Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae Nannochloropsis oculata
Abstract
:1. Introduction
2. Results
2.1. OWE50 Yield after OPW Treatment and Quantitative Determination of Carbohydrates Using HPAE-PAD
2.2. Quantitative Determination of Ions in OWE50 Using Ion Chromatography
2.3. Growth Kinetics
2.4. Lipid Yield and Fatty Acid Composition
2.5. Conversion of Oil to Biodiesel Using Microwave-Assisted One-Pot Tandem Protocol and Analysis
3. Discussion
4. Materials and Methods
4.1. Seawater Collection Site and Orange Peel Waste Treatment
4.2. Quantitative Determination of Carbohydrates and Ions in OPW Hydrolysate
4.3. Microalgae Stock Cultures, Batch Cultivations, and Photobioreactor Management
4.4. Lipid Extraction and Yield
4.5. Soxhlet, Sonication-Assisted, and Microwave-Assisted Extractions
4.6. Lipid Transesterification Methods and Procedures
4.7. HPLC Analysis and FA Profiles Determined Using GC Analysis
4.8. Microwave-Assisted One-Pot Tandem Protocol for Lipid Extraction–Transesterification Process
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kannah, R.Y.; Velu, C.; Rajesh Banu, J.; Heimann, K.; Karthikeyan, O.P. Food waste valorization by microalgae. In Waste to Wealth; Singhania, R.R., Agarwal, R.A., Kumar, R.P., Sukumaran, R.K., Eds.; Springer: Singapore, 2018; pp. 319–342. [Google Scholar]
- Li, O.; Liang, J.; Chen, Y.; Tang, S.; Li, Z. Exploration of Converting Food Waste into Value-Added Products via Insect Pretreatment-Assisted Hydrothermal Catalysis. ACS Omega 2023, 8, 18760–18772. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. 2023, 3, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Downstream processing of lignin derived feedstock into end products. Chem. Soc. Rev. 2020, 49, 5510–5560. [Google Scholar] [CrossRef] [PubMed]
- Yang See, J.; Song, S.; Xiao, Y.; Trang Pham, T.; Zhao, Y.; Lapkin, A.; Yan, N. Transformation of Corn Lignin into Sun Cream Ingredients. Chem. Sus. Chem. 2021, 14, 1586–1594. [Google Scholar] [CrossRef]
- Wikandari, R.; Nguyen, H.; Millati, R.; Niklasson, C.; Taherzadeh, M.J. Improvement of Biogas Production from Orange Peel Waste by Leaching of Limonene. BioMed Res. Int. 2015, 2015, 494182. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.A.; Siles, J.A.; Chica, A.F.; Martin, A. Biomethanization of orange peel waste. Biores. Technol. 2010, 101, 8993–8999. [Google Scholar] [CrossRef]
- Ayala, J.R.; Montero, G.; Coronado, M.A.; García, C.; Curiel-Alvarez, M.A.; León, J.A.; Sagaste, C.A.; Montes, D.G. Characterization of Orange Peel Waste and Valorization to Obtain Reducing Sugars. Molecules 2021, 26, 1348. [Google Scholar] [CrossRef]
- Widmer, W.; Zhou, W.; Grohmann, K. Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Biores. Technol. 2010, 101, 5242–5249. [Google Scholar] [CrossRef]
- Dan, S.; Yang, S.X.; Tian, F.; Den, L. Classification of Orange Growing Locations Based on the Near-infrared Spectroscopy Using Data Mining. Intell. Autom. Soft Comput. 2015, 22, 229–236. [Google Scholar] [CrossRef]
- Rivas, B.; Torrado, A.; Torre, P.; Converti, A.; Domínguez, J.M. Submerged citric acid fermentation on orange peel autohydrolysate. J. Agric. Food Chem. 2008, 56, 2380–2387. [Google Scholar] [CrossRef]
