators carrying ferrocene group for free radical photopolymerization. Mater. Today Commun. 2023, 37, 107173. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on ferrocene-based photoinitiating systems. Eur. Polym. J. 2021, 147, 110328. [Google Scholar] [CrossRef]
- Schoumacker, M.; Subervie, D.; Dugas, P.-Y.; Lalevée, J.; Montarnal, D.; Lansalot, M.; Lacôte, E.; Bourgeat-Lami, E. Cerium oxide-armored composite latex particles by visible light emulsion photopolymerization: From synthesis to film properties. Adv. Funct. Mater. 2025, 35, 2407914. [Google Scholar]
- Pinkas, A.; Waiskopf, N.; Gigi, S.; Naor, T.; Layani, A.; Banin, U. Morphology effect on zinc oxide quantum photoinitiators for radical polymerization. Nanoscale 2021, 13, 7152–7160. [Google Scholar] [CrossRef]
- Tomal, W.; Świergosz, T.; Pilch, M.; Kasprzyk, W.; Ortyl, J. New horizons for carbon dots: Quantum nano-photoinitiating catalysts for cationic photopolymerization and three-dimensional (3D) printing under visible light. Polym. Chem. 2021, 12, 3661–3676. [Google Scholar]
- Liu, S.; Giacoletto, N.; Graff, B.; Morlet-Savary, F.; Nechab, M.; Xiao, P.; Dumur, F.; Lalevée, J. N-naphthalimide ester derivatives as Type Ⅰ photoinitiators for LED photopolymerization. Mater. Today Chem. 2022, 26, 101137. [Google Scholar] [CrossRef]
- Borjigin, T.; Feng, J.; Giacoletto, N.; Schmitt, M.; Morlet-Savary, F.; Graff, B.; Xiao, P.; Nechab, M.; Gigmes, D.; Dumur, F.; et al. Naphthoquinone-imidazolyl derivatives-based oxime esters as photoinitiators for blue LED-induced free radical photopolymerization. Eur. Polym. J. 2024, 206, 112801. [Google Scholar] [CrossRef]
- Liu, Z.; Song, B.; Zhang, Y.; Dietlin, C.; Morlet-Savary, F.; Schmitt, M.; Gigmes, D.; Dumur, F.; Lalevée, J. Phenothiazine-carbazole-based bis oxime esters (PCBOEs) for visible light polymerization. Eur. Polym. J. 2024, 219, 113381. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Y.; Graff, B.; Dietlin, C.; Schmitt, M.; Morlet-Savary, F.; Petithory, T.; Pieuchot, L.; Zhang, J.; Xu, Y.; et al. 2,4,6-Trimethylbenzoyldiphenylphosphine oxide (TPO) analog: A non-cytotoxic type-I photoinitiator for free radical photopolymerization. Green Chem. 2025, 27, 1451–1461. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, Y.; Morlet-Savary, F.; Graff, B.; Zhang, J.; Xiao, P.; Dumur, F.; Lalevée, J. Novel high-performance glyoxylate derivative-based photoinitiators for free radical photopolymerization and 3D printing with visible LED. Small 2024, 20, 2400234. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Qu, J. Synthesis and properties of novel bis-chalcone-based photoinitiators for LED polymerization with photobleaching and low migration. Prog. Org. Coat. 2023, 174, 107240. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Sun, K.; Graff, B.; Xiao, P.; Dumur, F.; Lalevée, J. Design of photoinitiating systems based on the chalcone-anthracene scaffold for LED cationic photopolymerization and application in 3D printing. Eur. Polym. J. 2021, 147, 110300. [Google Scholar] [CrossRef]
- Elian, C.; Sanosa, N.; Bogliotti, N.; Herrero, C.; Sampedro, D.; Versace, D.-L. An anthraquinone-based oxime ester as a visible-light photoinitiator for 3D photoprinting applications. Polym. Chem. 2023, 14, 3262–3269. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, B.; Liu, Z.; Noon, A.; Dietlin, C.; Morlet-Savary, F.; Schmitt, M.; Gigmes, D.; Dumur, F.; Lalevée, J. High photoinitiating efficiency of benzothioxanthene-based oxime esters in photopolymerization via photocleavage and/or single electron transfer under visible light and sunlight. Angew. Chem. Int. Ed. 2024, 63, e202405337. [Google Scholar] [CrossRef]
- Chi, T.; Somers, P.; Wilcox, D.A.; Schuman, A.J.; Johnson, J.E.; Liang, Z.; Pan, L.; Xu, X.; Boudouris, B.W. Substituted thioxanthone-based photoinitiators for efficient two-photon direct laser writing polymerization with two-color resolution. ACS Appl. Polym. Mater. 2021, 3, 1426–1435. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, R.; Liu, D.; Peng, C.; Wang, J.; Dong, X. New functionalized thioxanthone derivatives as type I photoinitiators for polymerization under UV-Vis LEDs. New J. Chem. 2023, 47, 5330–5337. [Google Scholar] [CrossRef]
- Ma, G.; Qu, J. Triphenylamine based oxime ester photoinitiator for LED-induced free radical photopolymerization and 3D printing. Eur. Polym. J. 2024, 215, 113254. [Google Scholar] [CrossRef]
- Hammoud, F.; Lee, Z.-H.; Graff, B.; Hijazi, A.; Lalevée, J.; Chen, Y.-C. Novel phenylamine-based oxime ester photoinitiators for LED-induced free radical, cationic, and hybrid polymerization. J. Polym. Sci. 2021, 59, 1711–1723. [Google Scholar] [CrossRef]
- Lee, Z.-H.; Hammoud, F.; Hijazi, A.; Graff, B.; Lalevée, J.; Chen, Y.-C. Synthesis and free radical photopolymerization of triphenylamine-based oxime ester photoinitiators. Polym. Chem. 2021, 12, 1286–1297. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Graff, B.; Lalevée, J.; Chen, Y.-C. Visible light-induced free radical polymerization utilizing halogen-containing triphenylamine oxime esters as Type I photoinitiators. Eur. Polym. J. 2024, 217, 113300. [Google Scholar] [CrossRef]
