Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = photoinactivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1769 KiB  
Article
Antimicrobial Photodynamic Activity of the Zn(II) Phthalocyanine RLP068/Cl Versus Antimicrobial-Resistant Priority Pathogens
by Ilaria Baccani, Sara Cuffari, Francesco Giuliani, Gian Maria Rossolini and Simona Pollini
Int. J. Mol. Sci. 2025, 26(15), 7545; https://doi.org/10.3390/ijms26157545 - 5 Aug 2025
Viewed by 117
Abstract
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism [...] Read more.
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism of action, exerting direct bactericidal and fungicidal effects with minimal risk of resistance development. Although aPDT has shown efficacy against a variety of pathogens, data on its activity against large collections of clinical multidrug-resistant strains are still limited. In this study, we assessed the antimicrobial activity of the photosensitizer RLP068/Cl combined with a red light-emitting LED source at 630 nm (Molteni Farmaceutici, Italy) against a large panel of Gram-negative and Gram-positive bacterial strains harboring relevant resistance traits and Candida species. Our results demonstrated the significant microbicidal activity of RLP068/Cl against all of the tested strains regardless of their resistance phenotype, with particularly prominent activity against Gram-positive bacteria (range of bactericidal concentrations 0.05–0.1 µM), which required significantly lower exposure to photosensitizer compared to Candida and Gram-negative species (range 5–20 µM). Overall, these findings support the potential use of RLP068/Cl-mediated aPDT as an effective therapeutic strategy for the management of localized infections caused by MDR organisms, particularly when conventional therapeutic options are limited. Full article
Show Figures

Figure 1

23 pages, 2593 KiB  
Article
Thermal Decoupling May Promote Cooling and Avoid Heat Stress in Alpine Plants
by Loreto V. Morales, Angela Sierra-Almeida, Catalina Sandoval-Urzúa and Mary T. K. Arroyo
Plants 2025, 14(13), 2023; https://doi.org/10.3390/plants14132023 - 2 Jul 2025
Viewed by 385
Abstract
In alpine ecosystems, where low temperatures predominate, prostrate growth forms play a crucial role in thermal resistance by enabling thermal decoupling from ambient conditions, thereby creating a warmer microclimate. However, this strategy may be maladaptive during frequent heatwaves driven by climate change. This [...] Read more.
In alpine ecosystems, where low temperatures predominate, prostrate growth forms play a crucial role in thermal resistance by enabling thermal decoupling from ambient conditions, thereby creating a warmer microclimate. However, this strategy may be maladaptive during frequent heatwaves driven by climate change. This study combined microclimatic and plant characterization, infrared thermal imaging, and leaf photoinactivation to evaluate how thermal decoupling (TD) affects heat resistance (LT50) in six alpine species from the Nevados de Chillán volcano complex in the Andes of south-central Chile. Results showed that plants’ temperatures increased with solar radiation, air, and soil temperatures, but decreased with increasing humidity. Most species exhibited negative TD, remaining 6.7 K cooler than the air temperature, with variation across species, time of day, and growth form; shorter, rounded plants showed stronger negative TD. Notably, despite negative TD, all species exhibited high heat resistance (Mean LT50 = 46 °C), with LT50 positively correlated with TD in shrubs. These findings highlight the intricate relationships between thermal decoupling, environmental factors, and plant traits in shaping heat resistance. This study provides insights into how alpine plants may respond to the increasing heat stress associated with climate change, emphasizing the adaptive significance of thermal decoupling in these environments. Full article
Show Figures

