Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = photoheterotrophic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 17305 KiB  
Article
Response of cbbL Carbon-Sequestering Microorganisms to Simulated Warming in the River Source Wetland of the Wayan Mountains
by Shijia Zhou, Kelong Chen, Ni Zhang, Siyu Wang, Zhiyun Zhou and Jianqing Sun
Biology 2025, 14(6), 708; https://doi.org/10.3390/biology14060708 - 16 Jun 2025
Cited by 1 | Viewed by 337
Abstract
As a globally critical carbon reservoir, the response mechanism of wetland ecosystems to climate change on the Qinghai–Tibet Plateau (QTP) has attracted significant scientific scrutiny. This study investigated the temperature sensitivity of cbbL-harboring carbon-sequestering microbial communities and their coupling with carbon–nitrogen cycle dynamics [...] Read more.
As a globally critical carbon reservoir, the response mechanism of wetland ecosystems to climate change on the Qinghai–Tibet Plateau (QTP) has attracted significant scientific scrutiny. This study investigated the temperature sensitivity of cbbL-harboring carbon-sequestering microbial communities and their coupling with carbon–nitrogen cycle dynamics through a simulated field warming experiment conducted in the Wayan Mountains’ river source wetland in the northeastern QTP. Key findings revealed that warming markedly elevated Alpha diversity (ACE and Chao1 indices), whereas Shannon and Simpson indices remained stable, indicating that temperature increases primarily altered community composition by enhancing species richness rather than evenness. Taxonomic analysis demonstrated significant increases in the relative abundances of Cyanobacteria and Actinobacteria, while Proteobacteria retained dominance but exhibited reduced relative abundance. At the genus level, Thioflexothrix, Ferrithrix, and Rhodospirillum dominated the community, with Thioflexothrix and Ferrithrix showing warming-induced abundance increments. Functional predictions indicated that warming preferentially stimulated heterotrophic and photoheterotrophic functional guilds. Soil physicochemical analyses further revealed warming-driven increases in nitrate nitrogen (NN), total carbon (TC), and total nitrogen (TN), concurrent with decreased soil moisture. Redundancy analysis identified TC as the predominant determinant of microbial community structure (followed by TN > NN), while pH and ammonium nitrogen (AN) exerted comparatively limited influence. Strong positive correlations between microbial communities and carbon/nitrogen indicators suggested that enhanced carbon–nitrogen resource availability served as the central driver of community succession. These findings elucidate the temperature-responsive mechanisms of cbbL-type carbon-sequestering microorganisms in alpine wetlands, offering critical insights for the adaptive management of carbon cycling in high-altitude ecosystems and advancing strategies toward achieving carbon neutrality goals. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

13 pages, 4386 KiB  
Article
Qualitative Assessment of Microalgae–Bacteria Biofilm Development on K5 Carriers: Photoheterotrophic Growth in Wastewater
by Henrique Sousa, Kerry A. Kinney, Cátia A. Sousa and Manuel Simões
Microorganisms 2025, 13(5), 1060; https://doi.org/10.3390/microorganisms13051060 - 2 May 2025
Viewed by 539
Abstract
Wastewater (WW) treatment using biofilms harboring bacteria and microalgae is considered a promising polishing solution to improve current treatment technologies present in wastewater treatment plants (WWTPs), but their interaction in a sessile community remains to be understood. In this work, multi-species biofilms of [...] Read more.
Wastewater (WW) treatment using biofilms harboring bacteria and microalgae is considered a promising polishing solution to improve current treatment technologies present in wastewater treatment plants (WWTPs), but their interaction in a sessile community remains to be understood. In this work, multi-species biofilms of Chlorella vulgaris, Chlorella sorokiniana, or Scenedesmus obliquus were selected as representative microalgae species of interest for WW bioremediation, and Rhodococcus fascians, Acinetobacter calcoaceticus, or Leucobacter sp. were selected as the bacteria for co-cultivation in a synthetic WW since they are normally found in WW treatment processes. The attached consortia were developed in specific carriers (K5 carriers) for 168 h, and their biofilm formation ability was evaluated in a profilometer and via scanning electron microscopy (SEM) imaging. From the selected microorganisms, C. sorokiniana was the microalga that adapted best to co-cultivation with R. fascians and A. calcoaceticus, developing a thicker biofilm in these two consortia (3.44 ± 0.5 and 4.51 ± 0.8 µm, respectively) in comparison to the respective axenic cultures (2.55 ± 0.7 µm). In contrast, Leucobacter sp. did not promote biofilm growth in association with C. vulgaris and C. sorokiniana, while S. obliquus was not disturbed by the presence of this bacterium. Some bacterial clusters were observed through SEM, especially in A. calcoaceticus cultures in the presence of microalgae. In some combinations (especially when C. vulgaris was co-cultivated with bacteria), the presence of bacteria was able to increase the number of microalga cells adhered to the K5 carrier. This study shows that biofilm development was distinctly dependent on the co-cultivated species, where synergy in biofilm formation was highly dependent on the microalgae and bacteria species. Moreover, profilometry appears to be a promising method for biofilm analyses. Full article
(This article belongs to the Special Issue Function and Responses of Algae to Wastewater Treatment)
Show Figures