- Lee, Z.-H.; Huang, T.-L.; Hammoud, F.; Chen, C.-C.; Hijazi, A.; Graff, B.; Lalevée, J.; Chen, Y.-C. Effect of the steric hindrance and branched substituents on visible phenylamine oxime ester photoinitiators: Photopolymerization kinetics investigation through photo-DSC experiments. Photochem. Photobiol. 2022, 98, 773–782. [Google Scholar] [CrossRef]
- Hsieh, J.-B.; Yen, S.-C.; Hammoud, F.; Lalevée, J.; Chen, Y.-C. Effect of terminal alkyl chains for free radical photopolymerization based on triphenylamine oxime ester visible-light absorbing Type I photoinitiators. ChemistrySelect 2023, 8, e202301297. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Y.; Zhu, D.; Morlet-Savary, F.; Schmitt, M.; Graff, B.; Xiao, P.; Dumur, F.; Lalevée, J. Study on the photoinitiation mechanism of carbazole-based oxime esters (OXEs) as novel photoinitiators for free radical photopolymerization under near UV/visible-light irradiation exposure and the application of 3D printing. Eur. Polym. J. 2024, 202, 112662. [Google Scholar] [CrossRef]
- Liu, S.; Graff, B.; Xiao, P.; Dumur, F.; Lalevée, J. Nitro-carbazole based oxime esters as dual photo/thermal initiators for 3D printing and composite preparation. Macromol. Rapid Commun. 2021, 42, 2100207. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on carbazole-based oxime esters as photoinitiators of polymerization. Eur. Polym. J. 2022, 175, 111330. [Google Scholar] [CrossRef]
- Zhou, R.; Pan, H.; Wan, D.; Malval, J.-P.; Jin, M. Bicarbazole-based oxime esters as novel efficient photoinitiators for photopolymerization under UV-Vis LEDs. Prog. Org. Coat. 2021, 157, 106306. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, T.; Zhang, Y.; Dietlin, C.; Morlet-Savary, F.; Schmitt, M.; Gigmes, D.; Dumur, F.; Lalevée, J. Carbazole-fused coumarin bis oxime esters (CCOBOEs) as efficient photoinitiatorsof polymerization for 3D printing with 405 nm LED. Eur. Polym. J. 2024, 215, 113186. [Google Scholar] [CrossRef]
- Wu, X.; Gong, S.; Chen, Z.; Hou, J.; Liao, Q.; Xiong, Y.; Li, Z.; Tang, H. Photobleachable bis-chalcones-based oxime ester dyes for radical visible photopolymerization. Dye. Pigment. 2022, 205, 110556. [Google Scholar] [CrossRef]
- Chen, S.; Qin, C.; Jin, M.; Pan, H.; Wan, D. Novel chalcone derivatives with large conjugation structures as photosensitizers for versatile photopolymerization. J. Polym. Sci. 2021, 59, 578–593. [Google Scholar] [CrossRef]
- Gong, S.; Wu, X.; Liao, Q.; Deng, S.; Hou, J.; Tang, K.; Xiong, Y.; Li, Z.; Tang, H. Novel multifunctional unimolecular initiators built on natural indole featuring fast photobleaching and visible light/thermal double polymerization. Green Chem. 2023, 25, 2730–2744. [Google Scholar] [CrossRef]
- Wang, W.; Jin, M.; Pan, H.; Wan, D. Phenylthioether thiophene-based oxime esters as novel photoinitiators for free radical photopolymerization under LED irradiation wavelength exposure. Prog. Org. Coat. 2021, 151, 106019. [Google Scholar] [CrossRef]
- Wang, W.; Jin, M.; Pan, H.; Wan, D. Remote effect of substituents on the properties of phenyl thienyl thioether-based oxime esters as LED-sensitive photoinitiators. Dye. Pigment. 2021, 192, 109435. [Google Scholar] [CrossRef]
- Zhang, Y.; Morlet-Savary, F.; Schmitt, M.; Graff, B.; Rico, A.; Ibrahim-Ouali, M.; Dumur, F.; Lalevée, J. Photoinitiation behavior of phenothiazines containing two oxime ester functionalities (OXEs) in free radical photopolymerization and 3D printing application. Dye. Pigment. 2023, 215, 111202. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, X.; Zhu, D.; Zhang, Y.; Le Dot, M.; Ozen, S.; Schmitt, M.; Morlet-Savary, F.; Xiao, P.; Dumur, F.; et al. Preparation of nitro-phenothiazine-based oxime esters as dual photo/thermal initiators for 3D printing. J. Polym. Sci. 2024, 62, 2597–2604. [Google Scholar] [CrossRef]
- Hammoud, F.; Giacoletto, N.; Noirbent, G.; Graff, B.; Hijazi, A.; Nechab, M.; Gigmes, D.; Dumur, F.; Lalevée, J. Substituent effects on the photoinitiation ability of coumarin-based oxime-ester photoinitiators for free radical photopolymerization. Mater. Chem. Front. 2021, 5, 8361–8370. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, M.; Ma, T.; Yan, S.; Li, J.; Jiang, X. Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chin. Chem. Lett. 2025, 36, 110427. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Borjigin, T.; Graff, B.; Morlet-Savary, F.; Schmitt, M.; Gigmes, D.; Dumur, F.; Lalevée, J. Carbazole-fused coumarin based oxime esters (OXEs): Efficient photoinitiators for sunlight driven free radical photopolymerization. Green Chem. 2023, 25, 6881–6891. [Google Scholar] [CrossRef]
- Liao, W.; Hou, J.; Fan, X.; Zhu, Q.; Jin, M. New ketoxime ester-amine photoinitiator based on charge transfer complex for free radical LED polymerization. Eur. Polym. J. 2024, 209, 112909. [Google Scholar] [CrossRef]
- Liao, W.; Jin, M. New-generation ketoxime ester-type photoinitiator model molecules: Improving photoactivity by introducing o-allyloxy group. Prog. Org. Coat. 2024, 189, 108290. [Google Scholar] [CrossRef]