Figure 1

11 pages, 1164 KiB  
Article
Optimizing Photosensitizer Delivery for Effective Photodynamic Inactivation of Klebsiella pneumoniae Under Lung Surfactant Conditions
by Fernanda Alves, Isabelle Almeida de Lima, Lorraine Gabriele Fiuza, Zoe A. Arnaut, Natalia Mayumi Inada and Vanderlei Salvador Bagnato
Pathogens 2025, 14(7), 618; https://doi.org/10.3390/pathogens14070618 - 21 Jun 2025
Viewed by 711
Abstract
Klebsiella pneumoniae is a Gram-negative, encapsulated bacterium recognized by the World Health Organization (WHO) as a critical priority for new therapeutic strategies due to its increasing multidrug resistance (MDR). Antimicrobial photodynamic therapy (aPDT) has emerged as a promising alternative to antibiotics, exhibiting a [...] Read more.
Klebsiella pneumoniae is a Gram-negative, encapsulated bacterium recognized by the World Health Organization (WHO) as a critical priority for new therapeutic strategies due to its increasing multidrug resistance (MDR). Antimicrobial photodynamic therapy (aPDT) has emerged as a promising alternative to antibiotics, exhibiting a broad spectrum of action and multiple molecular targets, and has been proposed for the treatment of clinically relevant infections such as pneumonia. However, despite excellent in vitro photodynamic inactivation outcomes, the success of in vivo therapy still faces challenges, particularly due to the presence of lung surfactant (LS) in the alveoli. LS entraps photosensitizers, preventing these molecules from reaching microbial targets. This study investigated the potential of indocyanine green (ICG) in combination with the biocompatible polymer Gantrez™ AN-139 for the photoinactivation of K. pneumoniae. Initial in vitro experiments demonstrated that aPDT with ICG alone is effective against K. pneumoniae in a concentration- and light dose-dependent manner, achieving total eradication at 75 µg/mL of ICG and 150 J/cm2 of 808 nm light. When aPDT was performed with similar parameters in the presence of LS, no bacterial killing was observed. However, a significant synergistic effect was observed when ICG (25 µg/mL) was combined with a low concentration of Gantrez™ AN-139 (0.5% m/v) in the presence of dipalmitoylphosphatidylcholine (DPPC), the main component of LS. This formulation resulted in a substantial reduction (3.6 log10) in K. pneumoniae viability. These findings highlight the potential of Gantrez™ AN-139 as an efficient carrier to enhance the efficacy of ICG-mediated aPDT against K. pneumoniae, even in the presence of lung surfactant, a necessary step before the in vivo experiments. Full article
(This article belongs to the Special Issue Bacterial Pathogenesis and Antibiotic Resistance)
Show Figures

Figure 1

14 pages, 1851 KiB  
Article
The Natural Anthraquinone Parietin Inactivates Candida tropicalis Biofilm by Photodynamic Mechanisms
by Juliana Marioni, Bianca C. Romero, Ma. Laura Mugas, Florencia Martinez, Tomas I. Gómez, Jesús M. N. Morales, Brenda S. Konigheim, Claudio D. Borsarelli and Susana C. Nuñez-Montoya
Pharmaceutics 2025, 17(5), 548; https://doi.org/10.3390/pharmaceutics17050548 - 23 Apr 2025
Viewed by 593
Abstract
Background/Objectives: Parietin (PTN), a blue-light absorbing pigment from Teloschistes spp. lichens, exhibit photosensitizing properties via Type I (superoxide anion, O2•−) and Type II (singlet oxygen, 1O2) mechanisms, inactivating bacteria in vitro after photoexcitation. We evaluate the [...] Read more.
Background/Objectives: Parietin (PTN), a blue-light absorbing pigment from Teloschistes spp. lichens, exhibit photosensitizing properties via Type I (superoxide anion, O2•−) and Type II (singlet oxygen, 1O2) mechanisms, inactivating bacteria in vitro after photoexcitation. We evaluate the in vitro antifungal activity of PTN against Candida tropicalis biofilms under actinic irradiation, its role in O2•− and 1O2 production, and the cellular stress response. Methods: Minimum inhibitory concentration (MIC) of PTN was determined in C. tropicalis NCPF 3111 under dark and actinic light conditions. Biofilm susceptibility was assessed at MIC/2, MIC, MICx2, MICx4, and MICx6 in the same conditions, and viability was measured by colony-forming units. Photodynamic mechanisms were examined using Tiron (O2•− scavenger) or sodium azide (1O2 quencher). O2•− production was measured by the nitro-blue tetrazolium (NBT) reduction and nitric oxide (NO) generation by Griess assay. Total antioxidant capacity was studied by FRAP (Ferrous Reduction Antioxidant Potency) assay and superoxide dismutase (SOD) activity by NBT assay. Results: Photoexcitation of PTN reduced C. tropicalis biofilm viability by four logs at MICx2. Sodium azide partially reversed the effect, whereas Tiron fully inhibited it, indicating the critical role of O2•−. PTN also increased O2•− and NO levels, enhancing SOD activity and FRAP. However, this antioxidant response was insufficient to prevent biofilm photoinactivation. Conclusions: Photoinactivation of C. tropicalis biofilms by PTN is primarily mediated by O2•−, with a minor contribution from 1O2 and an imbalance in NO levels. These findings suggest PTN is a promising photosensitizer for antifungal photodynamic therapy. Full article
(This article belongs to the Special Issue Natural Products in Photodynamic Therapy)
Show Figures

