Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (104)

Search Parameters:
Keywords = photo-Fenton activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1759 KiB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 292
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

20 pages, 6010 KiB  
Article
Modulating D-Band Center of SrTiO3 by Co Doping for Boosted Peroxymonosulfate (PMS) Activation Under Visible Light
by Kaining Sun, Xinyi Yang, Fei Qi, Yingjie Liu, Lijing Wang, Bo Feng, Jiankang Yu and Guangbo Che
Molecules 2025, 30(12), 2618; https://doi.org/10.3390/molecules30122618 - 17 Jun 2025
Viewed by 347
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation technology has emerged as an effective means for removing organic pollutants from water due to its strong oxidizing ability. However, enhancing the activation efficiency of PMS represents a key challenge at present. SrTiO3, a typical perovskite metal [...] Read more.
Peroxymonosulfate (PMS)-based advanced oxidation technology has emerged as an effective means for removing organic pollutants from water due to its strong oxidizing ability. However, enhancing the activation efficiency of PMS represents a key challenge at present. SrTiO3, a typical perovskite metal oxide, holds potential in the field of the photocatalytic degradation of pollutants, yet its application is limited by the wide bandgap and fast carrier recombination rates. This study optimized the photocatalytic performance of SrTiO3 by regulating its electronic structure and optical properties through cobalt (Co) doping. Experimental results (TRPL, TPV, UV–Vis DRS, ESR, etc.) and DFT calculations (GGA-PBE) demonstrated that Co doping shifted the d-band center of SrTiO3 upwards, optimized the adsorption energy of SO4, enhanced the sunlight response range, and significantly improved carrier extraction efficiency. Under visible light irradiation, 2,4-dichlorophenol (2,4-DCP) could be effectively degraded within 60 min in a wide pH range. Through Fukui function calculation (B3LYP/6-31G*) and experimental characterization analysis (HPLC-MS and IC), the possible degradation pathways of 2,4-DCP and the mechanism for photocatalysis were investigated. The toxicity analysis (T.E.S.T) confirmed the reduced toxicity of the degradation products of 2,4-DCPs. This study provides a reference for the catalyst design and optimization strategy of PMS-based advanced oxidation technology. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

28 pages, 5779 KiB  
Article
Theoretical Insight into Antioxidant Mechanisms of Trans-Isoferulic Acid in Aqueous Medium at Different pH
by Agnieszka Kowalska-Baron
Int. J. Mol. Sci. 2025, 26(12), 5615; https://doi.org/10.3390/ijms26125615 - 11 Jun 2025
Viewed by 414
Abstract
This study presents the first comprehensive theoretical investigation of the antioxidant mechanisms of trans-isoferulic acid against hydroperoxyl (HOO) radicals in aqueous solution, using the DFT/M062X/6-311+G(d,p)/PCM method. Thermodynamic and kinetic parameters, including reaction energy barriers and bimolecular rate constants, were determined for [...] Read more.
This study presents the first comprehensive theoretical investigation of the antioxidant mechanisms of trans-isoferulic acid against hydroperoxyl (HOO) radicals in aqueous solution, using the DFT/M062X/6-311+G(d,p)/PCM method. Thermodynamic and kinetic parameters, including reaction energy barriers and bimolecular rate constants, were determined for the three major pathways: hydrogen transfer (HT), radical adduct formation (RAF), and single electron transfer (SET). The results indicate that, at physiological pH, the RAF mechanism is both more exergonic and approximately eight-times faster than HT. At a higher pH, where the phenolate anion dominates, antioxidant activity is enhanced by an additional fast, diffusion-limited SET pathway. Isoferulic acid was also found to effectively chelate Fe2+ ions at pH 7.4 and above, forming stable complexes that could inhibit Fenton-type hydroxyl radical generation. Moreover, its strong UV absorption suggests a role in limiting photo-induced free radical formation. These findings not only clarify the antioxidant behavior of isoferulic acid but also provide novel theoretical insights applicable to related phenolic compounds. The compound’s multi-target antioxidant profile highlights its potential as a photoprotective agent in sunscreen formulations. Full article
(This article belongs to the Special Issue New Advances of Free-Radical Reactions in Organic Chemistry)
Show Figures