- Negro, V.; Ruggeri, B.; Fino, D.; Tonini, D. Life cycle assessment of orange peel waste management. Resour. Conserv. Recy. 2017, 127, 148–158. [Google Scholar] [CrossRef]
- Rumin, J.; Nicolau, E.; Gonçalves de Oliveira, R.J.; Fuentes-Grünewald, C.; Picot, L. Analysis of Scientific Research Driving Microalgae Market Opportunities in Europe. Mar. Drugs 2020, 18, 264. [Google Scholar] [CrossRef]
- Peng, L.; Fu, D.; Chu, H.; Wang, Z.; Qi, H. Biofuel production from microalgae: A review. Environ. Chem. Lett. 2020, 18, 285–297. [Google Scholar] [CrossRef]
- Nicolò, M.S.; Gugliandolo, C.; Rizzo, M.G.; Zammuto, V.; Cicero, N.; Dugo, G.; Guglielmino, S.P.P. Nutritional conditions of the novel freshwater Coccomyxa AP01 for versatile fatty acids composition. J. Appl. Microbiol. 2022, 132, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Chhandama, M.V.L.; Satyan, K.B.; Changmai, B.C.; Vanlalveni, C.; Rokhum, S.L. Microalgae as a feedstock for the production of biodiesel: A review. Biores. Technol. Rep. 2021, 15, 100771. [Google Scholar] [CrossRef]
- Tamburic, B.; Guruprasad, S.; Radford, D.T.; Szabó, M.; Lilley, R.M.; Larkum, A.W.; Franklin, J.B.; Kramer, D.M.; Blackburn, S.I.; Raven, J.A.; et al. The effect of Diel temperature and light cycles on the growth of Nannochloropsis oculata in a photobioreactor matrix. PLoS ONE 2014, 9, e86047. [Google Scholar] [CrossRef]
- Gouveia, L.; Oliveira, A.C. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biot. 2009, 36, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Miazek, K.; Kratky, L.; Sulc, R.; Jirout, T.; Aguedo, M.; Richel, A.; Goffin, D. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A review. Int. J. Mol. Sci. 2017, 18, 1429. [Google Scholar] [CrossRef]
- Rahmat, A.; Abdullah, A.Z.; Mohamed, A.R. Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review. Renew. Sustain. Energ. Rev. 2010, 14, 987–1000. [Google Scholar] [CrossRef]
- Drago, C.; Liotta, L.F.; La Parola, V.; Testa, M.; Nicolosi, G. One-pot microwave assisted catalytic transformation of vegetable oil into glycerol-free biodiesel. Fuel 2013, 113, 707–711. [Google Scholar] [CrossRef]
- Nicolò, M.S.; Franco, D.; Camarda, V.; Gullace, R.; Rizzo, M.G.; Fragalà, M.; Licciardello, G.; Catara, A.F.; Guglielmino, S.P.P. Integrated microbial process for bioconversion of crude glycerol from biodiesel into biosurfactants and PHAs. Chem. Eng. Trans. 2014, 38, 187–192. [Google Scholar]
- Nicolò, M.S.; Maria, G.; Cambria, M.G.; Impallomeni, G.; Rizzo, M.G.; Pellicorio, C.; Ballistreri, A.; Guglielmino, S.P.P. Carbon source effects on the mono/dirhamnolipid ratio produced by Pseudomonas aeruginosa L05, a new human respiratory isolate. New Biotechnol. 2017, 39, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.G.; Chines, V.; Franco, D.; Nicolò, M.S.; Guglielmino, S.P.P. The role of glutamine in Pseudomonas mediterranea in biotechnological processes. New Biotechnol. 2017, 37, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.G.; Nicolò, M.S.; Franco, D.; De Plano, L.M.; Chines, V.; Moscato, F.; Crea, G.; Gugliandolo, C.; Guglielmino, S.P.P. Glutamine-induced filamentous cells of Pseudomonas mediterranea CFBP-5447T as producers of PHAs. Appl. Microbiol. Biotechnol. 2019, 103, 9057–9066. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, M.; Abdullah, A.Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev. 2012, 16, 2671–2686. [Google Scholar] [CrossRef]