Graphical abstract

16 pages, 1398 KiB  
Article
Photodynamic Inactivation of Human Herpes Virus In Vitro with Ga(III) and Zn(II) Phthalocyanines
by Neli Vilhelmova-Ilieva, Vanya Mantareva, Diana Braikova and Ivan Iliev
Viruses 2024, 16(12), 1937; https://doi.org/10.3390/v16121937 - 18 Dec 2024
Cited by 1 | Viewed by 1275
Abstract
Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different [...] Read more.
Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm). The PDI effect was evaluated on extracellular virions and virus adsorption by the terminal dilution method and the change in viral infectivity, which was compared to the untreated control group. The decrease in viral titer (Δlgs) was determined. The effect on the replicative cycle of the virus was determined using the cytopathic effect inhibition (CPE) assay. The direct influence on the virions showed a remarkable effect with a decrease in the viral titer more than 4 (Δlg > 4). The influence of the virus to the cell on the stage of adsorption was also significantly affected by the exposure time and the concentration of applied photosensitizers. A distinct inhibition was evaluated for ZnPcMe at the viral replication stage, which demonstrated a high photoinactivation index (PII = 33.0). This study suggested the high efficacy of PDI with phthalocyanines on HSV-1 virus, with full inhibition caused by the mechanism of singlet oxygen generation. These promising data are a good basis for further investigations on the PDI application against pathogenic viruses. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

19 pages, 3472 KiB  
Article
Liposomal Formulations of Novel BODIPY Dimers as Promising Photosensitizers for Antibacterial and Anticancer Treatment
by Weronika Porolnik, Magdalena Ratajczak, Aleksandra Mackowiak, Marek Murias, Malgorzata Kucinska and Jaroslaw Piskorz
Molecules 2024, 29(22), 5304; https://doi.org/10.3390/molecules29225304 - 10 Nov 2024
Cited by 4 | Viewed by 1784
Abstract
Synthesis, photochemical properties, liposomal encapsulation, and in vitro photodynamic activity studies of novel BODIPY dimer connected at meso-meso positions and its brominated and iodinated analogs were described. UV-Vis measurements indicated that the dimeric structure of obtained BODIPYs did not significantly influence the positions [...] Read more.
Synthesis, photochemical properties, liposomal encapsulation, and in vitro photodynamic activity studies of novel BODIPY dimer connected at meso-meso positions and its brominated and iodinated analogs were described. UV-Vis measurements indicated that the dimeric structure of obtained BODIPYs did not significantly influence the positions of the absorption maxima. Emission properties and singlet oxygen generation studies revealed a strong heavy atom effect of brominated and iodinated BODIPY dimers, manifested by fluorescence intensity reduction and increased singlet oxygen generation ability compared to analog without halogen atoms. For the in vitro photodynamic activity studies, dimers were incorporated into two different types of liposomes: positively charged DOTAP:POPC and negatively charged POPG:POPC. The photoinactivation studies revealed high activity of brominated and iodinated dimers incorporated into DOTAP:POPC liposomes on both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Anticancer studies on human breast adenocarcinoma MDA-MB-231 and human ovarian carcinoma A2780 cells revealed that DOTAP:POPC liposomes containing brominated and iodinated dimers were active even at low nanomolar concentrations. In addition, they were more active against MDA-MB-231 cells than A2780 cells, which is particularly important since the MDA-MB-231 cell line represents triple-negative breast cancer, which has limited therapeutic options. Full article
(This article belongs to the Special Issue Boron Dipyrromethene (BODIPY) Dyes and Their Derivatives)
Show Figures