- Sandmeier, M.; Paunović, N.; Conti, R.; Hofmann, L.; Wang, J.; Luo, Z.; Masania, K.; Wu, N.; Kleger, N.; Coulter, F.B.; et al. Solvent-Free Three-Dimensional Printing of Biodegradable Elastomers Using Liquid Macrophotoinitiators. Macromolecules 2021, 54, 7830–7839. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Y.; Wang, Q.; Zhang, Y.; Zhang, X.; Du, Y.; Wang, T. Acylphosphine oxide photoinitiators containing Si with sulfhydryl bridge linkages. Prog. Org. Coat. 2024, 187, 108110. [Google Scholar] [CrossRef]
- Ma, G.; Luo, J.; Qu, J. Long-wavelength absorbing photoinitiators based phenothiazine acyldiphenylphosphine oxides for free radical photopolymerization. Prog. Org. Coat. 2024, 189, 108296. [Google Scholar] [CrossRef]
- Wu, Y.; Li, R.; Wang, J.; Situ, Y.; Huang, H. A new carbazolyl-based acylphosphine oxide photoinitiator with high performance and low migration. J. Polym. Sci. 2022, 60, 52–61. [Google Scholar] [CrossRef]
- Wu, Y.; Li, R.; Ke, J.; Cheng, X.; Tang, R.; Situ, Y.; Huang, H. Study on bifunctional acyldiphenylphosphine oxides photoinitiator for free radical polymerization. Eur. Polym. J. 2022, 168, 111093. [Google Scholar] [CrossRef]
- Wu, Y.; Li, R.; Huang, C.; Wu, J.; Sun, X.; Situ, Y.; Huang, H. New acyl phosphine oxides as high-performance and low migration type I photoinitiators of radical polymerization. Prog. Org. Coat. 2022, 168, 106876. [Google Scholar] [CrossRef]
- Dietlin, C.; Trinh, T.T.; Schweizer, S.; Graff, B.; Morlet-Savary, F.; Noirot, P.-A.; Lalevée, J. Rational design of acyldiphenylphosphine oxides as photoinitiators of radical polymerization. Macromolecules 2019, 52, 7886–7893. [Google Scholar] [CrossRef]
- Wu, Y.; Ke, J.; Dai, C.; Wang, J.; Huang, C.; Situ, Y.; Huang, H. Large-molecular-weight acyldiphenylphosphine oxides as low-mobility type I photoinitiator for radical polymerization. Eur. Polym. J. 2022, 175, 111380. [Google Scholar] [CrossRef]
- Kati, M.; Cakir, Y.B.; Kaya, K.; Kiliclar, H.C.; Kiskan, B. Phenacyl bromide as Norrish type I photoinitiator for the facile synthesis of chain-end functional PMMA and polystyrene. Front. Mater. 2024, 11, 1490070. [Google Scholar] [CrossRef]
- Wan, M.; Liu, X.; Yagci, Y.; Li, Z. Coumarinacyl bromides as unimolecular photoinitiators for conjugated polymer synthesis under visible and NIR light irradiation. ChemPhotoChem 2024, 8, e202400196. [Google Scholar] [CrossRef]
- He, X.; Gao, Y.; Nie, J.; Sun, F. Methyl benzoylformate derivative Norrish Type I photoinitiators for deep-layer photocuring under near-UV or visible LED. Macromolecules 2021, 54, 3854–3864. [Google Scholar] [CrossRef]
- Sun, X.; He, X.; Yi, M.; Fan, S.; Xiang, B.; Yuan, B.; Zhu, J.; Luo, P.; Zou, Y.; Pang, Y. Coumarin based glyoxylate photoinitiators for free radical and cationic Photopolymerizations with UV-Visible LED irradiation. Eur. Polym. J. 2024, 211, 113025. [Google Scholar] [CrossRef]
- Wang, A.; Zhao, X.; Shi, Z.; Lv, C.; Li, P.; Yu, J.; Rao, H.; Chen, H.; Liu, H.; Li, W.; et al. Developing high-efficiency photoinitiation systems by Leveraging highly Matched Interplays between photosensitizer and photoinitiator for enhanced energy transfer. Eur. Polym. J. 2025, 223, 113669. [Google Scholar] [CrossRef]
- Zhu, Y.; Pi, J.; Zhang, Y.; Xu, D.; Yagci, Y.; Liu, R. A new anthraquinone derivative as a near UV and visible light photoinitiator for free-radical, thiol–ene and cationic polymerizations. Polym. Chem. 2021, 12, 3299–3306. [Google Scholar] [CrossRef]
- Breloy, L.; Mhanna, R.; Malval, J.-P.; Brezová, V.; Jacquemin, D.; Pascal, S.; Siri, O.; Versace, D.-L. Azacalixphyrins as an innovative alternative for the free-radical photopolymerization under visible and NIR irradiation without the need of co-initiators. Chem. Commun. 2021, 57, 8973–8976. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, L.; Zhang, Y.; Ou, Y.; Zhang, J.; Yagci, Y.; Liu, R. Broad wavelength sensitive coumarin sulfonium salts as photoinitiators for cationic, free radical and hybrid photopolymerizations. Prog. Org. Coat. 2023, 174, 107272. [Google Scholar] [CrossRef]
- Calvez, I.; Szczepanski, C.R.; Landry, V. Hybrid free-radical/cationic phase-separated UV-curable system: Impact of photoinitiator content and monomer fraction on surface morphologies and gloss appearance. Macromolecules 2022, 55, 3129–3139. [Google Scholar] [CrossRef]
- Li, S.; Ma, G.; Qu, J. Novel benzophenone derivatives photoinitiators based on carbazole group for deep curing and fast 3D printing. J. Photochem. Photobiol. A Chem. 2025, 460, 116144. [Google Scholar] [CrossRef]
- Lu, W.; Qu, J. Water-soluble bis-chalcone-based photoinitiators with long-wavelength absorption for radical polymerization and 3D printing. Polym. Chem. 2024, 15, 796–806. [Google Scholar] [CrossRef]
- Tang, L.; Nie, J.; Zhu, X. A high performance phenyl-free LED photoinitiator for cationic or hybrid photopolymerization and its application in LED cationic 3D printing. Polym. Chem. 2020, 11, 2855–2863. [Google Scholar] [CrossRef]