Graphical abstract

19 pages, 3536 KiB  
Article
Unlocking Synergistic Photo-Fenton Catalysis with Magnetic SrFe12O19/g-C3N4 Heterojunction for Sustainable Oxytetracycline Degradation: Mechanisms and Applications
by Song Cui, Yaocong Liu, Xiaolong Dong and Xiaohu Fan
Nanomaterials 2025, 15(11), 833; https://doi.org/10.3390/nano15110833 - 30 May 2025
Viewed by 477
Abstract
The widespread contamination of aquatic environments by tetracycline antibiotics (TCs) poses a substantial threat to public health and ecosystem stability. Although photo-Fenton processes have demonstrated remarkable efficacy in degrading TCs, their practical application is limited by challenges associated with catalyst recyclability. This study [...] Read more.
The widespread contamination of aquatic environments by tetracycline antibiotics (TCs) poses a substantial threat to public health and ecosystem stability. Although photo-Fenton processes have demonstrated remarkable efficacy in degrading TCs, their practical application is limited by challenges associated with catalyst recyclability. This study reports the development of a novel magnetic recoverable SrFe12O19/g-C3N4 heterostructure photocatalyst synthesized via a facile one-step co-calcination method using industrial-grade precursors. Comprehensive characterization revealed that nitrogen defects and the formation of heterojunction structures significantly suppress electron (e)–hole (h+) pair recombination, thereby markedly enhancing catalytic activity. The optimized 7-SFO/CN composite removes over 90% of oxytetracycline (OTC) within 60 min, achieving degradation rate constants of 0.0393 min−1, which are 9.1 times higher than those of SrFe12O19 (0.0043 min−1) and 4.2 times higher than those of g-C3N4 (0.0094 min−1). The effectively separated e play three critical roles: (i) directly activating H2O2 to generate ·OH radicals, (ii) promoting the redox cycling of Fe2+/Fe3+ ions, and (iii) reducing dissolved oxygen to form ·O2 species. Concurrently, h+ directly oxidize OTC molecules through surface-mediated reactions. Furthermore, the 7-SFO/CN composite exhibits exceptional operational stability and applicability, offering a transformative approach for scalable photocatalytic water treatment systems. This work provides an effective strategy for designing efficient and recoverable photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Catalysis for Pollution Control)
Show Figures

Graphical abstract

23 pages, 4302 KiB  
Article
Visible Light Photo-Fenton with Hybrid Activated Carbon and Metal Ferrites for Efficient Treatment of Methyl Orange (Azo Dye)
by Malak Hamieh, Nabil Tabaja, Khaled Chawraba, Zeinab Hamie, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
Molecules 2025, 30(8), 1770; https://doi.org/10.3390/molecules30081770 - 15 Apr 2025
Cited by 2 | Viewed by 2833
Abstract
Ensuring effective water purification is essential for addressing freshwater scarcity and achieving the United Nations Sustainable Development Goals (SDGs). An efficient hybrid mixture, composed of FeCr quantum dots doped into mesoporous silica SBA-15 support and activated carbon (AC) derived from olive mill solid [...] Read more.
Ensuring effective water purification is essential for addressing freshwater scarcity and achieving the United Nations Sustainable Development Goals (SDGs). An efficient hybrid mixture, composed of FeCr quantum dots doped into mesoporous silica SBA-15 support and activated carbon (AC) derived from olive mill solid wastes, has been developed for treating high optical density polluted aqueous environments. This hybrid, denoted as FeCr-SBA-15/AC, was examined for its efficacy in the adsorption and photo-Fenton degradation of met orange dye (MO), a model high-optical-density pollutant, under visible light exposure. Characterization of the prepared samples was conducted using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) surface area analysis, diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Key parameters investigated included catalyst dosage, dye concentration, solution pH, and H2O2 concentration. Remarkably, the FeCr-SBA-15/AC hybrid exhibited superior photocatalytic activity, achieving a degradation efficiency of 97% for MO under optimized conditions (catalyst dosage = 0.75 g L−1, dye concentration = 20 mg L−1, pH = 5.47, and 0.5 mL H2O2) after 180 min of irradiation with visible light. This performance surpassed that of FeCr-SBA-15 alone by 20%, due to the synergistic effects of adsorption and photo-Fenton. The adsorption of MO onto AC followed the Freundlich model equilibrium isotherm, while the experimental data for the hybrid mixture aligned well with the pseudo-first-order Langmuir–Hinshelwood kinetic model with a rate constant of 0.0173 min−1. The leaching of Cr in the solution was very low—0.1 ppm—which is below the detection limit. These findings underscore the potential of the synthesized FeCr-SBA-15/AC hybrid as a cost-effective, environmentally friendly, and highly efficient photo-Fenton catalyst for treating wastewater contaminated by industrial effluents. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