Figure 1

17 pages, 6008 KiB  
Article
Sustainable Treatment of Swine Wastewater: Optimizing the Culture Conditions of Tetradesmus cf. obliquus to Improve Treatment Efficiency
by Kailong Bai, Wenying Qu, Duo Song, Junfeng Li and Shih-Hsin Ho
Sustainability 2024, 16(11), 4633; https://doi.org/10.3390/su16114633 - 29 May 2024
Cited by 4 | Viewed by 1741
Abstract
To enhance the sustainability of microalgae-based swine wastewater treatment, this study aims to address the challenges of low efficiency in treating raw swine wastewater, collection difficulties, and high energy consumption treatment processes. The microalgae with strong environmental tolerance were first screened from swine [...] Read more.
To enhance the sustainability of microalgae-based swine wastewater treatment, this study aims to address the challenges of low efficiency in treating raw swine wastewater, collection difficulties, and high energy consumption treatment processes. The microalgae with strong environmental tolerance were first screened from swine wastewater, and its cultivation conditions were optimized to examine the effect of microalgae treatment on swine wastewater under optimal cultivation conditions. Additionally, the flocculation efficiency and mechanism of microalgae were analyzed. The results showed that Tetradesmus cf. obliquus ZYY1 exhibited the most robust heterotrophic growth. In the BG11 medium supplemented with glucose, the growth rate of T. cf. obliquus ZYY1 under chemoheterotrophic conditions was superior to its growth under photoheterotrophic conditions, reaching its peak with an optimal glucose concentration of 15 g/L. The biomass concentration of T. cf. obliquus ZYY1 in raw wastewater was significantly higher than that in sterilized wastewater, which reached 1.65 ± 0.01 g/L on the 10th day of treatment, with removal efficiencies of NH4+-N, PO43-P, and the chemical oxygen demand reached 71.36%, 96.09%, and 93.13%, respectively. After raw wastewater treatment, the flocculation efficiency of T. cf. obliquus ZYY1 reached 97.71 ± 5.81%. This was attributed to the bacteria present in the raw wastewater, which induced T. cf. obliquus ZYY1 to secrete aromatic proteins. This study emphasizes the potential of microalgae as a green technology for sustainable wastewater treatment, offering a practical pathway for environmental protection and resource conservation. Full article
Show Figures