Graphical abstract

13 pages, 3254 KiB  
Article
Determination of Photosensitizing Potential of Lapachol for Photodynamic Inactivation of Bacteria
by Regiane G. Lima, Raphael S. Flores, Gabriella Miessi, Jhoenne H. V. Pulcherio, Laís F. Aguilera, Leandro O. Araujo, Samuel L. Oliveira and Anderson R. L. Caires
Molecules 2024, 29(21), 5184; https://doi.org/10.3390/molecules29215184 - 2 Nov 2024
Cited by 2 | Viewed by 1428
Abstract
Antimicrobial photodynamic inactivation (aPDI) offers a promising alternative to combat drug-resistant bacteria. This study explores the potential of lapachol, a natural naphthoquinone derived from Tabebuia avellanedae, as a photosensitizer (PS) for aPDI. Lapachol’s photosensitizing properties were evaluated using Staphylococcus aureus and Escherichia [...] Read more.
Antimicrobial photodynamic inactivation (aPDI) offers a promising alternative to combat drug-resistant bacteria. This study explores the potential of lapachol, a natural naphthoquinone derived from Tabebuia avellanedae, as a photosensitizer (PS) for aPDI. Lapachol’s photosensitizing properties were evaluated using Staphylococcus aureus and Escherichia coli strains under blue LED light (450 nm). UV-vis spectroscopy confirmed lapachol’s absorption peak at 482 nm, aligning with effective excitation wavelengths for phototherapy. Photoinactivation assays demonstrated significant bacterial growth inhibition, achieving complete eradication of S. aureus at 25 µg·mL−1 under light exposure. Scanning electron microscopy (SEM) revealed morphological damage in irradiated bacterial cells, confirming lapachol’s bactericidal effect. This research underscores lapachol’s potential as a novel photosensitizer in antimicrobial photodynamic therapy, addressing a critical need in combating antibiotic resistance. Full article
(This article belongs to the Special Issue Bioactivity of Natural Compounds: From Plants to Humans)
Show Figures

Graphical abstract

17 pages, 3313 KiB  
Article
Photoinactivation of Mycobacterium tuberculosis and Mycobacterium smegmatis by Near-Infrared Radiation Using a Trehalose-Conjugated Heptamethine Cyanine
by Nataliya V. Kozobkova, Michael P. Samtsov, Anatol P. Lugovski, Nikita V. Bel’ko, Dmitri S. Tarasov, Arseny S. Kaprelyants, Alexander P. Savitsky and Margarita O. Shleeva
Int. J. Mol. Sci. 2024, 25(15), 8505; https://doi.org/10.3390/ijms25158505 - 4 Aug 2024
Cited by 1 | Viewed by 1581
Abstract
The spread of multidrug-resistant mycobacterium strains requires the development of new approaches to combat diseases caused by these pathogens. For that, photodynamic inactivation (PDI) is a promising approach. In this study, a tricarbocyanine (TCC) is used for the first time as a near-infrared [...] Read more.
The spread of multidrug-resistant mycobacterium strains requires the development of new approaches to combat diseases caused by these pathogens. For that, photodynamic inactivation (PDI) is a promising approach. In this study, a tricarbocyanine (TCC) is used for the first time as a near-infrared (740 nm) activatable PDI photosensitizer to kill mycobacteria with deep light penetration. For better targeting, a novel tricarbocyanine dye functionalized with two trehalose units (TCC2Tre) is developed. The photodynamic effect of the conjugates against mycobacteria, including Mycobacterium tuberculosis, is evaluated. Under irradiation, TCC2Tre causes more effective killing of mycobacteria compared to the photosensitizer without trehalose conjugation, with 99.99% dead vegetative cells of M. tuberculosis and M. smegmatis. In addition, effective photoinactivation of dormant forms of M. smegmatis is observed after incubation with TCC2Tre. Mycobacteria treated with TCC2Tre are more sensitive to 740 nm light than the Gram-positive Micrococcus luteus and the Gram-negative Escherichia coli. For the first time, this study demonstrates the proof of principle of in vitro PDI of mycobacteria including the fast-growing M. smegmatis and the slow-growing M. tuberculosis using near-infrared activatable photosensitizers conjugated with trehalose. These findings are useful for the development of new efficient alternatives to antibiotic therapy. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Mycobacterial Infection 3.0)
Show Figures