28 pages, 6457 KiB  
Article
Photocatalytic and Photo-Fenton-like Degradation of Cationic Dyes Using SnFe2O4/g-C3N4 Under LED Irradiation: Optimization by RSM-BBD and Artificial Neural Networks (ANNs)
by Yassine Elkahoui, Fatima-Zahra Abahdou, Majda Ben Ali, Said Alahiane, Mohamed Elhabacha, Youssef Boutarba and Souad El Hajjaji
Reactions 2025, 6(2), 23; https://doi.org/10.3390/reactions6020023 - 28 Mar 2025
Viewed by 1276
Abstract
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3 [...] Read more.
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3N4 heterojunction nanocomposite, successfully synthesized from graphitic carbon nitride (g-C3N4) and tin ferrate (SnFe2O4) and applied to the degradation of the cationic dye brilliant cresyl blue (BCB) in an aqueous solution. These two components are particularly attractive due to their low cost and ease of fabrication. Various characterization techniques, including XRD, FTIR, SEM, and TEM, were used to confirm the successful integration of SnFe2O4 and g-C3N4 phases in the synthesized catalysts. The photocatalytic and photo-Fenton-like activity of the heterojunction composites was evaluated by the degradation of brilliant cresyl blue under visible LED illumination. Compared to the pure components SnFe2O4 and g-C3N4, the SnFe2O4/g-C3N4 nanocomposite demonstrated a superior photocatalytic performance. Furthermore, the photo-Fenton-like performance of the composites is much higher than the photocatalytic performances. The significant improvement in photo-Fenton activity is attributed to the synergistic effect between SnFe2O4 and g-C3N4, as well as the efficient separation of photoexcited electron/hole pairs. The recyclability of the SnFe2O4/g-C3N4 composite toward BCB photo-Fenton like degradation was also shown. This study aimed to assess the modeling and optimization of photo-Fenton-like removal BCB using the SnFe2O4/g-C3N4 nanomaterial. The main parameters (photocatalyst dose, initial dye concentration, H2O2 volume, and reaction time) affecting this system were modeled by two approaches: a response surface methodology (RSM) based on a Box–Behnken design and artificial neural network (ANN). A comparison was made between the predictive accuracy of RSM for brilliant cresyl blue (BCB) removal and that of the artificial neural network (ANN) approach. Both methodologies provided satisfactory and comparable predictions, achieving R2 values of 0.97 for RSM and 0.99 for ANN. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