- Deng, L.; Tang, L.; Qu, J. Novel chalcone-based phenothiazine derivative photoinitiators for visible light induced photopolymerization with photobleaching and good biocompatibility. Prog. Org. Coat. 2022, 167, 106859. [Google Scholar] [CrossRef]
- Gao, Y.; Qu, J. New long-wavelength D–π-A–π-D chalcone photoinitiator for visible light polymerization with photobleaching and biocompatibility properties. Polym. Chem. 2023, 14, 952–962. [Google Scholar] [CrossRef]
- Li, Y.; Shaukat, U.; Schlögl, S.; Xue, T.; Li, J.; Nie, J.; Zhu, X. A pyrrole–carbazole photoinitiator for radical and cationic visible light LED photopolymerization. Eur. Polym. J. 2023, 182, 111700. [Google Scholar] [CrossRef]
- Li, S.; Ma, G.; Lu, W.; Qu, J. Novel di-2-thienyl ketone derivatives photoinitiators enable fast visible light polymerization and 3D printing. Prog. Org. Coat. 2025, 198, 108920. [Google Scholar] [CrossRef]
- Liu, S.; Brunel, D.; Noirbent, G.; Mau, A.; Chen, H.; Morlet-Savary, F.; Graff, B.; Gigmes, D.; Xiao, P.; Dumur, F.; et al. New multifunctional benzophenone-based photoinitiators with high migration stability and their applications in 3D printing. Mater. Chem. Front. 2021, 5, 1982–1994. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, D.; You, J.; Hao, T.; Li, X.; Nie, J.; Wang, T. Acetylene bridged D-(π-A)2 type dyes containing benzophenone moieties: Photophysical properties, and the potential application as photoinitiators. Dye. Pigment. 2021, 184, 108583. [Google Scholar] [CrossRef]
- Hola, E.; Fiedor, P.; Dzienia, A.; Ortyl, J. Visible-Light Amine Thioxanthone Derivatives as Photoredox Catalysts for Photopolymerization Processes. ACS Appl. Polym. Mater. 2021, 3, 5547–5558. [Google Scholar] [CrossRef]
- Wu, Q.; Guo, J.; Song, K.; Xu, S.; Li, F.; Deng, M. Photoinitiation mechanism and ability of thioxanthone-based versatile visible photoinitiators. Macromol. Chem. Phys. 2022, 223, 2200242. [Google Scholar] [CrossRef]
- Rahal, M.; Mokbel, H.; Graff, B.; Pertici, V.; Gigmes, D.; Toufaily, J.; Hamieh, T.; Dumur, F.; Lalevée, J. Naphthalimide-based dyes as photoinitiators under visible light irradiation and their applications: Photocomposite synthesis, 3D printing and polymerization in water. ChemPhotoChem 2021, 5, 476–490. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, B.; Zhou, Q.; Yu, Y.; Hao, E.; Guo, X.; Xu, Y.; Yu, C.; Sun, K.; Lalevée, J. riphenylamine-substituted BODIPY dye based photoinitiators for free radical and cationic photopolymerization under visible LED irradiation and application in 3D printing. Dye. Pigment. 2024, 222, 111880. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, W.; Deng, H.; Zhang, J.; Zhu, Z.; Yu, C.; Zhu, H.; Sun, K.; Li, J.; Lalevée, J. Bisbenzothieno[b]-fused BODIPYs in panchromatic photoinitiation for free radical and cationic photopolymerization and application in 3D printing. Polym. Chem. 2024, 15, 4875–4887. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Y.; Zhang, Y.; Liu, S.; Zhang, X.; Wang, T. Silicone-modified flavonols for organosilicon photopolymerization. ACS Appl. Polym. Mater. 2024, 6, 9260–9271. [Google Scholar] [CrossRef]
- Xu, D.; Zou, X.; Zhu, Y.; Yu, Z.; Jin, M.; Liu, R. Phenothiazine-based charge-transfer complexes as visible-light photoinitiating systems for acrylate and thiol-ene photopolymerization. Prog. Org. Coat. 2022, 166, 106772. [Google Scholar] [CrossRef]
- Li, M.; Bao, B.; You, J.; Du, Y.; Li, D.; Zhan, H.; Zhang, L.; Wang, T. Phenothiazine derivatives based on double benzylidene ketone structure: Application to red light photopolymerization. Prog. Org. Coat. 2022, 173, 107217. [Google Scholar] [CrossRef]
- Fan, S.; Lai, P.; Pang, Y.; Zou, Y.; Wei, J. Design of oxime ester photoinitiators based on methoxy-substituted coumarin chromophores for LED photopolymerization and 3D printing. ACS Appl. Polym. Mater. 2024, 6, 12866–12874. [Google Scholar] [CrossRef]
- Rahal, M.; Graff, B.; Toufaily, J.; Hamieh, T.; Dumur, F.; Lalevée, J. Design of keto-coumarin based photoinitiator for Free Radical Photopolymerization: Towards 3D printing and photocomposites applications. Eur. Polym. J. 2021, 154, 110559. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Wan, D.; Jin, M. Effect of substituents on 1,3,5-triphenylpyrazoline as light-emitting diode-sensitive initiators in photopolymerization. Eur. Polym. J. 2023, 184, 111783. [Google Scholar] [CrossRef]
- Xue, T.; Tang, L.; Tang, R.; Li, Y.; Nie, J.; Zhu, X. Color evolution of a pyrrole-based enone dye in radical photopolymerization formulations. Dye. Pigment. 2021, 188, 109212. [Google Scholar] [CrossRef]
- Wen, Y.; Xiang, H.; Luo, X.; Ji, S.; Zhao, J.; Zhao, J.; Zhang, H.-L.; Chen, W.-C.; Huo, Y. Colorless phenanthroimidazole photoinitiators featuring tunable D-π-A configuration by frontier molecular orbital engineering. Dye. Pigment. 2022, 205, 110551. [Google Scholar] [CrossRef]
- Tehfe, M.-A.; Dumur, F.; Graff, B.; Gigmes, D.; Fouassier, J.-P.; Lalevée, J. Blue-to-red light sensitive push–pull structured pphotoinitiators: Indanedione derivatives for radical and cationic photopolymerization reactions. Macromolecules 2013, 46, 3332–3341. [Google Scholar] [CrossRef]