Figure 1

20 pages, 4816 KiB  
Article
Photodynamic Action of Synthetic Curcuminoids against Staphylococcus aureus: Experimental and Computational Evaluation
by Nícolas J. Melo, Jennifer M. Soares, Lívia N. Dovigo, Christian Carmona-Vargas, Antônio S. N. Aguiar, Adriana C. dos Passos, Kleber T. de Oliveira, Vanderlei S. Bagnato, Lucas D. Dias and Natalia Inada
Chemistry 2024, 6(4), 581-600; https://doi.org/10.3390/chemistry6040035 - 25 Jul 2024
Cited by 1 | Viewed by 1472
Abstract
Natural curcumin is composed of three curcuminoids, namely curcumin (CUR), deme-thoxycurcumin (DMC) and bis-demethoxycurcumin (BDMC). These compounds are utilized in various biophotonics applications, including photodynamic therapy (PDT). This work aimed to evaluate the photodynamic action (alternative to antibiotics) of synthetic curcuminoids against Staphylococcus [...] Read more.
Natural curcumin is composed of three curcuminoids, namely curcumin (CUR), deme-thoxycurcumin (DMC) and bis-demethoxycurcumin (BDMC). These compounds are utilized in various biophotonics applications, including photodynamic therapy (PDT). This work aimed to evaluate the photodynamic action (alternative to antibiotics) of synthetic curcuminoids against Staphylococcus aureus. Herein, we evaluated an optimal proportion of the three curcuminoids mixed in solution to improve photoinactivation effects. Therefore, a set of computational calculations was carried out to understand the photodynamic action (stability and mechanism) of curcuminoids. Regarding computational analysis, the curcuminoid molecules were optimized using DFT with the hybrid exchange–correlation functional M06-2X, which includes long-range correction, and the 6-311++G(d,p) basis set. DMC and BDMC were more effective as photosensitizers than curcumin at a very low concentration of 0.75 µM, inactivating more than five orders of magnitude of S. aureus. Theoretical UV-vis absorption spectra showed that at maximum absorption wavelengths, electronic transitions of the π→π* type originated from H→L excitations. The BDMC was more stable than the other two curcuminoids after photobleaching, and the fluorescence emission was also higher, which could lead to its usage as a fluorescence dye to track bacteria. In fact, the results of electronic structure calculations proved that the stability order of curcuminoids is CUR < DMC < BDMC. The mixture of synthetic curcuminoids was more effective in the inactivation of S. aureus compared to curcumin by itself; for all proposed mixtures, an equal or superior reduction was achieved. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

