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Abstract: Two types of cyanobacterial phycobilisomes (PBS) are present: the hemidiscoidal PBS
(CpcG-PBS) and the membrane-bound PBS (CpcL-PBS). Both types of PBS have ferredoxin:NADP+

oxidoreductase (FNR) attached to the termini of their rods through a CpcD domain. To date, the
physiological significance of the attachment remains unknown. We constructed a mutant (dF338)
which contains an FNR lacking the N-terminal CpcD domain in Synechococcus sp. PCC 7002. Isolated
CpcG-PBS from dF338 did not contain FNR and the cell extracts of the mutant had a 35 kDa protein
cross-reacting to anti-FNR antibodies. dF338 grows normally under photoautotrophic conditions,
but little growth was observed under photoheterotrophic conditions. A cpcL (cpcG2) mutant grows
extremely slowly under photoheterotrophic conditions while a cpcG (cpcG1) mutant, in which PBS
rods could not attach to the cores of the CpcG-PBS, can grow photoheterotrophically, strongly
suggesting that the attachment of FNR to CpcL-PBS is critical to photoheterotrophic growth. We
show that electron transfer to the plastoquinone pool in dF338 and the cpcL mutant was impaired. We
also provide evidence that trimeric photosystem I (PSI) and intact CpcL-PBS with a full-length FNR is
critical to plastoquinone reduction. The presence of a NADPH-dehydrogenase (NDH)-CpcL-PBS-PSI
trimer supercomplex and its roles are discussed.

Keywords: cyanobacteria; FNR; NDH; photoheterotrophic growth; phycobilisome

1. Introduction

Cyanobacteria are a large group of prokaryotes that perform oxygenic photosynthesis,
and they play important roles in global carbon and nitrogen cycles. Phycobilisomes (PBS)
are supramolecular pigment–protein complexes composed of phycobiliproteins and linker
proteins and they are the major antenna complexes for light energy harvesting in cyanobac-
teria [1–5]. There are two types of PBS in most cyanobacteria: hemidiscoidal PBS and
CpcL-PBS. The structures of several hemidiscoidal PBS have been determined recently [5]
and they all consist of peripheral rods and a central core. A peripheral rod usually has sev-
eral hexamers joined together through the linker protein CpcC, which contains a Pfam00427
domain and a Pfam01383 domain [5–7]. The attachment of a peripheral rod to the core
is accomplished by the linker protein CpcG1 [8]. The CpcG1-containing PBS is herein
called CpcG-PBS. CpcG1 has a Pfam00427 domain at its N-terminus and an extension
with α-helices at its C-terminus [7,9]. The Pfam00427 domain of CpcG1 is located in the
cavity of the proximal hexamer of the rods and the C-terminal helices interact with the core.
At the distal end of the peripheral rod is another linker protein, CpcD, which contains a
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Pfam01383 domain and is responsible for distal termination of PBS rod extension [10]. The
CpcL-PBS was characterized more recently [11,12] and it consists of only rod that is attached
to the thylakoid membrane by the linker protein CpcL. The N-terminal portion of CpcL is
homologous to CpcG1 and the genes encoding CpcL were earlier annotated as cpcG2 (in
Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803) or cpcG3 (in Anabaena sp. PCC
7120) [13]. The C-terminal portion of CpcL contains a hydrophobic tail that anchors the
CpcL-PBS to the thylakoid membranes [11,12]. The CpcL-PBS is preferentially associated
with photosystem I (PSI) and the light energy absorbed by CpcL-PBS is transferred mainly
to PSI [11,12,14–16]. Although CpcG-PBS is more closely associated with photosystem II
(PSII) [9,17,18], the light energy absorbed by CpcG-PBS can be transferred to either PSII
or PSI and distribution of the absorbed light energy between the two photosystems are
regulated by a process called state transitions [19–21].

In linear photosynthetic electron transfer, water is oxidized by PSII and the electrons
are transferred through electron transfer chain to the final electron acceptor NADP+ and
the last reaction is carried out by ferredoxin:NADP+ oxidoreductase (FNR) [22]. FNR in
plant chloroplasts has a two-domain structure: a FAD-binding domain and a NAD-binding
domain, and these two domains are responsible for electron transfer from ferredoxin to
NADP+ [23,24]. The FNR from cyanobacteria also contains the two domains of plant’s
FNR and carries out the same biochemical reactions in photosynthetic electron transfer.
However, it additionally contains a CpcD domain [25], which belongs to Pfam01383 protein
family [26]. Due to the presence of the CpcD domain at its N-terminus, some cyanobacterial
FNR is attached to rods of CpcL-PBS as well as of CpcG-PBS [27–29]. However, the
physiological roles of the attachment of FNR to PBS remain unknown.