- Breloy, L.; Brezová, V.; Richeter, S.; Clément, S.; Malval, J.-P.; Andaloussi, S.A.; Versace, D.-L. Bio-based porphyrins pyropheophorbide a and its Zn-complex as visible-light photosensitizers for free-radical photopolymerization. Polym. Chem. 2022, 13, 1658–1671. [Google Scholar] [CrossRef]
- Liao, W.; Liao, Q.; Xu, C.; Wu, X.; Xiong, Y.; Li, Z.; Tang, H. Structural effects of cinnamoyl-indanone-based photobleachable free radical visible initiators. ACS Appl. Polym. Mater. 2022, 4, 6466–6476. [Google Scholar] [CrossRef]
- Petko, F.; Jankowska, M.; Galek, M.; Noworyta, M.; Popielarz, R.; Ortyl, J. One-Component Stilbene-Based Iodonium Photoinitiators with increased photoacid quantum yield for cationic Vat 3D printing. Macromolecules 2024, 57, 11639–11657. [Google Scholar] [CrossRef]
- Wang, Y.; Sheng, G.; Xie, J.; Wan, D.; Jin, M. Push–pull biphenyl–based iodonium salts: Highly sensitive one-component photoinitiators for photopolymerization under UV–visible LEDs. Prog. Org. Coat. 2024, 188, 108209. [Google Scholar] [CrossRef]
- Hammoud, F.; Hijazi, A.; Duval, S.; Lalevée, J.; Dumur, F. Dihydroindolo [3, 2-a] carbazole: A promising scaffold for the design of visible light photoinitiators of polymerization. Eur. Polym. J. 2022, 162, 110880. [Google Scholar] [CrossRef]
- Taschner, R.; Koch, T.; Wolff, R.; Stampfl, J.; Liska, R.; Knaack, P. Evaluation of sulfonium borate initiators for cationic photopolymerization and their application in hot lithography. ACS Appl. Polym. Mater. 2023, 5, 3023–3033. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, D.; Zhang, Y.; Zhou, Y.; Yagci, Y.; Liu, R. Phenacyl phenothiazinium salt as a new broad-wavelength-absorbing photoinitiator for cationic and free radical polymerizations. Angew. Chem. Int. Ed. 2021, 60, 16917–16921. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Gong, S.; Wu, X.; Huang, M.; Wei, T.; Xiong, Y.; Tang, H. Low-migration, deep photocuring thiobarbituric acid-based one-component visible photoinitiators for high-efficiency photopolymerization. Prog. Org. Coat. 2024, 194, 108567. [Google Scholar] [CrossRef]
- Liao, W.; Jin, M. Strategies to develop α-aminoketone derivatives photoinitiators with low migration ability for UV–vis LED photopolymerization. Eur. Polym. J. 2023, 187, 111899. [Google Scholar] [CrossRef]
- Xue, T.; Li, Y.; Li, X.; Huang, B.; Song, Q.; Nie, J.; Zhu, X. Benzylidene ketones as visible light radical photoinitiator: The effects of electron-donating group and co-initiator. J. Photochem. Photobiol. A Chem. 2021, 418, 113395. [Google Scholar] [CrossRef]
- Zheng, H.; Lu, H.; Li, J.; Nie, J.; Zhu, X. The photoinitiator of bifunctional α-hydroxy ketone with long-wavelength in photopolymerization under UV-LEDs. Prog. Org. Coat. 2023, 185, 107936. [Google Scholar] [CrossRef]
- Yao, M.; Liu, S.; Huang, C.; Nie, J.; He, Y. Significantly improve the photoinitiation ability of hydroxyalkyl-derived polymerizable α-hydroxyalkylacetophenone photoinitiators by blocking hyperconjugation. J. Photochem. Photobiol. A Chem. 2021, 419, 113451. [Google Scholar] [CrossRef]
- Li, J.; Deng, Q.; Xing, Z.; Yu, J.; Li, W.; Zhou, X.; Zhu, X.; Nie, J. Precision synthesis of diblock copolymers via free radical photopolymerization. Chem. Commun. 2024, 60, 11072–11075. [Google Scholar] [CrossRef]
- Lu, H.; Zhu, X. Synthesis of D-π-A-π-D photoinitiator with high-photoinitiation efficiency by restricting photoinduced isomerization process. J. Appl. Polym. Sci. 2022, 139, 51569. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Y.; Li, M.-D.; Li, Z.A.; Peng, H.; Xie, T.; Xie, X. Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization. Nat. Commun. 2021, 12, 2873. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on benzylidene ketones as photoinitiators of polymerization. Eur. Polym. J. 2022, 178, 111500. [Google Scholar] [CrossRef]
- Xu, Y.; Noirbent, G.; Brunel, D.; Ding, Z.; Gigmes, D.; Graff, B.; Xiao, P.; Dumur, F.; Lalevée, J. Allyloxy ketones as efficient photoinitiators with high migration stability in free radical polymerization and 3D printing. Dye. Pigment. 2021, 185, 108900. [Google Scholar] [CrossRef]
- Eren, T.N.; Kariksiz, N.; Demirci, G.; Tuncel, D.; Okte, N.; Acar, H.Y.; Avci, D. Irgacure 2959-functionalized poly(ethyleneimine)s as improved photoinitiators: Enhanced water solubility, migration stability and visible-light operation. Polym. Chem. 2021, 12, 2772–2785. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Chen, D.; Ma, Y.; Wang, Q.; Wang, J.; Yang, W. Synthesis and characterization of a novel kind of water-soluble macromolecular photoinitiators and their application for the preparation of water-soluble branched polymers. Ind. Eng. Chem. Res. 2021, 60, 7755–7763. [Google Scholar] [CrossRef]
- Xue, T.; Huang, B.; Li, Y.; Li, X.; Nie, J.; Zhu, X. Enone dyes as visible photoinitiator in radical polymerization: The influence of peripheral N-alkylated (hetero)aromatic amine group. J. Photochem. Photobiol. A Chem. 2021, 419, 113449. [Google Scholar] [CrossRef]