13 pages, 1578 KiB  
Article
Plasma Photoinactivation of Bacterial Isolated from Blood Donors Skin: Potential of Security Barrier in Transfusional Therapy
by Yanet Ventura-Enríquez, Antonio Casas-Guerrero, María de Jesús Sánchez-Guzmán, Miguel Ángel Loyola-Cruz, Clemente Cruz-Cruz, Andres Emmanuel Nolasco-Rojas, Emilio Mariano Durán-Manuel, Dulce Milagros Razo Blanco-Hernández, Francisco Álvarez-Mora, Gabriela Ibáñez-Cervantes, Mónica Alethia Cureño-Díaz, Juan Manuel Bello-López and Verónica Fernández-Sánchez
Pathogens 2024, 13(7), 577; https://doi.org/10.3390/pathogens13070577 - 11 Jul 2024
Viewed by 1493
Abstract
The presence of skin bacteria capable of forming biofilm, exhibiting antibiotic resistance, and displaying virulence represents a significant challenge in the field of transfusion medicine. This underscores the necessity of enhancing the microbiological safety of blood and blood components against pathogens with virulent [...] Read more.
The presence of skin bacteria capable of forming biofilm, exhibiting antibiotic resistance, and displaying virulence represents a significant challenge in the field of transfusion medicine. This underscores the necessity of enhancing the microbiological safety of blood and blood components against pathogens with virulent characteristics. The aim of this work was to demonstrate bacterial inactivation in plasma by using a photoinactivation method against virulent bacteria and to evaluate coagulation factors before and after treatment. Logarithmic loads of biofilm-producing, antibiotic-resistant, and virulent bacteria isolated from skin (Enterobacter cloacae, Klebsiella ozaenae, and Staphylococcus epidermidis) were used in artificial contamination assays of fresh frozen plasma bags and subjected to photoreduction. FVIII and FI activity were evaluated before and after photoinactivation. The photoinactivation of plasma was demonstrated to be an effective method for the elimination of these bacteria. However, the efficiency of this method was found to be dependent on the bacterial load and the type of test microorganism. Conversely, decay of coagulation factors was observed with net residual activities of 61 and 69% for FVIII and FI, respectively. The photoinactivation system could have a bias in its effectiveness that is dependent on the test pathogen. These findings highlight the importance of employing technologies that increase the safety of the recipient of blood and/or blood components, especially against virulent bacteria, and show the relevance of the role of photoinactivation systems as an option in transfusion practice. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
Show Figures

Figure 1

18 pages, 3253 KiB  
Article
Concanavalin A Delivers a Photoactive Protein to the Bacterial Wall
by Andrea Mussini, Pietro Delcanale, Melissa Berni, Stefano Pongolini, Mireia Jordà-Redondo, Montserrat Agut, Peter J. Steinbach, Santi Nonell, Stefania Abbruzzetti and Cristiano Viappiani
Int. J. Mol. Sci. 2024, 25(11), 5751; https://doi.org/10.3390/ijms25115751 - 25 May 2024
Cited by 4 | Viewed by 2059
Abstract
Modular supramolecular complexes, where different proteins are assembled to gather targeting capability and photofunctional properties within the same structures, are of special interest for bacterial photodynamic inactivation, given their inherent biocompatibility and flexibility. We have recently proposed one such structure, exploiting the tetrameric [...] Read more.
Modular supramolecular complexes, where different proteins are assembled to gather targeting capability and photofunctional properties within the same structures, are of special interest for bacterial photodynamic inactivation, given their inherent biocompatibility and flexibility. We have recently proposed one such structure, exploiting the tetrameric bacterial protein streptavidin as the main building block, to target S. aureus protein A. To expand the palette of targets, we have linked biotinylated Concanavalin A, a sugar-binding protein, to a methylene blue-labelled streptavidin. By applying a combination of spectroscopy and microscopy, we demonstrate the binding of Concanavalin A to the walls of Gram-positive S. aureus and Gram-negative E. coli. Photoinactivation is observed for both bacterial strains in the low micromolar range, although the moderate affinity for the molecular targets and the low singlet oxygen yields limit the overall efficiency. Finally, we apply a maximum entropy method to the analysis of autocorrelation traces, which proves particularly useful when interpreting signals measured for diffusing systems heterogeneous in size, such as fluorescent species bound to bacteria. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