Figure 1

15 pages, 1872 KiB  
Article
Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae Nannochloropsis oculata
by Giuseppe Tardiolo, Marco Sebastiano Nicolò, Carmelo Drago, Claudia Genovese, Giovanni Fava, Concetta Gugliandolo and Nicola D’Antona
Molecules 2023, 28(19), 6846; https://doi.org/10.3390/molecules28196846 - 28 Sep 2023
Cited by 7 | Viewed by 2700
Abstract
The bioconversion of agri-food waste into high-value products is gaining growing interest worldwide. Orange peel waste (OPW) is the main by-product of orange juice production and contains high levels of moisture and carbohydrates. In this study, the orange waste extract (OWE) obtained through [...] Read more.
The bioconversion of agri-food waste into high-value products is gaining growing interest worldwide. Orange peel waste (OPW) is the main by-product of orange juice production and contains high levels of moisture and carbohydrates. In this study, the orange waste extract (OWE) obtained through acid hydrolysis of OPW was used as a substrate in the cultivation of the marine microalgae Nannochloropsis oculata. Photoheterotrophic (PH) and Photoautotrophic (PA) cultivations were performed in OWE medium and f/2 medium (obtained by supplementing OWE with macro- and micronutrients of f/2 medium), respectively, for 14 days. The biomass yields in PA and PH cultures were 390 mg L−1 and 450 mg L−1, while oil yields were 15% and 28%, respectively. The fatty acid (FA) profiles of PA cultures were mostly represented by saturated (43%) and monounsaturated (46%) FAs, whereas polyunsaturated FAs accounted for about 10% of the FAs. In PH cultures, FA profiles changed remarkably, with a strong increase in monounsaturated FAs (77.49%) and reduced levels of saturated (19.79%) and polyunsaturated (2.72%) FAs. Lipids obtained from PH cultures were simultaneously extracted and converted into glycerol-free biodiesel using an innovative microwave-assisted one-pot tandem protocol. FA methyl esters were then analyzed, and the absence of glycerol was confirmed. The FA profile was highly suitable for biodiesel production and the microwave-assisted one-pot tandem protocol was more effective than traditional extraction techniques. In conclusion, N. oculata used OWE photoheterotrophically, resulting in increased biomass and oil yield. Additionally, a more efficient procedure for simultaneous oil extraction and conversion into glycerol-free biodiesel is proposed. Full article
Show Figures

Figure 1

17 pages, 1793 KiB  
Article
Characterization of the Pyrroloquinoline Quinone Producing Rhodopseudomonas palustris as a Plant Growth-Promoting Bacterium under Photoautotrophic and Photoheterotrophic Culture Conditions
by Shou-Chen Lo, Shang-Yieng Tsai, Wei-Hsiang Chang, I-Chen Wu, Nga-Lai Sou, Shih-Hsun Walter Hung, En-Pei Isabel Chiang and Chieh-Chen Huang
Int. J. Mol. Sci. 2023, 24(18), 14080; https://doi.org/10.3390/ijms241814080 - 14 Sep 2023
Cited by 11 | Viewed by 2807
Abstract
Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). [...] Read more.
Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris’s production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB’s growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants. Full article
(This article belongs to the Special Issue Molecular Plant-Microbe Interactions 2.0)
Show Figures

Figure 1

34 pages, 2508 KiB  
Review
Photobioreactor Design for Polyhydroxyalkanoate Production Using Anoxygenic Photoheterotrophs: A Review
by Sultan Shaikh, Naim Rashid, Gordon McKay and Hamish Robert Mackey
Fermentation 2023, 9(8), 778; https://doi.org/10.3390/fermentation9080778 - 21 Aug 2023
Cited by 13 | Viewed by 3534
Abstract
This review paper provides an overview of various types of photobioreactors (PBRs) that could be used for the production of polyhydroxyalkanoates (PHAs) using anoxygenic photoheterotrophs, with a focus on the design and operation of these systems. The paper highlights the potential of different [...] Read more.
This review paper provides an overview of various types of photobioreactors (PBRs) that could be used for the production of polyhydroxyalkanoates (PHAs) using anoxygenic photoheterotrophs, with a focus on the design and operation of these systems. The paper highlights the potential of different PBRs based on reactor geometry and growth mode, and also examines the advantages and disadvantages of each PBR type and summarizes their suitability for PNSB-PHA production. The optimization of reactor design and operation is crucial for maximizing PNSB growth and PHA productivity. The self-immobilization of bacteria in granular sludge is a promising technology for wastewater treatment and the production of PHAs, while grooved-surface PBRs and porous-substrate PBRs have limitations due to difficult biomass harvesting in the former and the presence of aerobic conditions incongruent with PNSB culturing in the latter. Limitations exist with all solutions for maximizing rapid growth and maintaining high biomass concentrations due to the requirements of phototrophic growth. Full article
(This article belongs to the Special Issue Purple Bacteria Biotechnology: Fundamentals and Applications)
Show Figures