- Singh, A.K.; Bhasikuttan, A.C.; Palit, D.K.; Mittal, J.P. Excited-state dynamics and photophysical properties of para-aminobenzophenone. J. Phys. Chem. A 2000, 104, 7002–7009. [Google Scholar] [CrossRef]
- Xue, T.; Li, Y.; Si, Z.; Li, C.; Nie, J.; Zhu, X. Benzophenone based salicylaldimine and its boron complex as radical photoinitiator: A comparative study. J. Photochem. Photobiol. A Chem. 2022, 424, 113625. [Google Scholar] [CrossRef]
- Xue, T.; Li, Y.; Zhao, X.; Nie, J.; Zhu, X. A facile synthesized benzophenone Schiff-base ligand as efficient type II visible light photoinitiator. Prog. Org. Coat. 2021, 157, 106329. [Google Scholar] [CrossRef]
- Regehly, M.; Garmshausen, Y.; Reuter, M.; König, N.F.; Israel, E.; Kelly, D.P.; Chou, C.-Y.; Koch, K.; Asfari, B.; Hecht, S. Xolography for linear volumetric 3D printing. Nature 2020, 588, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.M.; Fernandes, J.R.; Coelho, P.J. Naphthopyrans as efficient dual color photoinitiators for volumetric 3D printing. Eur. Polym. J. 2023, 196, 112312. [Google Scholar] [CrossRef]
- Yang, F.; Zhong, M.; Zhao, X.; Li, J.; Sun, F.; Nie, J.; Zhu, X. High efficiency photoinitiators with extremely low concentration based on furans derivative. J. Photochem. Photobiol. A Chem. 2021, 406, 112994. [Google Scholar] [CrossRef]
- Li, J.; Deng, Q.; Zhou, X.; Yu, J.; Zhu, X.; Nie, J. Ketone constructed by alkyl bridge strategy for LED-sensitive free radical photopolymerization. Eur. Polym. J. 2025, 224, 113681. [Google Scholar] [CrossRef]
- Hu, T.; Fu, H.; Xiong, J.; Wang, T. Benzylidene piperidones as photosensitizers for visible light photopolymerization. J. Photochem. Photobiol. A Chem. 2021, 405, 112968. [Google Scholar] [CrossRef]
- Yen, S.-C.; Ni, J.-S.; Chen, Y.-C. Triphenylamine-functionalized chalcones as one-component type II visible-light-absorbing photoinitiators for free radical photopolymerization. Eur. Polym. J. 2023, 187, 111885. [Google Scholar] [CrossRef]
- Wang, S.-C.; Wu, Y.-H.; Hsieh, J.-B.; Ni, J.-S.; Chen, Y.-C. Triphenylamine based benzylidene ketones as visible-light-absorbing Type II photoinitiators for free radical photopolymerization. J. Photochem. Photobiol. A Chem. 2023, 443, 114870. [Google Scholar] [CrossRef]
- Ibrahim-Ouali, M.; Dumur, F. Recent advances on chalcone-based photoinitiators of polymerization. Eur. Polym. J. 2021, 158, 110688. [Google Scholar] [CrossRef]
- Chen, H.; Noirbent, G.; Sun, K.; Brunel, D.; Gigmes, D.; Morlet-Savary, F.; Zhang, Y.; Liu, S.; Xiao, P.; Dumur, F.; et al. Photoinitiators derived from natural product scaffolds: Monochalcones in three-component photoinitiating systems and their applications in 3D printing. Polym. Chem. 2020, 11, 4647–4659. [Google Scholar] [CrossRef]
- Li, J.; Zheng, H.; Lu, H.; Li, J.; Yao, L.; Wang, Y.; Zhou, X.; Nie, J.; Zhu, X.; Fu, Z. Study on pyrrole chalcone derivatives used for blue LED free radical photopolymerization: Controllable initiating activity achieved through photoisomerization property. Eur. Polym. J. 2022, 176, 111393. [Google Scholar] [CrossRef]
- Lu, W.; Ma, G.; Qu, J. Novel bis-chalcone-based carbazole derivative photoinitiators for visible light polymerization with good photobleaching and biocompatibility. Prog. Org. Coat. 2024, 187, 108102. [Google Scholar] [CrossRef]
- Li, J.; Deng, Q.; Zhou, X.; Li, W.; Zhu, X.; Nie, J. Enhancement in the initiating activity of chalcones via a long-alkyl chain strategy for free radical photopolymerization and 3D printing. Polym. Chem. 2024, 15, 2840–2848. [Google Scholar] [CrossRef]
- Li, J.; Nie, J.; Zhu, X. Hydrogen bond complex used as visible light photoinitiating system for free radical photopolymerization: Photobleaching, water solubility. Prog. Org. Coat. 2021, 151, 106099. [Google Scholar] [CrossRef]
- Li, J.; Lu, H.; Zheng, H.; Zhou, X.; Nie, J.; Zhu, X. Thermally activated pyrrole chalcone free radical photoinitiator with excellent stability to sunlight. Eur. Polym. J. 2022, 162, 110884. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, W.; Chen, X.; Lin, S.; Li, X.; He, L.; Liao, X.; Ye, G. A comparison of hydrogen abstraction reaction between allyl-type monomers with thioxanthone-based photoinitiators without amine synergists. Front. Chem. 2022, 10, 967836. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on crosslinkable thioxanthones for photopolymerization. Eur. Polym. J. 2024, 216, 113299. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on core-extended thioxanthones as efficient photoinitiators of polymerization. Eur. Polym. J. 2024, 206, 112794. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on naphthoquinone-based photoinitiators of polymerization. Eur. Polym. J. 2023, 193, 112120. [Google Scholar] [CrossRef]
- Pyszka, I.; Jędrzejewska, B. Photoinitiation abilities of indeno- and indoloquinoxaline derivatives and mechanical properties of dental fillings based on multifunctional acrylic monomers and glass ionomer. Polymer 2023, 266, 125625. [Google Scholar] [CrossRef]
- Dogruyol, S.K.; Dogruyol, Z.; Kazancioglu, E.O.; Gokcek, H.; Arsu, N. Thioxanthonation of 2-naphthalene-thioacetic acid as a visible-light photoinitiator: The investigation of photophysical and photochemical properties. Eur. Polym. J. 2023, 198, 112440. [Google Scholar] [CrossRef]