20 pages, 8608 KiB  
Article
Effective Combination of MOF and MoS2 Layers: A Novel Composite Material Capable of Rapidly Degrading Dyes
by Shengyang Zheng, Zhixiu Yuan, Haitao Zhao, Yaping Xu, Nan Jiang and Lijun Meng
Water 2025, 17(7), 980; https://doi.org/10.3390/w17070980 - 27 Mar 2025
Cited by 1 | Viewed by 604
Abstract
This study successfully prepared MIL-101(Fe)@MoS2 composite photocatalysts via hydrothermal methods to address the efficient removal of refractory organic dyes in dye wastewater. Characterization using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) confirmed that [...] Read more.
This study successfully prepared MIL-101(Fe)@MoS2 composite photocatalysts via hydrothermal methods to address the efficient removal of refractory organic dyes in dye wastewater. Characterization using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) confirmed that molybdenum disulfide (MoS2) was uniformly loaded onto the surface of MIL-101(Fe), forming a heterojunction that significantly enhanced light absorption capacity and charge separation efficiency. In a visible-light-driven photo-Fenton system, this material exhibited excellent degradation performance for Congo red (CR). At an initial CR concentration of 50 mg/L, a catalyst dosage of 0.2 g/L, 4 mL of added H2O2, and pH 7, CR was completely degraded within 30 min, with the total organic carbon (TOC) removal reaching 72.5%. The material maintained high degradation efficiency (>90%) across a pH range of 3–9, overcoming the traditional Fenton system’s dependency on acidic media. Radical-trapping experiments indicated that superoxide radicals (·O2) and photogenerated holes (·h+) were the primary active species responsible for degradation, revealing a synergistic catalytic mechanism at the heterojunction interface. Recyclability tests showed that the material retained 90.8% degradation efficiency after five cycles, and an X-ray photoelectron spectroscopy (XPS) analysis demonstrated the stable binding of Fe and Mo, preventing secondary pollution. This study provides a scientific basis for developing efficient, stable, and wide-pH adaptable photo-Fenton catalytic systems, contributing significantly to the advancement of green water treatment technologies. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 4220 KiB  
Review
Utilization of Natural Mineral Materials in Environmental Remediation: Processes and Applications
by Di Xu, Yongkui Yang and Lingqun Gan
Minerals 2025, 15(3), 318; https://doi.org/10.3390/min15030318 - 19 Mar 2025
Viewed by 747
Abstract
The discharge of wastewater containing persistent organic pollutants presents significant ecological and health challenges due to their toxicity and resilience. Recent advances in advanced oxidation processes (AOPs) and other remediation mechanisms, notably utilizing natural mineral materials (NMMs), offer promising solutions to these challenges. [...] Read more.
The discharge of wastewater containing persistent organic pollutants presents significant ecological and health challenges due to their toxicity and resilience. Recent advances in advanced oxidation processes (AOPs) and other remediation mechanisms, notably utilizing natural mineral materials (NMMs), offer promising solutions to these challenges. NMMs, with their cost-effectiveness, accessibility, eco-friendly nature, non-toxicity, and unique structural properties, have shown significant promise in environmental remediation and could effectively replace conventional catalysts in related applications. These minerals enable the activation of oxidants, generating reactive oxygen species crucial for the degradation of pollutants. This article reviews the mechanisms of NMMs in various AOPs, including photocatalysis, Fenton-like reactions, and persulfate-activation-based processes, and discusses the potential of these materials in enhancing pollutant degradation efficiency, with a focus on the activation of persulfates and the photo-induced redox processes. The synergy between photocatalytic properties and catalytic activation provided by NMMs offers a robust approach to managing water pollution without the drawbacks of secondary waste production, thus supporting sustainable remediation efforts. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