Even though there is only one gene, the petH gene, encoding FNR in cyanobacteria,
two isoforms of FNR are observed: the full-length FNR (FNRL) that has three domains and
a short version of FNR (FNRS) that lacks the CpcD domain [25]. Analysis of petH translation
reveals that different translational start points are responsible for the generation of the two
isoforms in cyanobacteria [30,31]. Based on enzymatic activity and mutant phenotypes, it
was postulated that in cyanobacteria, the FNRL mainly has a role in reduction of NADP+,
whereas the FNRS is mainly involved in cyclic electron transfer (CET) [30–32]. Although
the electron transfer route in CET in both cyanobacteria and plant chloroplasts is not well
understood at the moment [33], it has been firmly established that NADPH dehydrogenase
complex (NDH) is critical to CET in both cyanobacteria and higher plants [34–37] and the
NDH-PSI supercomplex formation is key to its functions [38,39]. The formation of NDH-PSI
supercomplex in cyanobacteria has also been demonstrated and it requires participation
of the CpcL-PBS [40]. The presence of a cytochrome b6f complex (cyt b6f )-bound FNR
in chloroplasts suggests a possible route of a direct electron transfer from FNR to cyt b6f
complex [41] although a cyt b6f complex with a bound FNR has not been observed in
cyanobacteria.

Here we report that a truncated FNR without the CpcD domain was unable to attach
to PBS and the strain with the mutant gene was unable to grow photoheterotrophically. We
provide evidence that the CET in the cyanobacteria is impaired when FNR is not associated
with PBS. We provide evidence that the CET in the cyanobacteria is impaired when FNR
is not associated with PBS and demonstrate that FNRL plays an important role in CET in
Synechococcus 7002.

2. Materials and Methods
2.1. Culture Conditions and Mutant Construction

The wild-type and mutant strains of Synechococcus sp. PCC 7002 were grown in
A+ medium [42] at 37 ◦C with illumination of white fluorescent light at a light intensity
of approximately 200 µmol photons m−2 s−1. Green light condition was provided with
LED light with a wavelength at 520 nm at an intensity of 50 µmol photons m−2 s−1. The
cultures were bubbled with air plus 1% CO2. When needed, kanamycin was added to
the media at a concentration of 50 µg mL−1, and erythromycin of 25 µg mL−1. Glycerol
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(10 mM) and DCMU (10 µM) were used when cells were grown photoheterotrophically.
Iron deficiency cultures were grown according to Alcántara-Sánchez et al. [43]. Cell density
was determined by measuring optical density at 730 nm.

The deletion mutant of cpcG2 (∆cpcG2) was constructed as described [14]. The strain
∆cpcC (deletion of the cpcC gene) was constructed according to Zheng et al. [5]. The strain
∆psaL was constructed as described [44]. The strain ∆cpcG1 (deletion of the cpcG1 gene)
was constructed as described [45]. The strain ∆cpcBA, which lacks the cpcBA genes, was
constructed according to Huang et al. [46]. The strain dF338, in which the petH gene was
replaced by petH2D encoding FNRS, was constructed as follows. A 1000 bp fragment
from 643 bp upstream to 357 bp downstream of the first ATG codon of the petH gene
was amplified by PCR with primer pairs of P1/P2. DNA fragments encoding kanamycin
resistance cassette (Kanr), the cpcBA promoter and petH2D gene (and truncated petH gene
for SLF8) were amplified by PCR with primer pairs of P3/P4, P5/P6 and P7/P8. With two-
way fusion PCR methods [47], the resultant PCR products were transformed to wild-type
strain and the transformants were selected on 50 µg mL−1 kanamycin. The transformants
were screened by PCR with primer pairs of P9/P10 for complete replacement of the petH
gene by the petH2D gene. The same strategy was used for construction of strain SLF8, in
which a mutant petH encodes a mutant FNR with a deletion from Glu75 to Pro95 in its
amino acid sequence. The primers used in the construction of the mutant petH for SLF8 were
P11/P12 and P8/P13. To generate pku-F2d-oe strain, DNA fragments encoding the cpcBA
promoter, a mutant petH encoding FNRs and kanamycin resistance cassette (Kanr) were
amplified by PCR with primer pairs of P6/P14, P7/P15, and P16/P17. The PCR fragments
were fused by two-way fusion PCR followed by insertion into a chromosome docking
site between 2588743–2588744. Fragments upstream and downstream of this site were
amplified with the primer pairs of P18/P19 and P20/P21 for homologous recombination.
The primers used in this study are listed in Supplementary Table S1.