- Yang, S.; Chen, P.; Fu, H.; Li, Y.; Li, L.; Li, W.; Song, S.; Xu, R.; Pan, Q.; Xin, Y.; et al. Single-component thioxanthone-based photoinitiator for free-radical photopolymerization of acrylates via UV-LED irradiation. Dye. Pigment. 2025, 235, 112640. [Google Scholar] [CrossRef]
- Strzelczyk, R.; Podsiadły, R. Derivatives of,4-naphthoquinone as visible-light-absorbing one-component photoinitiators for radical polymerisation. Color. Technol. 2015, 131, 229–235. [Google Scholar] [CrossRef]
- Koyuncu, U.; Metin, E.; Ocal, N.; Arsu, N. Synthesis of one-component type II dithioxanthone-disulfide photoinitiator and investigation of photophysical and photochemical properties. Eur. Polym. J. 2021, 153, 110510. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Zhang, Y.; Chen, Y.; An, G.; Liu, R. Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chin. Chem. Lett. 2024, 35, 109573. [Google Scholar] [CrossRef]
- Banerjee, P.; Kar, M.; Dinda, P.; Mandal, T.K. Ionic liquid-based unconventional photoinitiators for aqueous polymerization. Eur. Polym. J. 2022, 162, 110870. [Google Scholar] [CrossRef]
- Begantsova, Y.E.; Zvagelsky, R.; Baranov, E.V.; Chubich, D.A.; Chechet, Y.V.; Kolymagin, D.A.; Pisarenko, A.V.; Vitukhnovsky, A.G.; Chesnokov, S.A. Imidazole-containing photoinitiators for fabrication of sub-micron structures by 3D two-photon polymerization. Eur. Polym. J. 2021, 145, 110209. [Google Scholar] [CrossRef]
- Chen, S.; Pan, H.; Wan, D.; Jin, M. High-performance LED induces cationic photopolymerization using novel 1, 3, 5-triaryl-2-pyrazoline as photosensitizer. Prog. Org. Coat. 2021, 161, 106460. [Google Scholar] [CrossRef]
- Tu, W.-H.; Hsieh, J.-B.; Wu, Y.-H.; Graff, B.; Lalevée, J.; Chen, Y.-C. Influence of alkyl chain lengths and positions on visible-light absorbing triphenylamine oxime esters for free radical photopolymerization. Eur. Polym. J. 2025, 223, 113625. [Google Scholar] [CrossRef]
- Chung, K.-Y.; Page, Z.A. Boron-Methylated Dipyrromethene as a Green Light Activated Type I Photoinitiator for Rapid Radical Polymerizations. J. Am. Chem. Soc. 2023, 145, 17912–17918. [Google Scholar] [CrossRef]
- Zhou, J.; Pitzer, L.; Ley, C.; Rölle, T.; Allonas, X. A highly sensitive photoinitiating system based on pre-associated ion-pairs for NIR radical photopolymerization of optically clear materials. Polym. Chem. 2022, 13, 6475–6483. [Google Scholar] [CrossRef]
- Elian, C.; Mourot, B.; Benbouziyane, C.; Malval, J.-P.; Lajnef, S.; Peyrot, F.; Massuyeau, F.; Siri, O.; Jacquemin, D.; Pascal, S.; et al. Tris-benzo[cd]indole Cyanine Enables the NIR-photosensitized Radical and Thiol-ene Polymerizations at 940 nm. Angew. Chem. Int. Ed. 2023, 62, e202305963. [Google Scholar] [CrossRef]
- Song, Q.; Shang, K.; Xue, T.; Wang, Z.; Pei, D.; Zhao, S.; Nie, J.; Chang, Y. Macrocyclic photoinitiator based on prism [5]arene matching LEDs light with low mmigration. Macromol. Rapid Commun. 2021, 42, 2100299. [Google Scholar] [CrossRef] [PubMed]
- Bureš, F. Fundamental aspects of property tuning in push–pull molecules. RSC Adv. 2014, 4, 58826–58851. [Google Scholar] [CrossRef]
- Sun, K.; Xiao, P.; Dumur, F.; Lalevée, J. Organic dye-based photoinitiating systems for visible-light-induced photopolymerization. J. Polym. Sci. 2021, 59, 1338–1389. [Google Scholar] [CrossRef]
- Pigot, C.; Noirbent, G.; Bui, T.-T.; Péralta, S.; Gigmes, D.; Nechab, M.; Dumur, F. Push-pull chromophores based on the naphthalene scaffold: Potential candidates for optoelectronic applications. Materials 2019, 12, 1342. [Google Scholar] [CrossRef]
- Gong, S.; Hou, J.; Wu, X.; Huang, M.; Wei, T.; Deng, S.; Xiong, Y.; Tang, H. Fast photobleachable and low migration one-component green indole visible photoinitiators. Chem. Eng. J. 2023, 477, 146904. [Google Scholar] [CrossRef]
- Noirbent, G.; Pigot, C.; Bui, T.-T.; Péralta, S.; Nechab, M.; Gigmes, D.; Dumur, F. Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 2-(3-cyano-4, 5, 5-trimethylfuran-2 (5H)-ylidene) malononitrile (TCF) acceptor. Dye. Pigment. 2021, 184, 108807. [Google Scholar] [CrossRef]
- Guo, X.D.; Zhou, H.Y.; Wang, J.X. A novel thioxanthone-hydroxyalkylphenone bifunctional photoinitiator: Synthesis, characterization and mechanism of photopolymerization. Prog. Org. Coat. 2021, 154, 106214. [Google Scholar] [CrossRef]
- Xu, C.; Gong, S.; Wu, X.; Wu, Y.; Liao, Q.; Xiong, Y.; Li, Z.; Tang, H. High-efficient carbazole-based photo-bleachable dyes as free radical initiators for visible light polymerization. Dye. Pigment. 2022, 198, 110039. [Google Scholar] [CrossRef]
- Deng, L.; Qu, J. Design of novel phenothiazine-based push-pull photoinitiators for visible light with high activity, good solubility and low migration. Prog. Org. Coat. 2023, 183, 107766. [Google Scholar] [CrossRef]
- Sun, K.; Liu, S.; Chen, H.; Morlet-Savary, F.; Graff, B.; Pigot, C.; Nechab, M.; Xiao, P.; Dumur, F.; Lalevée, J. N-ethyl carbazole-1-allylidene-based push-pull dyes as efficient light harvesting photoinitiators for sunlight induced polymerization. Eur. Polym. J. 2021, 147, 110331. [Google Scholar] [CrossRef]