19 pages, 6220 KiB  
Article
Synthesis of ZnO/g-C3N4 Composites Obtained by Pyrolysis of a Ternary Deep Eutectic Solvent and Their Application as Catalysts in Different AOPs
by Bárbara Lomba-Fernández, Marta Pazos, Emilio Rosales and M. Ángeles Sanromán
Appl. Sci. 2025, 15(5), 2475; https://doi.org/10.3390/app15052475 - 25 Feb 2025
Viewed by 784
Abstract
This study investigates the synthesis and evaluation of ZnO/g-C3N4 composites as efficient green catalysts for advanced oxidation processes (AOPs) targeting the treatment of contaminated water. The composites were synthesized using a ternary deep eutectic solvent and physically–chemically characterized in detail, [...] Read more.
This study investigates the synthesis and evaluation of ZnO/g-C3N4 composites as efficient green catalysts for advanced oxidation processes (AOPs) targeting the treatment of contaminated water. The composites were synthesized using a ternary deep eutectic solvent and physically–chemically characterized in detail, confirming their structural integrity and successful synthesis. Photocatalytic, photo-Fenton- and electro-Fenton-like experiments were conducted using Rhodamine B as a model contaminant to evaluate the catalytic performance, reuse and stability of the synthesized material. The synthesized ZnO/g-C3N4 composites demonstrated excellent photocatalytic activity under LED light (395 nm), achieving a pollutant removal of around 59% in 90 min. The combined effect of the designed catalyst and Fenton-like process, a photo-Fenton-like process, significantly improved this performance, achieving removal of close to 95% in 60 min due to the synergistic effects of the irradiation and H2O2 activation. Finally, the catalytic action of synthesized ZnO/g-C3N4 composites in the electro-Fenton-like process exhibited superior efficiency, achieving 90% removal within 45 min and kinetic constants four times higher than those of anodic oxidation alone. In addition, reuse studies confirmed the stability and catalytic activity of the composites for several cycles with high removal efficiencies, demonstrating their viability for long-term and scalable water treatment applications. These findings highlight the potential of ZnO/g-C3N4 composites synthesized through DES as a sustainable and cost-effective alternative for water remediation technologies. Full article
Show Figures

Figure 1

15 pages, 2302 KiB  
Article
Zeolitized Clays and Their Use for the Capture and Photo-Fenton Degradation of Methylene Blue
by Koffi Simeon Kouadio, Ekou Tchirioua and Jérémy Dhainaut
Catalysts 2025, 15(2), 188; https://doi.org/10.3390/catal15020188 - 18 Feb 2025
Viewed by 2525
Abstract
Water pollution by dyes is a major environmental problem, particularly in the textile, food, and pharmaceutical industries. These dyes are often complex chemical compounds that are difficult to remediate due to their chemical stability, their solubility in water, and their resistance to conventional [...] Read more.
Water pollution by dyes is a major environmental problem, particularly in the textile, food, and pharmaceutical industries. These dyes are often complex chemical compounds that are difficult to remediate due to their chemical stability, their solubility in water, and their resistance to conventional treatment processes such as filtration, coagulation, or decantation. Thus, to date, there is still a need to make water treatment processes more performant and cost-efficient. The main aim of this research is to prepare photocatalytically active MFI-type zeolites from natural clays and support iron oxide nanoparticles. These catalysts were characterized and evaluated for the capture and the photo-Fenton degradation of methylene blue (MB) in aqueous solution. After 10 min under photo-Fenton conditions, Fe/MTK-MFI presented almost complete removal of MB for up to four consecutive cycles. Full article
(This article belongs to the Special Issue Porous Catalysts: Synthesis and Catalytic Performance)
Show Figures

Figure 1

29 pages, 3374 KiB  
Review
Application of Pillared Clays for Water Recovery
by Rubi Romero
Catalysts 2025, 15(2), 159; https://doi.org/10.3390/catal15020159 - 9 Feb 2025
Cited by 3 | Viewed by 1109
Abstract
In recent years, efforts have been made in developing new and more efficient water purification methods and the synthesis of catalysts with greater catalytic activity that are more stable and can be used in wide pH ranges. Pillared clays represent a viable alternative [...] Read more.
In recent years, efforts have been made in developing new and more efficient water purification methods and the synthesis of catalysts with greater catalytic activity that are more stable and can be used in wide pH ranges. Pillared clays represent a viable alternative for removing organic contaminants. The clays, usually smectites, are modified by inserting inorganic pillars (Al, Zr, Cr, Fe, Ti, Ga, and Mn) between the layers of the clay, increasing its surface area, porosity, catalytic activity, and thermal stability. This review describes the importance of using pillared clays with different polyoxycations in Fenton, photo-Fenton, ozonation, wet catalytic oxidation of hydrogen peroxide, and photocatalysis processes. Pillared iron clays (Fe-PILCs) are promising catalysts capable of generating hydroxyl radicals that can oxidize organic contaminants, thus facilitating their removal. The current challenges of the PILC application at industrial scale are also discussed. Full article
Show Figures