2.2. Protein Extraction and Immunoblotting

Thylakoid membranes were isolated as previously described [48]. After removal of
unbroken cells, the supernatant containing thylakoid membranes and soluble proteins were
separated after centrifuged at 20,000× g for 30 min at 4 ◦C. Soluble proteins were precipi-
tated for sample preparation. PBS were prepared according to previous work [5,9]. PBS
from sucrose density gradient centrifugation were desalted with ultrafiltration using Mili-
pore Amicon Ultra centrifugal filters. PSI was isolated according to previous work [15,49]
for EM analysis. Proteins were separated with 15% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE). Proteins in the gel were transferred to a nitrocellulose
membrane for immunoblotting analysis and the antibodies against FNR from cyanobacteria
were used as primary antibodies, which were detected by the secondary antibodies from
Promega (Beijing, China).

N-terminal sequences of proteins were determined by sequencing with a protein
sequencer ABI491.

2.3. Fluorescence Measurements

Fluorescence emission spectra at 77 K and room temperature fluorescence were ob-
tained following the methods in the previous work [14,50]. Post-illumination rise of Chl
fluorescence was measured as described previously using Dual-PAM-100 instrument [48].

2.4. P700 Measurement

P700 of PSI was measured using a Dual-PAM-100 instrument (Heinz Walz, Effeltrich,
Germany) as described [21]. Cells were harvested and adjusted to OD730nm of 3.0 and were
dark-adapted for 5 min before turning on the actinic light. The wavelengths of the actinic
lights at 635 nm and 440 nm were used. DCMU at a concentration of 10 µM was added to
culture when needed.
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3. Results
3.1. The CpcD Domain Is Responsible for Association of FNR with PBS

To study roles of FNR attachment to PBS, we constructed a mutant strain of Synechococcus
7002 which produces only FNRS (strain dF338). Because deletion of petH is lethal in
cyanobacteria, the petH gene of Synechococcus 7002 was replaced by a modified version of
petH, named petH2D, that had a deletion from residue 1 to residue 95. The correct mutation
was confirmed (Figure S1). PBS isolated from the wild-type strain (WT), dF338 and ∆CpcG2,
which is a mutant lacking cpcG2 and its CpcL-PBS is missing while its CpcG-PBS remain
unchanged [14], were analyzed with SDS-PAGE. Protein bands with a molecular mass
of 45 kDa could clearly be visualized by Commassie brilliant blue staining in the lanes
with the isolated CpcG-PBS from WT and ∆CpcG2 while it was not present in CpcG-PBS
from dF338 strain. The bands from WT and ∆CpcG2 were cross-reacted with the anti-FNR
antibodies in immunoblotting (Figure 1A). The 45 kDa bands were further analyzed by
N-terminal sequencing and they had a sequence of MYGITSTANSTGNQSYAN, confirming
that they were FNR. In total cellular extracts, FNRL, the 45 kDa bands were found to
cross-react with the anti-FNR antibodies in WT and ∆CpcG2. In dF338, only a 35 kDa
protein was detected by the immunoblotting (Figure 1B), confirming that the CpcD domain
of FNR was deleted in the mutant. The proteins from the cell extracts were separated into
membrane and soluble fractions and they were again probed with immunoblotting after
SDS-PAGE. As shown in Figure 1C,D, FNRL is present in the both membrane and soluble
fractions from the WT and ∆CpcG2 but not in the dF338’s fractions. It also shows that
FNRS is present in WT, dF338 and ∆CpcG2. In the soluble fractions, there were more FNRS
than the membrane fractions in WT and ∆CpcG2 and there were two bands detected by
immunoblotting, indicating that two isoforms of FNRS could be present in soluble fractions
in WT and ∆CpcG2. It should be noted that we used a cpcBA promoter for the expression
of the petH2D gene in dF338 and the amount of FNR in dF338 is higher than that in the WT.
We have not been able to generate a mutant strain that contains a truncated form of petH
with its own promoter.