Figure 1

16 pages, 1924 KiB  
Article
Chlorophyll a Synthesis in Rhodobacter sphaeroides by Chlorophyll Synthase of Nicotiana tabacum
by June Kim, Jeong K. Lee and Eui-Jin Kim
Biology 2023, 12(4), 573; https://doi.org/10.3390/biology12040573 - 10 Apr 2023
Cited by 3 | Viewed by 2713
Abstract
The production of phytylated chlorophyll a (Chl aP) in Rhodobacter sphaeroides, which uses phytylated bacteriochlorophyll a (BChl aP), is the first step in expanding the light absorption spectra. Unlike the chlorophyll synthase (ChlG) of the Synechocystis sp. PCC6803, [...] Read more.
The production of phytylated chlorophyll a (Chl aP) in Rhodobacter sphaeroides, which uses phytylated bacteriochlorophyll a (BChl aP), is the first step in expanding the light absorption spectra. Unlike the chlorophyll synthase (ChlG) of the Synechocystis sp. PCC6803, ChlGs of angiosperms, including Arabidopsis thaliana, Nicotiana tabacum, Avena sativa, and Oryza sativa, showed bacteriochlorophyll synthase activity and resistance to inhibition by bacteriochlorophyllide a (BChlide a), geranylgeranylated BChl a (BChl aGG), and BChl aP, collectively called bacteriochlorins. Among the angiosperm ChlGs, N. tabacum ChlG had the highest bacteriochlorophyll synthase activity and resistance to inhibition by bacteriochlorins. Expression of N. tabacum chlG in R. sphaeroides resulted in the formation of free Chl aP in the presence of BChl aP during photoheterotrophic growth, even though reactive oxygen species were generated. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

17 pages, 2810 KiB  
Article
Simultaneous Production of Biohydrogen (bioH2) and Poly-Hydroxy-Alkanoates (PHAs) by a Photoheterotrophic Consortium Bioaugmented with Syntrophomonas wolfei
by Axayacatl González, Edgar Salgado, Zaira Vanegas, Cristina Niño-Navarro, Omar Cortés, Isaac Chairez and Elvia I. García-Peña
Fermentation 2022, 8(11), 644; https://doi.org/10.3390/fermentation8110644 - 15 Nov 2022
Cited by 12 | Viewed by 3229
Abstract
Mixed cultures represent better alternatives to ferment organic waste and dark fermentation products in anerobic conditions because the microbial associations contribute to electron transfer mechanisms and combine metabolic possibilities. The understanding of the microbial interactions in natural and synthetic consortia and the strategies [...] Read more.
Mixed cultures represent better alternatives to ferment organic waste and dark fermentation products in anerobic conditions because the microbial associations contribute to electron transfer mechanisms and combine metabolic possibilities. The understanding of the microbial interactions in natural and synthetic consortia and the strategies to improve the performance of the processes by bioaugmentation provide insight into the physiology and ecology of the mixed cultures used for biotechnological purposes. Here, synthetic microbial communities were built from three hydrogen (bioH2) and poly-hydroxy-alkanoates (PHA) producers, Clostridium pasteurianum, Rhodopseudomonas palustris and Syntrophomonas wolfei, and a photoheterotrophic mixed consortium C4, and their performance was evaluated during photofermentation. Higher hydrogen volumetric production rates (H2VPR) were determined with the consortia (28–40 mL/Lh) as compared with individual strains (20–27 mL/Lh). The designed consortia reached the highest bioH2 and PHA productions of 44.3 mmol and 50.46% and produced both metabolites simultaneously using dark fermentation effluents composed of a mixture of lactic, butyric, acetic, and propionic acids. When the mixed culture C4 was bioaugmented with S. wolfei, the bioH2 and PHA production reached 32 mmol and 50%, respectively. Overall, the consumption of organic acids was above 50%, which accounted up to 55% of total chemical oxygen demand (COD) removed. Increased bioH2 was observed in the condition when S. wolfei was added as the bioaugmentation agent, reaching up to 562 mL of H2 produced per gram of COD. The enhanced production of bioH2 and PHA can be explained by the metabolic interaction between the three selected strains, which likely include thermodynamic equilibrium, the assimilation of organic acids via beta-oxidation, and the production of bioH2 using a proton driving force derived from reduced menaquinone or via electron bifurcation. Full article
Show Figures