Figure 1

12 pages, 4420 KiB  
Article
Fabrication of MoS2@Fe3O4 Magnetic Catalysts with Photo-Fenton Reaction for Enhancing Tetracycline Degradation
by Zong-Lai Liu, Jia-Hong Sun, Bing Liu, Ya-Nan Chen and Wei Feng
Water 2025, 17(2), 235; https://doi.org/10.3390/w17020235 - 16 Jan 2025
Viewed by 897
Abstract
Tetracycline (TCs) is widely used in the treatment of human and animal infectious disease. TCs gives rise to a growing threat to the human health and environment protection due to its overuse. Therefore, it is important to remove TCs contaminants from waste effluents. [...] Read more.
Tetracycline (TCs) is widely used in the treatment of human and animal infectious disease. TCs gives rise to a growing threat to the human health and environment protection due to its overuse. Therefore, it is important to remove TCs contaminants from waste effluents. In this work, MoS2@Fe3O4 catalytic material was fabricated by the simple hydrothermal method, which was applied in the photo-Fenton system to degrade TCs. The crystal structure, surface morphology, elemental composition, chemical state, electrochemical properties, and separability of MoS2@Fe3O4 catalytic materials were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), conventional and high-resolution transmission electron microscopy (TEM/HRTEM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and vibrating sample magnetometry (VSM). Furthermore, MoS2@Fe3O4 could degrade 98.6% of TCs within 60 min under the optimum reaction conditions (the catalyst dosage of 3 g/L, H2O2 concentration of 5 mmol/L, the initial TCs concentration of 50 mg/L, and the initial pH of 5), which was a significant increase compared with pure Fe3O4. MoS2 can accelerate the Fe3+/Fe2+ cycle through electron transfer from Mo4+ to Fe3+, resulting in the improvement in the degradation efficiency of TCs. The quenching and electron paramagnetic resonance (EPR) results showed that OH and photogenic hole h+ was the main active species in the photo-Fenton system. What is more, MoS2@Fe3O4 catalytic materials had remarkable stability and reusability, and can be handily regained via magnetic separation technology in a real scenario. Full article
Show Figures

Figure 1

16 pages, 20305 KiB  
Article
Preparation and Antibacterial Performance Study of CeO2/g-C3N4 Nanocomposite Materials
by Jingtao Zhang, Ruichun Nan, Tianzhu Liang, Yuheng Zhao, Xinxin Zhang, Mengzhen Zhu, Ruoyu Li, Xiaodong Sun, Yisong Chen and Bingkun Liu
Molecules 2024, 29(23), 5557; https://doi.org/10.3390/molecules29235557 - 25 Nov 2024
Cited by 3 | Viewed by 1546
Abstract
In response to the challenges of food spoilage and water pollution caused by pathogenic microorganisms, CeO2/g-C3N4 nanocomposites were synthesized via one-step calcination using thiourea and urea as precursors. Steady-state photoluminescence (PL) spectroscopy analysis demonstrated that 8 wt% CeO [...] Read more.
In response to the challenges of food spoilage and water pollution caused by pathogenic microorganisms, CeO2/g-C3N4 nanocomposites were synthesized via one-step calcination using thiourea and urea as precursors. Steady-state photoluminescence (PL) spectroscopy analysis demonstrated that 8 wt% CeO2/g-C3N4 exhibited superior electron–hole separation efficiency. Quantitative antimicrobial assays demonstrated that the nanocomposites displayed enhanced bactericidal activity against Escherichia coli, Ralstonia solanacearum, and Staphylococcus aureus. Electron paramagnetic resonance (EPR) spectroscopy analysis verified the generation of hydroxyl radicals (·OH) and superoxide radicals (·O2) during the photo-Fenton process utilizing CeO2/g-C3N4 nanocomposites. Additionally, 8 wt% CeO2/g-C3N4 nanocomposites demonstrated enhanced photocatalytic degradation of rhodamine B (RhB) and tetracycline hydrochloride (TC) under photo-Fenton conditions. Full article
Show Figures