3.2. The Strain dF338 Is Able to Perform State Transitions

Since CpcG-PBS are mostly associated with PSII [17] while FNR plays a major role
in electron transfer of PSI, it was first predicted that the attachment of FNR to PBS may
have a role in state transitions. We first measured 77 K fluorescence emission spectra of
WT and dF338 with a chlorophyll-absorbing (440 nm) excitation light (Figure 2A) and
found that they were nearly identical, indicating the that PSII to PSI stoichiometry of dF338
was the same as that of WT. The 77 K fluorescence emission spectra were then measured
with PBS-absorbing light under state I or state II conditions and the results suggested that
the state transitions in dF338 strain were not impaired (Figure 2B,C). Room temperature
fluorescence inductions in the presence of DCMU also showed that the state transitions of
dF338 were not impaired (Figure S2). It has been shown that impairing state transitions
leads to slower growth under green light that is preferentially absorbed by PBS [21]. We
therefore measured the growth rates of dF338 under a green light and found that they
were almost identical to that of the WT (Figure S3), suggesting that the major role of
the attachment of FNR to PBS is unlikely related to state transitions. Room temperature
fluorescence inductions and growth curve under green light conditions were also measured
for ∆cpcG2 (Figures S2C and S3). The results for ∆cpcG2 were almost identical as that of
wild-type, demonstrating that CpcL-PBS are not involved in state transition.
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Figure 1. SDS-PAGE and immunoblotting analysis of ferredoxin:NADP+ oxidoreductase (FNR) 

from different strains. (A) SDS-PAGE separation of phycobilisome (PBS) proteins from the wild-

type (WT), dF338 and ΔCpcG2. Red arrows indicate FNR protein, which is missing in the dF338 
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Figure 1. SDS-PAGE and immunoblotting analysis of ferredoxin:NADP+ oxidoreductase (FNR) from
different strains. (A) SDS-PAGE separation of phycobilisome (PBS) proteins from the wild-type (WT),
dF338 and ∆CpcG2. Red arrows indicate FNR protein, which is missing in the dF338 mutant. The
molecular mass markers are shown as bars on the left side. Proteins separated by SDS-PAGE were
transferred from gel to nitrocellulose membrane for immunoblotting and a portion of the blot is
shown in the box below the gel image. (B–D), total cellular proteins, thylakoid membrane proteins
and soluble proteins were extracted and separated by SDS-PAGE respectively, from the strains WT,
dF338 and ∆CpcG2. The red arrows in panel (B,D) indicate an increased intensity of the protein
bands at the position of approximately 35 kDa. Immunoblotting analysis of FNR proteins are shown
in the boxes below each gel. The molecular masses of the immunoblotting bands are shown on the
left of the boxes as indicated by black arrows.
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Figure 2. 77 K fluorescence spectra of the wild-type (WT) and dF338. (A) Emission spectra of WT
(black line) and dF338 (red line) in state 2 conditions were collected with an excitation light at 440 nm.
(B,C) 77 K fluorescence emission spectra of WT and dF338, respectively, were obtained with an
excitation light at 590 nm. Cells were brought to state 1 by illuminating with blue light with DCMU
(red line) and to state 2 with incubation in the dark (black line) before frozen in liquid nitrogen.

3.3. The Strain dF338 Is Impaired of Photoheterotrophic Growth

We measured growth of dF338 and several other strains under photoautotrophic and
photoheterotrophic conditions. While the growth of the strains dF338 and ∆cpcG2 under
photoautotrophic conditions with white light was very similar to that of WT (Figure 3A),
their growth under photoheterotrophic conditions (10 mM glycerol and 10 µM DCMU) was
much slower than that of WT (Figure 3B). The two other strains, ∆cpcBA and ∆cpcG1, were
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also measured for their growth. ∆cpcBA lacks the genes encoding the α- and β-subunits of
phycocyanin and no PBS rods can be synthesized. ∆cpcG1 lacks CpcG1 and the peripheral
rods, which can be synthesized, could but cannot be attached to the cores (Figure S4A).
Therefore, the mutated CpcG-PBS in ∆cpcBA and ∆cpcG1 were the similar in that they
have no rods attached to the cores and therefore there would be no FNR attached to their
CpcG-PBS. Both ∆cpcBA and ∆cpcG1 grew much slower than WT under photoautotrophic
conditions (Figure 3A) because of insufficient light absorption due to a reduced light-
absorbing cross-section sizes. However, their growth under photoheterotrophic conditions
was different: the growth rates of ∆cpcG1 was slightly faster than that of WT while ∆cpcBA
could hardly grow (Figure 3B). Since the CpcL-PBS in ∆cpcBA could not be synthesized
and it is not affected by the deletion of cpcG1 in ∆cpcG1, these results were suggestive
that CpcL-PBS is more critical to the normal growth under photoheterotrophic conditions.
We used another mutant ∆cpcC to further test this possibility. The strain ∆cpcC lacks
the gene cpcC encoding the rod linker and the rods of both CpcG-PBS and CpcL-PBS
contain only one hexamer [5] (Figure S4A). As shown in Figure 3A, photoautotrophic
growth of ∆cpcC was slower than that of WT but significantly faster than that ∆cpcG1
and ∆cpcBA. Under photoheterotrophic conditions, little growth of ∆cpcC was observed
(Figure 3B). Importantly, the attachment of FNR to the CpcC-less CpcG-PBS was confirmed
by SDS-PAGE analysis (Figure S4B).
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Figure 3. Growth curves of the wild-type (WT) and the mutant strains. (A) Photoautotrophic growth
curves of WT and the mutant strains were obtained under white light condition provided with cool
white fluorescent light at 200 µmol photons m−2 s−2. (B) Photoheterotrophic growth curves of WT
and the mutant strains in the presence of glycerol (10 mM) and DCMU (10 µM) under a light intensity
of 50 µmol photons m−2 s−2. Colors of the curves are as follows: black for WT; red for dF338; blue
for ∆cpcG2; purple for ∆cpcG1; green for ∆cpcC; and yellow for ∆cpcBA.