13 pages, 3327 KiB  
Article
Natural Sunlight-Mediated Emodin Photoinactivation of Aeromonas hydrophila
by Gelana Urgesa, Liushen Lu, Jinwei Gao, Lichun Guo, Ting Qin, Bo Liu, Jun Xie and Bingwen Xi
Int. J. Mol. Sci. 2024, 25(10), 5444; https://doi.org/10.3390/ijms25105444 - 16 May 2024
Cited by 3 | Viewed by 2891
Abstract
Aeromonas hydrophila can be a substantial concern, as it causes various diseases in aquaculture. An effective and green method for inhibiting A. hydrophila is urgently required. Emodin, a naturally occurring anthraquinone compound, was exploited as a photo-antimicrobial agent against A. hydrophila. At [...] Read more.
Aeromonas hydrophila can be a substantial concern, as it causes various diseases in aquaculture. An effective and green method for inhibiting A. hydrophila is urgently required. Emodin, a naturally occurring anthraquinone compound, was exploited as a photo-antimicrobial agent against A. hydrophila. At the minimum inhibitory concentration of emodin (256 mg/L) to inactivate A. hydrophilia in 30 min, an 11.32% survival rate was observed under 45 W white compact fluorescent light irradiation. In addition, the antibacterial activity under natural sunlight (0.78%) indicated its potential for practical application. Morphological observations demonstrated that the cell walls and membranes of A. hydrophila were susceptible to damage by emodin when exposed to light irradiation. More importantly, the photoinactivation of A. hydrophila was predominantly attributed to the hydroxyl radicals and superoxide radicals produced by emodin, according to the trapping experiment and electron spin resonance spectroscopy. Finally, a light-dependent reactive oxygen species punching mechanism of emodin to photoinactivate A. hydrophila was proposed. This study highlights the potential use of emodin in sunlight-mediated applications for bacterial control, thereby providing new possibilities for the use of Chinese herbal medicine in aquatic diseases prevention. Full article
(This article belongs to the Special Issue Antimicrobial Agents: Natural Products or Synthetic Compounds)
Show Figures

Figure 1

18 pages, 2513 KiB  
Article
Antibiotic Effect of High-Power Blue Laser Radiation
by Mattes Hintmann, Stanislav Zimbelmann, Benjamin Emde, Rebekka Biedendieck and Dieter Jahn
Photonics 2024, 11(3), 220; https://doi.org/10.3390/photonics11030220 - 28 Feb 2024
Cited by 6 | Viewed by 2206
Abstract
The development of sustainable alternatives to chemical and mechanical biofilm removal for submerged technical devices used in freshwater and marine environments represents a major technical challenge. In this context, the antibiotic impact of blue light with its low absorption underwater provides a potentially [...] Read more.
The development of sustainable alternatives to chemical and mechanical biofilm removal for submerged technical devices used in freshwater and marine environments represents a major technical challenge. In this context, the antibiotic impact of blue light with its low absorption underwater provides a potentially useful alternative. However, former technical limitations led to hours of treatment. Here, we applied high-power blue laser irradiation (1500 W) with a wavelength of 448 nm to demonstrate its strong antibiotic and algicidal effect on different bacteria and algae in seconds. High-power blue light treatment (139 W/cm2) for only 8.9 s led to the efficient deactivation of all tested organisms. Analyses of the underlying biological mechanisms revealed the absorption of the blue light by endogenous chromophores (flavins, tetrapyrroles) with the generation of reactive oxygen species (ROS). In agreement, Escherichia coli transcriptome analyses demonstrated a stress response at the level of DNA damage repair, respiration, and protein biosynthesis. Spectroscopic measurements of the irradiated algae indicated the irreversible damage of chlorophyll by photooxidation with the formation of singlet oxygen. In conclusion, high-power blue laser radiation provides a strong sustainable tool for the removal of biofouling in a very short time for applications in aquatic systems. Full article
Show Figures