Graphical abstract

18 pages, 2579 KiB  
Article
Assessing the Synergies of Photo-Fenton at Natural pH and Granular Activated Carbon as a Quaternary Treatment
by Paula Núñez-Tafalla, Irene Salmerón, Silvia Venditti and Joachim Hansen
Water 2024, 16(19), 2824; https://doi.org/10.3390/w16192824 - 4 Oct 2024
Cited by 1 | Viewed by 1584
Abstract
The challenge of microcontaminants (MCs) in wastewater effluent has been addressed by using different technologies, including advanced oxidation processes (AOPs) and adsorption. This work evaluates the benefits and synergies of combining these two processes. The AOPs were photo-Fenton and UV/H2O2 [...] Read more.
The challenge of microcontaminants (MCs) in wastewater effluent has been addressed by using different technologies, including advanced oxidation processes (AOPs) and adsorption. This work evaluates the benefits and synergies of combining these two processes. The AOPs were photo-Fenton and UV/H2O2 operated under natural pH but with different reagents dosages, lamps, and chelating agents. Chelating agents were used at analytical (ethylenediamine-N,N-disuccinic acid and citric acid) and technical grade (citric acid) to simulate scaling-up conditions. The adsorption process was studied via granular activated carbon (GAC) filtration using fresh and regenerated GAC. Four AOP scenarios were selected and coupled with GAC filtration, showing benefits for both processes. AOP treatment time decreased from 10–15 min to 5 min, resulting in a reduction in energy consumption of between 50 and 66%. In the photo-Fenton process, it was possible to work with low reagent dosages (1.5 mg L−1 iron and 20 mg L−1 of H2O2). However, the use of UV/H2O2 showed close removal, highlighting it as a real alternative. An extension of the GAC lifetime by up to 11 times was obtained in all the scenarios, being higher for regenerated than for fresh GAC. Furthermore, the toxicity and phytotoxicity of the treated wastewater were evaluated, and no acute toxicity or slight variation in the phytotoxicity was observed in the combination of these processes. Full article
(This article belongs to the Special Issue Water Quality Engineering and Wastewater Treatment III)
Show Figures

Figure 1

11 pages, 2975 KiB  
Article
The Construction of Iodine-Doped Carbon Nitride as a Metal-Free Nanozyme for Antibacterial and Water Treatment
by Xinru Cai, Tongtong Xie, Linshan Luo and Xiting Li
Nanomaterials 2024, 14(16), 1369; https://doi.org/10.3390/nano14161369 - 21 Aug 2024
Cited by 1 | Viewed by 1295
Abstract
Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic [...] Read more.
Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic activity compared to pure CN, due to enhanced light adsorption and a narrowed band gap. Antibacterial tests confirmed that I-CN exhibits exceptional antibacterial activity against both Escherichia coli and Staphylococcus aureus. The results showed that I-CN effectively generates superoxide radicals and hydroxyl radicals under light irradiation, resulting in enhanced antibacterial activity. In addition, I-CN can also be applied for a heterogeneous photo-Fenton-like reaction, achieving a high performance for the degradation of sulfamethoxazole (SMX), a typical antibiotic, via the photocatalytic activation of peroxymonosulfate (PMS). These results shed new light on the fabrication of metal-free nanozymes and their applications for disinfection and water decontamination. Full article
(This article belongs to the Special Issue Nanocatalysts for Environmental Remediation)
Show Figures

Figure 1

Back to TopTop