3.4. Photosynthetic Electron Transfers

To understand why attachment of FNRL to CpcL-PBS is required for growth under
photoheterotrophic conditions, post-illumination rise of Chl fluorescence (PIRF), which
is attributable to the reduction of plastoquinone (PQ) [38,40,41,51], was measured. WT
exhibited significant increases of PIRF when the actinic light was turned off (Figure 4A).
However, PIRF was not observed in dF338, ∆cpcG2 and ∆cpcC (Figure 4B–D), suggesting
that these mutants were impaired of electron donation to PQ pool. When WT and dF338
cultures were exposed to a strong light (1300 µmol m−2 s−1), dF338 showed a faster decrease
of oxygen evolution rate than WT while its recovery from photoinhibition was slower than
that of WT (Figure S5).
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Figure 4. Post-illumination rise of Chl fluorescence (PIRF) analysis. PIRF analysis of the wild-type
(WT) (A), dF338 (B), ∆cpcG2 (C) and ∆cpcC (D). Cells were illuminated with an actinic light for
30 s before the actinic light was turned off (downward arrows) and the transient increase of Chl
fluorescence at the wavelength of 685 nm was monitored. Bar indicates 10 s.

The P700 redox kinetics of WT and dF338 were measured and it was found that
the rates of P700+ reduction in dF338 were comparable to the rates of P700+ reduction
in WT under the conditions tested (Figure 5). The P700 redox change induced with a
PBS-absorbing (635 nm) light in WT cells are shown in Figure 5A. When the light was
turned on, a spike of P700 signal was immediately observed, indicating a fast oxidation
and a reduction, followed by a slower oxidation to reach an oxidized steady state. When
the light was turned off, the P700+ was rapidly reduced with a half time of 10–20 ms. In the
presence of DCMU, which blocks electron transfer from PSII to PQ pool, the initial spike of
P700 signal disappeared and the reduction of P700+ was much slower with a half time of
approximately 200 ms when the light was turned off (Figure 5B). The initial spike of the
P700 signal observed in Figure 5A was also absent if the actinic light was a Chl-absorbing
light at 440 nm (Figure 5C), which is preferentially used by PSI. For the strain dF338, while
the initial spike of P700 signal is observed, the following oxidation of P700 was much
slower (Figure 5E). The slower oxidation of P700 is abolished when DCMU was added
(Figure 5F) or the actinic light was Chl-absorbing light (440 nm) (Figure 5G). The very
slow oxidation of P700 observed in Figure 5E was likely a result from overexpression of
the petH2D gene because overexpression of the petH2D gene in a WT background (strain
pku-F2d-oe) also led to a similarly slow oxidation of P700 (Figure 5I). It is also possible that
the strain with overproduced FNRs could have a faster electron donation to the PQ pool as
observed in Synechocystis [52,53], leading to a slower oxidation of P700 (Figure 5E).
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Figure 5. Kinetic analyses of P700 photooxidation and reduction of P700+. Strains of WT
(panels A–D), dF338 (panels E–H) and pku-F2d-oe (the strain that overexpresses the petH2D gene,
panel I) were incubated in the dark for 5 min before the actinic lights at 635 nm (panels A,B,E,F,I) or
at 440 nm (panels C,D,G,H) were switched on. When needed (panels B,D,F,H), DCMU was added at
a concentration 10 µM before the dark incubation. The upward and downward red arrows in the
panels indicate turning on or turning off of the actinic lights, respectively.