Figure 1

16 pages, 1381 KiB  
Article
Antioxidant Activity and Kinetic Characterization of Chlorella vulgaris Growth under Flask-Level Photoheterotrophic Growth Conditions
by Jesús Alberto Coronado-Reyes, Evelyn Acosta-Ramírez, Miranda Valeria Martínez-Olguín and Juan Carlos González-Hernández
Molecules 2022, 27(19), 6346; https://doi.org/10.3390/molecules27196346 - 26 Sep 2022
Cited by 7 | Viewed by 2918
Abstract
C. vulgaris is a unicellular microalgae, whose growth depends on the conditions in which it is found, synthesizing primary and secondary metabolites in different proportions. Therefore, we analyzed and established conditions in which it was possible to increase the yields of metabolites obtained [...] Read more.
C. vulgaris is a unicellular microalgae, whose growth depends on the conditions in which it is found, synthesizing primary and secondary metabolites in different proportions. Therefore, we analyzed and established conditions in which it was possible to increase the yields of metabolites obtained at the flask level, which could then be scaled to the photobioreactor level. As a methodology, a screening design was applied, which evaluated three factors: type of substrate (sodium acetate or glycerol); substrate concentration; and exposure-time to red light (photoperiod: 16:8 and 8:16 light/darkness). The response variables were: cell division; biomass; substrate consumption; and antioxidant activity in intracellular metabolites (ABTS•+ and DPPH•). As a result, the sodium acetate condition of 0.001 g/L, in a photoperiod of 16 h of light, presented a doubling time (Td = 4.84 h) and a higher rate of division (σ = 0.20 h−1), having a final biomass concentration of 2.075 g/L. In addition, a higher concentration of metabolites with antioxidant activity was found in the sodium acetate (0.629 Trolox equivalents mg/L ABTS•+ and 0.630 Trolox equivalents mg/L DPPH•). For the glycerol, after the same photoperiod (16 h of light and 8 h of darkness), the doubling time (Td) was 4.63 h, with a maximum division rate of σ = 0.18 h−1 and with a biomass concentration at the end of the kinetics of 1.4 g/L. Sodium acetate under long photoperiods, therefore, is ideal for the growth of C. vulgaris, which can then be scaled to the photobioreactor level. Full article
Show Figures

Graphical abstract

12 pages, 8103 KiB  
Article
Nitrogen Fixation Activity and Genome Analysis of a Moderately Haloalkaliphilic Anoxygenic Phototrophic Bacterium Rhodovulum tesquicola
by Anastasia V. Komova, Elizaveta D. Bakhmutova, Anna O. Izotova, Evelina S. Kochetova, Stepan V. Toshchakov, Zorigto B. Namsaraev, Maxim V. Golichenkov and Aleksei A. Korzhenkov
Microorganisms 2022, 10(8), 1615; https://doi.org/10.3390/microorganisms10081615 - 9 Aug 2022
Cited by 4 | Viewed by 2805
Abstract
The genome of the moderately haloalkaliphilic diazotrophic anoxygenic phototrophic bacterium Rhodovulum tesquicola A-36sT isolated from an alkaline lake was analyzed and compared to the genomes of the closest species Rhodovulum steppense A-20sT and Rhodovulum strictum DSM 11289T. The genomic [...] Read more.
The genome of the moderately haloalkaliphilic diazotrophic anoxygenic phototrophic bacterium Rhodovulum tesquicola A-36sT isolated from an alkaline lake was analyzed and compared to the genomes of the closest species Rhodovulum steppense A-20sT and Rhodovulum strictum DSM 11289T. The genomic features of three organisms are quite similar, reflecting their ecological and physiological role of facultative photoheterotrophs. Nevertheless, the nitrogenase activity of the pure cultures of the studied bacteria differed significantly: the highest rate (4066 nmoles C2H2/mg of dry weight per hour) was demonstrated by Rhodovulum strictum while the rates in Rhodovulum tesquicola and Rhodovulum steppense were an order of magnitude lower (278 and 523 nmoles C2H2/mg of dry weight per hour, respectively). This difference can be attributed to the presence of an additional nitrogenase operon found exclusively in R. strictum and to the structural variation in nitrogenase operon in R. tesquicola. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