- Sedghi, R.; Shahbeik, H.; Rastegari, H.; Rafiee, S.; Peng, W.; Nizami, A.S.; Gupta, V.K.; Chen, W.H.; Lam, S.S.; Pan, J.; et al. Turning biodiesel glycerol into oxygenated fuel additives and their effects on the behavior of internal combustion engines: A comprehensive systematic review. Renew. Sustain. Energy Rev. 2022, 167, 112805. [Google Scholar] [CrossRef]
- Pinto, B.P.; de Lyra, J.T.; Nascimento, J.A.C.; Mota, C.J.A. Ethers of glycerol and ethanol as bioadditives for biodiesel. Fuel 2016, 168, 76–80. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Kundu, A.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S. Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass. Bioenerg. 2014, 61, 265–275. [Google Scholar] [CrossRef]
- Mubarak, M.; Shaija, A.; Suchithra, T.V. A review on the extraction of lipid from microalgae for biodiesel production. Algal Res. 2015, 7, 117–123. [Google Scholar] [CrossRef]
- Patel, A.; Mikes, F.; Matsakas, L. An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Microorganisms. Molecules 2018, 23, 1562. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Manzano-Agugliaro, F.; Acien-Fernandez, F.G.; Molina-Grima, E. Microalgae research worldwide. Algal Res. 2018, 35, 50–60. [Google Scholar] [CrossRef]
- Nicolò, M.S.; Guglielmino, S.P.P.; Solinas, V.; Salis, A. Biodiesel from microalgae. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals; Lee, S.Y., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–20. [Google Scholar]
- Lin, W.; Li, P.; Liao, Z.; Luo, J. Detoxification of ammonium to Nannochloropsis oculata and enhancement of lipid production by mixotrophic growth with acetate. Biores. Technol. 2017, 227, 404–407. [Google Scholar] [CrossRef]
- Villanova, V.; Galasso, C.; Vitale, G.A.; Della Sala, G.; Engelbrektsson, J.; Strömberg, N.; Shaikh, K.M.; Andersson, M.X.; Palma Esposito, F.; Ekendahl, S.; et al. Mixotrophy in a local strain of Nannochloropsis granulata for renewable high-value biomass production on the West coast of Sweden. Mar. Drugs 2022, 20, 424. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wei, C.; Zhao-Ling, C.; Fan, O. Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Microchloropsis sp. J. Appl. Phycol. 2004, 16, 499–503. [Google Scholar] [CrossRef]
- Schambach, J.Y.; Finck, A.M.; Kitin, P.; Hunt, C.G.; Hanschen, E.R.; Vogler, B.; Starkenburg, S.R.; Barry, A.N. Growth, total lipid, and omega-3 fatty acid production by Nannochloropsis spp. cultivated with raw plant substrate. Algal Res. 2020, 51, 102041. [Google Scholar] [CrossRef]
- European Parliament News 2015. Circular Economy: Definition, Importance and Benefits. Available online: https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits (accessed on 17 June 2023).
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Ramos, M.J.; Fernández, C.M.; Abraham, C.; Rodríguez, L.; Pérez, A. Influence of fatty acid composition of raw materials on biodiesel properties. Biores. Technol. 2009, 100, 261–268. [Google Scholar] [CrossRef]
- Puhan, S.; Saravanan, N.; Nagarajan, G.; Vedaraman, N. Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine. Biomass Bioenergy 2010, 34, 1079–1088. [Google Scholar] [CrossRef]