3.5. Association of CpcL-PBS with PSI

Based on an earlier study that CpcL-PBS was associated with PSI in the filamentous
cyanobacterium Anabaena 7120 [15], we searched conditions for isolating CpcL-PBS-PSI
complexes in Synechococcus 7002. We were unable to obtain CpcL-PBS-PSI complexes from
WT and other strains under normal growth conditions. However, under the conditions
that increase CET, such as low iron in growth media [43], we were able to isolate CpcL-
PBS-PSI complexes with ultracentrifugation in high phosphate-sucrose buffer. As shown
in Figure 6A(i), the isolated particles of PSI trimer and CpcL-PBS-PSI trimer complexes
can be observed by EM with negative staining. Enlarged images of some particles are
shown in Figure 6A(ii–v). The interactive site for CpcL-PBS association with PSI trimer
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seemed to be the interface between PSI monomers (Figure 6A(ii,iii)). From the side view,
the CpcL-PBS rods stood upwards, but the angles between PSI timer and the rods were
variable (Figure 6A(iv,v)). We did not observe CpcL-PBS-PSI monomer complexes with
negatively stained electron microscopy. Measurement of PIRF revealed that ∆psaL, a psaL
mutant that cannot form PSI trimer [44], had a much lower signal in PIRF (Figure 6B),
suggestive of an impairment of electron transfer to PQ pool. Under the photoheterotrophic
growth conditions, the psaL mutant grew more slowly than WT (Figure 6C) but faster than
dF338. Under photoautotrophic conditions, the growth rate of the psaL mutant was nearly
identical to that of WT (Figure S6).
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Figure 6. EM analysis of CpcL-PBS-photosystem I (PSI) complexes from Synechococcus 7002 and
phenotypic characterization of ∆psaL mutant. (Ai) Electron microscopic images of the negatively
stained particles of the trimeric PSI (green arrows) and CpcL-PBS-PSI trimer complexes (red arrows).
Bar indicates 50 nm. Panels (Aii) through (Av) show enlarged images of top view (Aii,Aiii) and
side view (Aiv,Av) of individual complexes of CpcL-PBS-PSI trimer complexes. Bar indicates 20 nm.
(B) PIRF analysis of the wild-type (WT) (black trace) and ∆psaL (pink trace). (C) Photoheterotrophic
growth of WT (black) and ∆psaL (pink) in the presence of 10 mM glycerol and 10 µM DCMU under
light intensity of 50 µmol photons m−2 s−2.

As mentioned earlier, the CpcD domain of FNRL is linked to the other two domains
through a flexible linker region. To gain more insight into the mechanism of FNRL in
photoheterotrophic growth, we constructed a strain (SLF8) which has a mutant FNR with
a shortened linker region. The region from 75 to 95 residues within the flexible region
of FNRL was deleted (Figure S7) and this mutant FNR (FNRLs) has a molecular mass of
43 kDa. It should be noted that the flexible region of FNRL is not conserved among the
cyanobacterial FNRL [30] and a previous work did not find post-translational modification
in residues 75–95 in this region of FNRL in Synechococcus 7002 [54]. Analysis of isolated PBS
from the strain SLF8 with SDS-PAGE showed that the band at 45 kDa position in WT was
missing in the lane of SLF8 and a new band was present at the position of 43 kDa, which
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cross-reacted with the anti-FNR antibodies (Figure 7A), demonstrating FNRLs was able
to attach to PBS. Immunoblotting of the total cellular extracts (Figure 7B) showed there
were two forms of FNR in SLF8, a 43 kDa protein and a 35 kDa protein, suggesting the
mutant SLF8 is able to synthesize FNRS as WT does. SLF8 was able to grow normally under
photoautotrophic conditions (Figure S6) but could not grow under photoheterotrophic
conditions (Figure 7C), and little PIRF was observed (Figure 7D). It is worthwhile to note
that even though we used the cpcBA promoter for the expression of shortened petH gene in
SLF8, the mutant FNRLs was less abundant than in dF338.
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Figure 7. Characterization of the mutant strain SLF8. (A) PBS of the wild-type (WT), dF338 and SLF8
strains were isolated and the components were separated with SDS-PAGE. Red arrows indicate FNR
protein bands, which was smaller in the lane from SLF8. Immunoblotting with FNR antibodies was
performed and result is shown in the lower box with molecular masses on the left side. (B) Total
cellular proteins from the same strains in panel A were separated by SDS-PAGE and stained with
Coomassie blue. Immunoblotting with FNR antibodies was performed and result is shown in the
lower box with molecular masses on the left side. In both gels, the left lanes contain molecular mass
markers. (C) Photoheterotrophic growth of WT (black) and SLF8 (red) in the presence of 10 mM
glycerol and 10 µM DCMU. (D) Analysis of electron donation to the PQ pool in WT (black) and SLF8
(red) by PIRF. Bar indicates 10 s.
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4. Discussion