- Tang, Z.; Gao, Y.; Jiang, S.; Nie, J.; Sun, F. Cinnamoylformate derivatives photoinitiators with excellent photobleaching ability and cytocompatibility for visible LED photopolymerization. Prog. Org. Coat. 2022, 170, 106969. [Google Scholar] [CrossRef]
- Zhiganshina, E.R.; Arsenyev, M.V.; Chubich, D.A.; Kolymagin, D.A.; Pisarenko, A.V.; Burkatovsky, D.S.; Baranov, E.V.; Vitukhnovsky, A.G.; Lobanov, A.N.; Matital, R.P. Tetramethacrylic benzylidene cyclopentanone dye for one-and two-photon photopolymerization. Eur. Polym. J. 2022, 162, 110917. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, X.; Huang, X.; Zhang, Y.; Shi, M.; Zhao, Y. High-efficient lignin-based polymerizable macromolecular photoinitiator with UV-blocking property for visible light polymerization. Int. J. Biol. Macromol. 2022, 204, 234–244. [Google Scholar] [CrossRef]
- Wu, Q.; Mo, Y.; Zhang, Y.; Li, F.; Deng, M. Photophysical/photochemical; kinetic, and migration stability studies of one-component polymerizable thioxanthone-based photoinitiators. Macromol. Chem. Phys. 2021, 222, 2100221. [Google Scholar] [CrossRef]
- Gencoglu, T.; Eren, T.N.; Lalevée, J.; Avci, D. A water soluble; low migration, and visible light photoinitiator by thioxanthone-functionalization of poly (ethylene glycol)-containing poly (β-amino ester). Macromol. Chem. Phys. 2022, 223, 2100450. [Google Scholar] [CrossRef]
- Kariksiz, N.; Balaban, B.; Gencoglu, T.; Morlet-Savary, F.; Lalevee, J.; Avci, D. A cyclopolymerizable; doubly Irgacure 2959 functionalized quaternary ammonium salt photoinitiator and its water-soluble copolymer with diallyldimethylammonium chloride. Polym. Chem. 2023, 14, 1195–1205. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, H.; Huang, R.; Huang, L.; Xie, G.; Hu, H.; Yang, J. Bis(trimethylsilyl)amino modified Type Ⅱ photoinitiators can alleviate oxygen inhibition of near-UV LED photopolymerization due to moisture induced decomposition of initiators. Eur. Polym. J. 2022, 172, 111236. [Google Scholar] [CrossRef]
- Sheehan, A.; Mikulchyk, T.; De Castro, C.S.P.; Karuthedath, S.; Althobaiti, W.; Dvoracek, M.; Sabad, E.G.; Byrne, H.J.; Laquai, F.; Naydenova, I.; et al. Diethoxycarbonyl-BODIPYs as heavy-atom-free photosensitizers for holographic recording in cellulose acetate photopolymer. J. Mater. Chem. C 2023, 11, 15084–15096. [Google Scholar] [CrossRef]
Characteristic | Type I PIs | Type II PIs |
---|---|---|
Photoinitiation mechanism | Direct homolytic cleavage into primary radicals | Intramolecular or intermolecular hydrogen abstraction to generate secondary radicals |
Components | Monocomponent (no co-initiators) | Mono-, bi-, or triple-component (with co-initiators, such as onium salts and amines) |
Curing speed | Faster (single-step cleavage) | Slower (bimolecular reaction) in viscous systems |
Oxygen inhibition | Highly sensitive | Less sensitive (amine co-initiators scavenge oxygen) |
Applications | Automotive and wood coatings, electronic packing, optical fiber coating, and high-speed 3D printing | Biomedical applications, 3D bioprinting, wood coatings, and thick-film curing |
Typical molecular scaffolds | Oxime esters, phosphine oxides, phenacyl bromides, and glyoxylates | Onium salts, α-hydroxyketones, benzophenones, benzylidene ketones, chalcones, thioxanthones, and imidazole |
Commercial products | Irgacure 1173, Irgacure 819, Irgacure 369, Irgacure 651, OXE-01, and OXE-02 | Omnirad 2290, Irgacure 2959, Irgacure 907, 2-isopropylthioxanthone, Lencolo 5030, and Lencolo 5033 |
PIs | Co-Initiator | Monomer (Concentration) | Final Conversion (Time) | Ref. |
---|---|---|---|---|
Benzophenone-triphenylamine-BT3 | ___ | TMPTA | 56% (200 s) | [68] |
Benzophenone-triphenylamine-BT3 | Iod | TMPTA | 72% (200 s) | [68] |
Benzophenone-triphenylamine-BT3 | Iod | Epoxy | 47% (200 s) | [68] |
Naphthoquinone-imidazolyl-OXE-3 | ___ | TMPTA | 85% | [69] |
Carbazole-coumarin-OXEs-CCOBOE1 | ___ | TMPTA (5 × 10−6 mol g−1) | 61% | [70] |
TPO analog-TDOPO | ___ | TMPTA (2.8 × 10−5 mol g−1) | 75% (25 s) | [71] |
Glyoxylate-CEGs | ___ | TMPTA (1.25 × 10−5 mol g−1) | 68% | [72] |
TPO | ___ | TMPTA (2 wt.%) | 58% | [73] |
Chalcone-anthracene-A4 | Iod/EDB | TMPTA | 60% | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Dai, X.; Wu, Y.; Ba, X. Emerging Photo-Initiating Systems in Coatings from Molecular Engineering Perspectives. Coatings 2025, 15, 1028. https://doi.org/10.3390/coatings15091028
Cao L, Dai X, Wu Y, Ba X. Emerging Photo-Initiating Systems in Coatings from Molecular Engineering Perspectives. Coatings. 2025; 15(9):1028. https://doi.org/10.3390/coatings15091028
Chicago/Turabian StyleCao, Lijun, Xinyan Dai, Yonggang Wu, and Xinwu Ba. 2025. "Emerging Photo-Initiating Systems in Coatings from Molecular Engineering Perspectives" Coatings 15, no. 9: 1028. https://doi.org/10.3390/coatings15091028
APA StyleCao, L., Dai, X., Wu, Y., & Ba, X. (2025). Emerging Photo-Initiating Systems in Coatings from Molecular Engineering Perspectives. Coatings, 15(9), 1028. https://doi.org/10.3390/coatings15091028