- Refaat, A.A. Correlation between the chemical structure of biodiesel and its physical properties. Int. J. Environ. Sci. Technol. 2009, 6, 677–694. [Google Scholar] [CrossRef]
- Knothe, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 2005, 86, 1059–1070. [Google Scholar] [CrossRef]
- Park, W.K.; Moon, M.; Kwak, M.S.; Jeon, S.; Choi, G.G.; Yang, J.W.; Lee, B. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: Increased production of biomass and FAMEs. Bioresour. Technol. 2014, 171, 343–349. [Google Scholar] [CrossRef]
- Castejón, N.; Marko, D. Fatty Acid Composition and Cytotoxic Activity of Lipid Extracts from Nannochloropsis gaditana Produced by Green Technologies. Molecules 2022, 27, 3710. [Google Scholar] [CrossRef]
- Lozano-Muñoz, I.; Muñoz, S.; Díaz, N.F.; Medina, A.; Bazaes, J.; Riquelme, C. Nutritional Enhancement of Farmed Salmon Meat via Non-GMO Nannochloropsis gaditana: Eicosapentaenoic Acid (EPA, 20:5 n-3), Docosapentaenoic Acid (DPA, 22:5 n-3) and Vitamin D3 for Human Health. Molecules 2020, 25, 4615. [Google Scholar] [CrossRef] [PubMed]
- Encarnação, T.; Palito, C.; Pais, A.A.C.C.; Valente, A.J.M.; Burrows, H.D. Removal of Pharmaceuticals from Water by Free and Imobilised Microalgae. Molecules 2020, 25, 3639. [Google Scholar] [CrossRef]
- Zghaibi, N.; Omar, R.; Mustapa Kamal, S.M.; Awang Biak, D.R.; Harun, R. Kinetics Study of Microwave-Assisted Brine Extraction of Lipid from the Microalgae Nannochloropsis sp. Molecules 2020, 25, 784. [Google Scholar] [CrossRef] [PubMed]
- Zghaibi, N.; Omar, R.; Mustapa Kamal, S.M.; Awang Biak, D.R.; Harun, R. Microwave-Assisted Brine Extraction for Enhancement of the Quantity and Quality of Lipid Production from Microalgae Nannochloropsis sp. Molecules 2019, 24, 3581. [Google Scholar] [CrossRef] [PubMed]
- Leone, G.P.; Balducchi, R.; Mehariya, S.; Martino, M.; Larocca, V.; Di Sanzo, G.; Iovine, A.; Casella, P.; Marino, T.; Karatza, D.; et al. Selective Extraction of ω-3 Fatty Acids from Nannochloropsis sp. Using Supercritical CO2 Extraction. Molecules 2019, 24, 2406. [Google Scholar] [CrossRef]
- Elst, K.; Maesen, M.; Jacobs, G.; Bastiaens, L.; Voorspoels, S.; Servaes, K. Supercritical CO2 Extraction of Nannochloropsis sp.: A Lipidomic Study on the Influence of Pretreatment on Yield and Composition. Molecules 2018, 23, 1854. [Google Scholar] [CrossRef] [PubMed]
- Guillard, R.R.L.; Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve). Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Guillard, R.R.L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Plenum Press: New York, NY, USA, 1975; pp. 26–60. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- McKay, A.L.; Peters, A.C.; Wimpenny, J.W.T. Determining specific growth rates in different regions of Salmonella typhimurium colonies. Lett. Appl. Microbiol. 1997, 24, 74–76. [Google Scholar] [CrossRef]
- Griffiths, M.J.; van Hille, R.P.; Harrison, S.T.L. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl. Microbiol. Biotechnol. 2014, 98, 2345–2356. [Google Scholar] [CrossRef] [PubMed]
N° | Retention Time (min) | Analyte | Concentration (g L−1) | % of Total Sugar |
---|---|---|---|---|
1 | 3.75 | Rhamnose | 0.60 ± 0.01 | 2.8 ± 0.05 |
2 | 4.30 | Arabinose | 2.22 ± 0.01 | 10.4 ± 0.04 |