The cyanobacterial FNR contains an additional CpcD domain compared to the plant
FNR and association of the cyanobacterial FNRL with PBS was discovered three decades
ago [25]. The cyanobacterial petH gene encoding FNRL is also responsible for the formation
of the plant-type FNR, the two domain FNR or FNRS, which is generated by translation
from the second translation start position [30,31] and it is located mainly in cytoplasm [43].
There are two types of PBS in most of the cyanobacteria, CpcG-PBS and CpcL-PBS, and
they both harbor FNRL [29]. Even though the association of FNRL with PBS is expected to
play important physiological roles as the FNRL-PBS association is conserved in nearly the
entire phylum of cyanobacteria, the functions of the attachment of FNRL to PBS remained
mysterious. In this study, we report the construction of the mutant strain dF338, in which
the gene petH encoding FNRL was replaced by a mutant petH gene, the petH2D, which
encodes FNRS. The inability for FNRS to attach to PBS (Figure 1) does not affect dF338’s
growth rate under normal growth conditions (Figure 3) and dF338 was able to perform
state transitions as compared with WT (Figures 2 and S2). However, it did affect dF338’s
photoheterotrophic growth (Figure 3) when PSII is inhibited by the PSII inhibitor DCMU
and the electron source is NADPH generated by oxidation of externally added glycerol.
Therefore, the growth experiments strongly suggested that electron donation from NADPH
to PQ pool is impaired in dF338.

A set of mutant strains that change PBS structures besides dF338 (Figure S4A) provided
clues for understanding why attachment of FNRL to PBS is needed for photoheterotrophic
growth. Among these mutants, dF338 is the only mutant that has no FNRL and the other
mutants affect the attachment of FNRL to either CpcG-PBS or CpcL-PBS in different ways.
In ∆cpcG1, no FNRL could be attached to the rod-less CpcG-PBS while its CpcL-PBS is
unchanged. Its normal photoheterotrophic growth (Figure 3B) suggests that the attachment
of FNRL to CpcG-PBS is not required for PQ pool reduction by NADPH. The evidence
provided by the photoheterotrophic growth (Figure 3B) and PIRF (Figure 4), which is widely
used in studies of the reduction of PQ pool by NDH [40,55], from the strains ∆cpcG2 (no
CpcL-PBS), ∆cpcBA (no rods of any PBS) and dF338 collectively shows that the attachment
of FNRL to CpcL-PBS is critical to the electron donation to PQ pool from NADPH and its
function could not be replaced by CpcG-PBS.

It has been shown previously that CpcL-PBS is important for energy transfer from PBS
to PSI [11,12,14,16] and it forms the CpcL-PBS-PSI complexes in Anabaena 7120 [15]. Here,
we provide evidence that CpcL-PBS could interact with PSI trimer and forms a CpcL-PBS-
PSI complexes in Synechococcus 7002 (Figure 6A). In plant chloroplasts, PSI could interact
with NDH to form an NDH-PSI supercomplex and a recently determined structure of NDH-
PSI supercomplex shows that LCH of PSI is key to the formation of supercomplex [38,39].
Although the NDH-PSI supercomplex has not been isolated from the cyanobacteria, its
existence has been demonstrated in Synechocystis 6803 and its CpcL-PBS is required for
the NDH-CpcL-PBS-PSI supercomplex formation [40]. The results in Figure 6 strongly
suggest that PSI oligomer formation could be important to the supercomplex formation
in Synechococcus 7002 because the photoheterotrophic growth of a PSI monomer mutant is
significantly slower than that of WT and its PIRF is much smaller. Similar phenotypes have
been observed in the psaL mutant of Anabaena 7120, which could not form PSI tetramer [48].
The roles of CpcL-PBS in photoheterotrophic growth are further studied with the strain
∆cpcC, in which both CpcG-PBS and CpcL-PBS have only one hexamer layer on their rods.
Although no CpcL-PBS has been isolated from this strain, the CpcG-PBS was isolated from
∆cpcC and it has FNRL attached (Figure S4B). It is expected that the only hexamer layer
CpcL-PBS from ∆cpcC should also have FNRL attached. Yet, ∆cpcC grows very poorly
under photoheterotrophic conditions and has little PIRF (Figures 3B and 4D), strongly
suggesting that the full-length CpcL-PBS is needed for proper electron donation to PQ pool
from NADPH.