16 pages, 5153 KiB  
Article
Metabolic and Proteomic Analysis of Chlorella sorokiniana, Chloroidium saccharofilum, and Chlorella vulgaris Cells Cultured in Autotrophic, Photoheterotrophic, and Mixotrophic Cultivation Modes
by Agata Piasecka and Andrea Baier
Molecules 2022, 27(15), 4817; https://doi.org/10.3390/molecules27154817 - 27 Jul 2022
Cited by 31 | Viewed by 6228
Abstract
Chlorella is one of the most well-known microalgal genera, currently comprising approximately a hundred species of single-celled green algae according to the AlgaeBase. Strains of the genus Chlorella have the ability to metabolize both inorganic and organic carbon sources in various trophic modes [...] Read more.
Chlorella is one of the most well-known microalgal genera, currently comprising approximately a hundred species of single-celled green algae according to the AlgaeBase. Strains of the genus Chlorella have the ability to metabolize both inorganic and organic carbon sources in various trophic modes and synthesize valuable metabolites that are widely used in many industries. The aim of this work was to investigate the impact of three trophic modes on the growth parameters, productivities of individual cell components, and biochemical composition of Chlorella sorokiniana, Chloroidium saccharofilum, and Chlorella vulgaris cells with special consideration of protein profiles detected by SDS-PAGE gel electrophoresis and two-dimensional gel electrophoresis with MALDI-TOF/TOF MS. Mixotrophic conditions with the use of an agro-industrial by-product stimulated the growth of all Chlorella species, which was confirmed by the highest specific growth rates and the shortest biomass doubling times. The mixotrophic cultivation of all Chlorella species yielded a high amount of protein-rich biomass with reduced contents of chlorophyll a, chlorophyll b, carotenoids, and carbohydrates. Additionally, this work provides the first information about the proteome of Chloroidium saccharofilum, Chlorella sorokiniana, and Chlorella vulgaris cells cultured in molasses supplementation conditions. The proteomic analysis of the three Chlorella species growing photoheterotrophically and mixotrophically showed increased accumulation of proteins involved in the cell energy metabolism and carbon uptake, photosynthesis process, and protein synthesis, as well as proteins involved in intracellular movements and chaperone proteins. Full article
Show Figures