3 | 5.27 | Glucose | 14.58 ± 0.37 | 68.3 ± 1.73 |
4 | 5.75 | Fructose | 3.95 ± 0.06 | 18.5 ± 0.29 |
Total sugar analyzed | 21.35 ± 0.41 | 100 |
Analyte | Concentration in OWE50 | Concentration in Natural Sea Water |
---|---|---|
Cations | ||
Sodium | 11,088.60 ± 2.34 | 10,739.24 ± 3.42 |
Potassium | 1483.80 ± 0.03 | 386.12 ± 0.08 |
Magnesium | 1419.50 ± 0.22 | 1284.00 ± 0.32 |
Calcium | 1702.40 ± 0.28 | 401.63 ± 0.15 |
Anions | ||
Chloride | 11,286.90 ± 0.73 | 18,990.78 ± 1.67 |
Bromide | 24.05 ± 0.01 | 54.23 ± 0.04 |
Nitrate | 34.40 ± 0.04 | 2.10 ± 0.01 |
Sulphate | 6377.50 ± 1.96 | 2660.42 ± 0.86 |
Phosphate | 71.80 ± 0.01 | 0.07 ± 0.01 |
Growth Kinetic Parameters | |||
---|---|---|---|
PA | PH | Δ (%) | |
Specific growth rate (µ, day−1) | 0.210 ± 0.016 | 0.308 ± 0.011 | +46.67 |
Biomass productivity (P, mg L−1 day−1) | 27.85 ± 0.48 | 32.14 ± 0.62 | +15.40 |
Biomass yield (DCW) (mg L−1) | 390 ± 6.7 | 450 ± 8.6 | +15.38 |
Fatty Acids | % | |
---|---|---|
PA | PH | |
3-Hydroxydecanoic (C10:0) | n.d. | 0.55 ± 0.01 |
Lauric (C12:0) | 1.20 ± 0.01 | 0.95 ± 0.01 |
Myristic (C14:0) | 3.70 ± 0.04 | 1.95 ± 0.03 |
Pentadecanoic (C15:0) | 0.90 ± 0.01 | 0.15 ± 0.005 |
Palmitic (C16:0) | 36.60 ± 0.185 | 13.20 ± 0.19 |
Palmitoleic (C16:1) | 33.70 ± 0.16 | 1.95 ± 0.021 |
Stearic (C18:0) | 2.00 ± 0.019 | 3.05 ± 0.027 |
Oleic (C18:1) | 13.10 ± 0.11 | 61.40 ± 0.55 |
10-Octadecenoic (18:1) | n.d. | 14.15 ± 0.11 |
Linoleic (C18:2) | 2.00 ± 0.017 | n.d. |
9,11-Octadecadienoic (C18:2) | 2.10 ± 0.014 | 2.72 ± 0.019 |
Arachidonic (C20:4) | 1.30 ± 0.001 | n.d. |
Eicosapentaenoic (C20:5) | 7.02 ± 0.045 | n.d. |
Saturated Fatty Acids | 42.90 ± 0.38 | 19.79 ± 0.16 |
Monounsaturated Fatty Acids | 46.79 ± 0.37 | 77.49 ± 0.68 |
Polyunsaturated Fatty Acids | 10.31 ± 0.14 | 2.72 ± 0.019 |
% w/w | |||||
---|---|---|---|---|---|
Entry | Lipid Extraction Technique | Time (min) | Temperature/Power | Solvent | Oil Yield (%) |
1 | Soxhlet | 360 | 90 °C | Hexane | 35 ± 0.95 |
2 | SAE | 20 | 4 °C | Hexane | 32 ± 0.63 |
3 | SAE | 20 | 4 °C | MTBE/MeOH | 24 ± 0.41 |
4 | MAE | 20 | 90 °C/20 W | Hexane | 30 ± 0.58 |
5 | MAE | 20 | 90 °C/20 W | MTBE/MeOH | 28 ± 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tardiolo, G.; Nicolò, M.S.; Drago, C.; Genovese, C.; Fava, G.; Gugliandolo, C.; D’Antona, N. Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae Nannochloropsis oculata. Molecules 2023, 28, 6846. https://doi.org/10.3390/molecules28196846
Tardiolo G, Nicolò MS, Drago C, Genovese C, Fava G, Gugliandolo C, D’Antona N. Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae Nannochloropsis oculata. Molecules. 2023; 28(19):6846. https://doi.org/10.3390/molecules28196846
Chicago/Turabian StyleTardiolo, Giuseppe, Marco Sebastiano Nicolò, Carmelo Drago, Claudia Genovese, Giovanni Fava, Concetta Gugliandolo, and Nicola D’Antona. 2023. "Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae Nannochloropsis oculata" Molecules 28, no. 19: 6846. https://doi.org/10.3390/molecules28196846
APA StyleTardiolo, G., Nicolò, M. S., Drago, C., Genovese, C., Fava, G., Gugliandolo, C., & D’Antona, N. (2023). Orange Peel Waste as Feedstock for the Production of Glycerol-Free Biodiesel by the Microalgae Nannochloropsis oculata. Molecules, 28(19), 6846. https://doi.org/10.3390/molecules28196846