Based on the previous evidence and our current study, we propose a model for the
cyanobacterial supercomplex of NDH-CpcL-PBS-PSI trimer (Figure 8). In this model, CpcL-
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PBS is important not only in connecting PSI trimer with NDH, but also in delivering the
attached FNRL to the proper position of NDH so that more efficient electron transfer could
be performed from NADPH to PQ pool. The position of FNRL is critical to the supercom-
plex’s function because a shortened flexible region between the CpcD domain and the other
two domains in FNRLs, which could be attached to PBS, led to poor photoheterotrophic
growth and low PIRF (Figure 7).
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Figure 8. Schematic model of NADPH-dehydrogenase complex (NDH)-CpcL-PBS-PSI trimer super-
complex from sideview (A) and top-view (B). CpcL-PBS-PSI trimer complex interacts with NDH to
form supercomplex. In the supercomplex, the FNR attached to CpcL-PBS could efficiently transfer
electrons from NADPH to Fd that is in turn oxidized by NDH located on thylakoid membranes under
photoheterotrophic growth conditions. The model is drawn in proportion according to the actual
sizes of the supercomplex components.

Several types of NDH exist in the cyanobacteria and they play different roles in various
cellular processes [34,35,56]. Although the mechanisms of CET in the cyanobacteria and
chloroplasts are not completely understood at the moment [33], accumulated evidence has
clearly demonstrated that NDH plays a major role in cyanobacterial CET [35,57–59]. Besides
NDH, FNRS could also be important to CET around PSI and it has been suggested that
interaction of FNRS with cyt b6f complex [41] could play a critical role in this process. Under
photoheterotrophic growth conditions, no electron from PSII could be transferred to the PQ
pool and the ultimate reductant source for growth is sugar that generate NADPH for ATP
generation through electron transfer chain shared by respiration and photosynthesis. The
roles of NDH under these conditions are therefore two folds: (i) it could directly participate
CET by receiving electrons from reduced ferredoxins from PSI directly [36,37,60,61] and
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(ii) it uses reduced ferredoxin generated from NADPH through FNR to reduce PQ pool.
It is evident that CET would eventually lose all its electrons without NADPH-generated
ferredoxin as electron source under heterotrophic conditions because the electron transfer in
CET is not 100% efficient and loss of electron is unavoidable. Our experimental results show
that the attachment of FNRL to CpcL-PBS is needed for optimal electron transfer activity
from NADPH to PQ pool and this process is likely performed by the NDH-CpcL-PBS-PSI
supercomplex. It should be noted that all mutants reported in our study remained alive for
more than a week under photoheterotrophic conditions and their rates of P700+ reduction
were not significantly changed (Figure 5). Therefore, it is possible that FNR-dependent
reduction of ferredoxin from NADPH could occur in cyanobacterial cytosol, which in
turn reduce PQ pool through NDH and its capacity and efficiency are the key factors for
photoheterotrophic growth. For Synechococcus 7002, they are not high enough to sustain
a normal photoheterotrophic growth. Similarly, a psaL mutant of Anabaena 7120 showed
little PIRF and its N2-fixing ability was largely diminished [48]. On the other hand, the
inability of FNR to attach to PBS in Synechocystis 6803 did not affect its reduction of PQ pool
from NADPH significantly [30]. It was also reported that a cpcG2 mutant lacking CpcL-PBS
in Synechocystis 6803 could grow photoheterotrophically, but its PIRF was significantly
reduced [40].

The roles of the attachment of FNRL to CpcG-PBS remain unclear and more work is
needed in the future. It is our speculation that attachment of FNRL to CpcG-PBS might
play a role in organization of PSII and PSI on thylakoid membranes. More work is needed
to understand how each component of the supercomplex interacts with the others and how
the electron transfers in the supercomplex are regulated.

5. Conclusions

Besides energy transfer from phycobiliproteins to PSI, CpcL-PBS are important to
NDH-dependent electron transfer to the PQ pool in Synechococcus 7002 and this func-
tion could be carried out by a NDH-CpcL-PBS-PSI trimer supercomplex. The attach-
ment of FNRL with a functional flexible region to an intact CpcL-PBS is required for its
optimal activity.
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