Figure 1

16 pages, 3354 KiB  
Article
Attachment of Ferredoxin: NADP+ Oxidoreductase to Phycobilisomes Is Required for Photoheterotrophic Growth of the Cyanobacterium Synechococcus sp. PCC 7002
by Xiying Li, Chenhui Huang, Peijun Wei, Kun Zhang, Chunxia Dong, Qing Lan, Zhenggao Zheng, Zhengdong Zhang and Jindong Zhao
Microorganisms 2022, 10(7), 1313; https://doi.org/10.3390/microorganisms10071313 - 29 Jun 2022
Cited by 6 | Viewed by 2818
Abstract
Two types of cyanobacterial phycobilisomes (PBS) are present: the hemidiscoidal PBS (CpcG-PBS) and the membrane-bound PBS (CpcL-PBS). Both types of PBS have ferredoxin:NADP+ oxidoreductase (FNR) attached to the termini of their rods through a CpcD domain. To date, the physiological significance of [...] Read more.
Two types of cyanobacterial phycobilisomes (PBS) are present: the hemidiscoidal PBS (CpcG-PBS) and the membrane-bound PBS (CpcL-PBS). Both types of PBS have ferredoxin:NADP+ oxidoreductase (FNR) attached to the termini of their rods through a CpcD domain. To date, the physiological significance of the attachment remains unknown. We constructed a mutant (dF338) which contains an FNR lacking the N-terminal CpcD domain in Synechococcus sp. PCC 7002. Isolated CpcG-PBS from dF338 did not contain FNR and the cell extracts of the mutant had a 35 kDa protein cross-reacting to anti-FNR antibodies. dF338 grows normally under photoautotrophic conditions, but little growth was observed under photoheterotrophic conditions. A cpcL (cpcG2) mutant grows extremely slowly under photoheterotrophic conditions while a cpcG (cpcG1) mutant, in which PBS rods could not attach to the cores of the CpcG-PBS, can grow photoheterotrophically, strongly suggesting that the attachment of FNR to CpcL-PBS is critical to photoheterotrophic growth. We show that electron transfer to the plastoquinone pool in dF338 and the cpcL mutant was impaired. We also provide evidence that trimeric photosystem I (PSI) and intact CpcL-PBS with a full-length FNR is critical to plastoquinone reduction. The presence of a NADPH-dehydrogenase (NDH)-CpcL-PBS-PSI trimer supercomplex and its roles are discussed. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

15 pages, 4683 KiB  
Article
Proteomic Time-Course Analysis of the Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus aurantiacus, during the Transition from Respiration to Phototrophy
by Shigeru Kawai, Shigeru Shimamura, Yasuhiro Shimane and Yusuke Tsukatani
Microorganisms 2022, 10(7), 1288; https://doi.org/10.3390/microorganisms10071288 - 25 Jun 2022
Cited by 7 | Viewed by 3208
Abstract
Chloroflexus aurantiacus is a filamentous anoxygenic phototrophic bacterium that grows chemotrophically under oxic conditions and phototrophically under anoxic conditions. Because photosynthesis-related genes are scattered without any gene clusters in the genome, it is still unclear how this bacterium regulates protein expression in response [...] Read more.
Chloroflexus aurantiacus is a filamentous anoxygenic phototrophic bacterium that grows chemotrophically under oxic conditions and phototrophically under anoxic conditions. Because photosynthesis-related genes are scattered without any gene clusters in the genome, it is still unclear how this bacterium regulates protein expression in response to environmental changes. In this study, we performed a proteomic time-course analysis of how C. aurantiacus expresses proteins to acclimate to environmental changes, namely the transition from chemoheterotrophic respiratory to photoheterotrophic growth mode. Proteomic analysis detected a total of 2520 proteins out of 3934 coding sequences in the C. aurantiacus genome from samples collected at 13 time points. Almost all proteins for reaction centers, light-harvesting chlorosomes, and carbon fixation pathways were successfully detected during the growing phases in which optical densities and relative bacteriochlorophyll c contents increased simultaneously. Combination of proteomics and pigment analysis suggests that the self-aggregation of bacteriochlorophyllide c could precede the esterification of the hydrophobic farnesyl tail in cells. Cytoplasmic subunits of alternative complex III were interchanged between oxic and anoxic conditions, although membrane-bound subunits were used for both conditions. These data highlight the protein expression dynamics of phototrophy-related genes during the transition from respiration to phototrophy. Full article
(This article belongs to the Special Issue Phototrophic Bacteria)
Show Figures