Figure 1

17 pages, 679 KiB  
Review
Photodynamic Action of Curcumin and Methylene Blue against Bacteria and SARS-CoV-2—A Review
by Siu Kan Law, Albert Wing Nang Leung and Chuanshan Xu
Pharmaceuticals 2024, 17(1), 34; https://doi.org/10.3390/ph17010034 - 25 Dec 2023
Cited by 14 | Viewed by 5613
Abstract
Coronavirus disease 19 (COVID-19) has occurred for more than four years, and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is a strain of coronavirus, which presents high rates of morbidity around the world. Up to the present date, there are [...] Read more.
Coronavirus disease 19 (COVID-19) has occurred for more than four years, and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is a strain of coronavirus, which presents high rates of morbidity around the world. Up to the present date, there are no therapeutics that can avert this form of illness, and photodynamic therapy (PDT) may be an alternative approach against SARS-CoV-2. Curcumin and methylene blue have been approved and used in clinical practices as a photosensitizer in PDT for a long time with their anti-viral properties and for disinfection through photo-inactivated SARS-CoV-2. Previously, curcumin and methylene blue with antibacterial properties have been used against Gram-positive bacteria, Staphylococcus aureus (S. aureus), and Gram-negative bacteria, Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), and Pseudomonas aeruginosa (P. aeruginosa). Methods: To conduct a literature review, nine electronic databases were researched, such as WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without any regard to language constraints. In vitro and in vivo studies were included that evaluated the effect of PDT mediated via curcumin or methylene blue to combat bacteria and SARS-CoV-2. All eligible studies were analyzed and summarized in this review. Results: Curcumin and methylene blue inhibited the replication of SARS-CoV-2. The reactive oxygen species (ROS) are generated during the treatment of PDT with curcumin and methylene blue to prevent the attachment of SARS-CoV-2 on the ACE2 receptor and damage to the nucleic acids either DNA or RNA. It also modulates pro-inflammatory cytokines and attenuates the clotting effects of the host response. Conclusion: The photodynamic action of curcumin and methylene blue provides a possible approach against bacteria and SARS-CoV-2 infection because they act as non-toxic photosensitizers in PDT with an antibacterial effect, anti-viral properties, and disinfection functions. Full article
(This article belongs to the Special Issue Photodynamic Therapy 2023)
Show Figures

Graphical abstract

17 pages, 1253 KiB  
Article
A Photoactive Supramolecular Complex Targeting PD-L1 Reveals a Weak Correlation between Photoactivation Efficiency and Receptor Expression Levels in Non-Small-Cell Lung Cancer Tumor Models
by Pietro Delcanale, Manuela Maria Alampi, Andrea Mussini, Claudia Fumarola, Maricla Galetti, Pier Giorgio Petronini, Cristiano Viappiani, Stefano Bruno and Stefania Abbruzzetti
Pharmaceutics 2023, 15(12), 2776; https://doi.org/10.3390/pharmaceutics15122776 - 14 Dec 2023
Cited by 3 | Viewed by 2018
Abstract
Photo-immunotherapy uses antibodies conjugated to photosensitizers to produce nanostructured constructs endowed with targeting properties and photo-inactivation capabilities towards tumor cells. The superficial receptor density on cancer cells is considered a determining factor for the efficacy of the photodynamic treatment. In this work, we [...] Read more.
Photo-immunotherapy uses antibodies conjugated to photosensitizers to produce nanostructured constructs endowed with targeting properties and photo-inactivation capabilities towards tumor cells. The superficial receptor density on cancer cells is considered a determining factor for the efficacy of the photodynamic treatment. In this work, we propose the use of a photoactive conjugate that consists of the clinical grade PD-L1-binding monoclonal antibody Atezolizumab, covalently linked to either the well-known photosensitizer eosin or the fluorescent probe Alexa647. Using single-molecule localization microscopy (direct stochastic optical reconstruction microscopy, dSTORM), and an anti-PD-L1 monoclonal antibody labelled with Alexa647, we quantified the density of PD-L1 receptors exposed on the cell surface in two human non-small-cell lung cancer lines (H322 and A549) expressing PD-L1 to a different level. We then investigated if this value correlates with the effectiveness of the photodynamic treatment. The photodynamic treatment of H322 and A549 with the photo-immunoconjugate demonstrated its potential for PDT treatments, but the efficacy did not correlate with the PD-L1 expression levels. Our results provide additional evidence that receptor density does not determine a priori the level of photo-induced cell death. Full article
Show Figures

Graphical abstract

Back to TopTop