Figure 1

14 pages, 2465 KiB  
Article
Development of a Microalgae-Based Continuous Starch-to-Hydrogen Conversion Approach
by Bettina Hupp, Bernadett Pap, Attila Farkas and Gergely Maróti
Fermentation 2022, 8(7), 294; https://doi.org/10.3390/fermentation8070294 - 23 Jun 2022
Cited by 18 | Viewed by 3933
Abstract
Eukaryotic algae represent a highly heterogeneous group in terms of organization, lifestyle, and metabolic capabilities. Unicellular green microalgae are capable of biohydrogen production through direct and indirect photolysis as well as dark fermentation. Most algae hydrogen studies focus on axenic algal cultures, although [...] Read more.
Eukaryotic algae represent a highly heterogeneous group in terms of organization, lifestyle, and metabolic capabilities. Unicellular green microalgae are capable of biohydrogen production through direct and indirect photolysis as well as dark fermentation. Most algae hydrogen studies focus on axenic algal cultures, although these are difficult and expensive to maintain for continuous operation. Moreover, the complex interplays and metabolic fluxes between algae and bacteria in natural ecosystems provide a number of clear biological and technological benefits to large-scale functional algae-based systems. Two green algae species from the Chlamydomonas and Chlorella genera were used to engineer stable synthetic communities by incorporating a starch-degrading bacterium from the Bacillus genus into the inter-kingdom consortium. Continuous photoheterotrophic biohydrogen production was achieved by elaborating an appropriate algal–bacterial ratio and fine-tuning the culture conditions for the synthetic consortia. Medium with starch as only carbon source served as a simple model of cheap substrate for algal hydrogen generation. The engineered pairwise algal–bacterial associations showed increased biomass and biohydrogen yield compared to the axenic control conditions. Chlorella sp. MACC-360 produced a significantly higher amount of hydrogen when both the bacterium partner and starch were added to the media compared to the axenic algae. Continuous, elevated algal hydrogen production was achieved in media supplemented with 8 g L−1 starch as sole carbon source when carefully selected initial cell number values were used for the Chlorella sp. MACC-360–B. amlyloliquefaciens co-cultures. Full article
(This article belongs to the Special Issue Algal Biomass: From Bioproducts to Biofuels)
Show Figures

Figure 1

12 pages, 18995 KiB  
Article
A Novel Phage Infecting the Marine Photoheterotrophic Bacterium Citromicrobium bathyomarinum
by Ruijie Ma, Shuai Shao, Shuzhen Wei, Junlei Ye, Yahui Yang, Nianzhi Jiao and Rui Zhang
Viruses 2022, 14(3), 512; https://doi.org/10.3390/v14030512 - 2 Mar 2022
Cited by 7 | Viewed by 3726
Abstract
This study isolated and characterized a new phage infecting the marine photoheterotrophic bacterium Citromicrobium bathyomarinum, which fills the gap in research on phages targeting this ecologically important species. The phage vB_CbaS-RXM (RXM) has a dsDNA genome with a length of 104,206 bp [...] Read more.
This study isolated and characterized a new phage infecting the marine photoheterotrophic bacterium Citromicrobium bathyomarinum, which fills the gap in research on phages targeting this ecologically important species. The phage vB_CbaS-RXM (RXM) has a dsDNA genome with a length of 104,206 bp and G+C content of 61.64%. The taxonomic analysis found a close evolutionary relationship between RXM, Erythrobacter phage vB_EliS-L02, and Sphingobium phage Lacusarx, and we propose that RXM represents a new species of the Lacusarxvirus genus. A one-step growth curve revealed a burst size of 75 plaque-forming units (PFUs) per cell in a 3-hour infection cycle. The lysis profile of RXM showed an intraspecific lethal rate of 26.3% against 38 citromicrobial strains. RXM contains 15 auxiliary metabolic genes (AMGs) related to diverse cellular processes, such as putative metabolic innovation and hijacking of host nucleotide metabolism to enhance its biosynthetic capacity. An in-depth analysis showed that phage functional genes strongly rely on the host for translation, while the translation of unique phage genes with less host dependency may be complemented by phage tRNA. Overall, our study investigated the infection kinetics, genetic traits, taxonomy, and predicted roles of AMGs and tRNA genes of this new phage, which contributes to a better understanding of phage diversity and phage–bacterium interactions. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

Back to TopTop