Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (321)

Search Parameters:
Keywords = phospholipid liposome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1580 KiB  
Article
Liposome-Based Encapsulation of Extract from Wild Thyme (Thymus serpyllum L.) Tea Processing Residues for Delivery of Polyphenols
by Aleksandra A. Jovanović, Bojana Balanč, Predrag M. Petrović, Natalija Čutović, Smilja B. Marković, Verica B. Djordjević and Branko M. Bugarski
Foods 2025, 14(15), 2626; https://doi.org/10.3390/foods14152626 - 26 Jul 2025
Viewed by 328
Abstract
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid [...] Read more.
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid compositions on encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential, stability, thermal properties, diffusion coefficient, and diffusion resistance of the liposomes was investigated. Liposomes with 10 mol% sterols (either cholesterol or β-sitosterol) exhibited the highest EE of polyphenols, while increasing sterol content to 30 mol% resulted in decreased EE. Particle size and PDI increased with sterol content, while liposomes prepared without sterols showed the smallest vesicle size. Encapsulation of the extract led to smaller liposomal diameters and slight increases in PDI values. Zeta potential measurements revealed that sterol incorporation enhanced the surface charge and stability of liposomes, with β-sitosterol showing the most pronounced effect. Stability testing demonstrated minimal changes in size, PDI, and zeta potential during storage. UV irradiation and lyophilization processes did not cause significant polyphenol leakage, although lyophilization slightly increased particle size and PDI. Differential scanning calorimetry revealed that polyphenols and sterols modified the lipid membrane transitions, indicating interactions between extract components and the liposomal bilayer. FT-IR spectra confirmed successful integration of the extract into the liposomes, while UV exposure did not significantly alter the spectral features. Thiobarbituric acid reactive substances (TBARS) assay demonstrated the extract’s efficacy in mitigating lipid peroxidation under UV-induced oxidative stress. In contrast, liposomes enriched with sterols showed enhanced peroxidation. Polyphenol diffusion studies showed that encapsulation significantly delayed release, particularly in sterol-containing liposomes. Release assays in simulated gastric and intestinal fluids confirmed controlled, pH-dependent polyphenol delivery, with slightly better retention in β-sitosterol-enriched systems. These findings support the use of β-sitosterol- and cholesterol-enriched liposomes as stable carriers for polyphenolic compounds from wild thyme extract, as bioactive antioxidants, for food and nutraceutical applications. Full article
(This article belongs to the Special Issue Encapsulation and Delivery Systems in the Food Industry)
Show Figures

Figure 1

23 pages, 2234 KiB  
Article
Novel (1S,3R)-RSL3-Encapsulated Polyunsaturated Fatty Acid Rich Liposomes Sensitise Multiple Myeloma Cells to Ferroptosis-Mediated Cell Death
by Ali Habib, Rachel L. Mynott, Oliver G. Best, Isabella A. Revesz, Clive A. Prestidge and Craig T. Wallington-Gates
Int. J. Mol. Sci. 2025, 26(14), 6579; https://doi.org/10.3390/ijms26146579 - 9 Jul 2025
Viewed by 288
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells that accounts for 10% of all haematological malignancies diagnosed worldwide. The poor outcome of patients with MM highlights the ongoing need for novel treatment strategies. Ferroptosis is a recently characterised form of non-apoptotic [...] Read more.
Multiple myeloma (MM) is an incurable malignancy of plasma cells that accounts for 10% of all haematological malignancies diagnosed worldwide. The poor outcome of patients with MM highlights the ongoing need for novel treatment strategies. Ferroptosis is a recently characterised form of non-apoptotic programmed cell death. Phospholipids (PLs) containing polyunsaturated fatty acids (PUFAs) play a crucial role as ferroptosis substrates when oxidised to form toxic lipid reactive oxygen species (ROS). Using a range of scientific techniques, we demonstrate a strong correlation between the PL profile of MM and diffuse large B cell lymphoma (DLBCL) cells with their sensitivity to ferroptosis. Using this PL profiling, we manufacture liposomes that are themselves composed of PL-PUFA ferroptosis substrates relatively deficient in MM cells, with and without the GPX4 inhibitor, RSL3, for investigation of their ferroptosis-inducing potential. PL-PUFAs were more abundant in DLBCL than MM cell lines, consistent with greater ferroptosis sensitivity. In contrast, MM cells generally contained a significantly higher proportion of PLs containing monounsaturated fatty acids. Altering the lipid composition of MM cells through exogenous supplementation with PL-PUFAs induced ferroptosis-mediated cell death and further sensitised these cells to RSL3. Liposomes predominantly comprising PL-PUFAs were subsequently manufactured and loaded with RSL3. Uptake, cytotoxicity and lipid ROS studies demonstrated that these novel liposomes were readily taken up by MM cells. Those containing RSL3 were more effective at inducing ferroptosis than empty liposomes or free RSL3, resulting in IC50 values an average 7.1-fold to 14.5-fold lower than those for free RSL3, from the micromolar to nanomolar range. We provide a better understanding of the mechanisms associated with ferroptosis resistance of MM cells and suggest that strategies such as liposomal delivery of relatively deficient ferroptosis-inducing PL-PUFAs together with other targeted agents could harness ferroptosis for the personalised treatment of MM and other cancers. Full article
(This article belongs to the Special Issue Advances in Novel Therapeutic Strategies for Cancers)
Show Figures

Figure 1

22 pages, 2149 KiB  
Article
Liposomal Delivery of a Biotechnological Lavandula angustifolia Miller Extract Rich in Rosmarinic Acid for Topical Herpes Simplex Therapy
by Federica Fulgheri, Fabrizio Angius, Matteo Perra, Ilenia Delogu, Silvia Puxeddu, Milen I. Georgiev, Renáta Novotná, Jana Franková, Misia Lobina, Aldo Manzin, Maria Manconi and Maria Letizia Manca
Antioxidants 2025, 14(7), 811; https://doi.org/10.3390/antiox14070811 - 30 Jun 2025
Viewed by 550
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread pathogen responsible for recurrent infections, primarily affecting the skin and mucous membranes. With the aim of targeting both the viral infection and the associated inflammatory response, biotechnologically produced Lavandula angustifolia Miller (L. angustifolia [...] Read more.
Herpes simplex virus type 1 (HSV-1) is a widespread pathogen responsible for recurrent infections, primarily affecting the skin and mucous membranes. With the aim of targeting both the viral infection and the associated inflammatory response, biotechnologically produced Lavandula angustifolia Miller (L. angustifolia) extract, rich in rosmarinic acid, was incorporated into liposomal formulations intended for topical application. Lavender is known for its strong anti-inflammatory, antioxidant, wound-healing, and antiviral properties. However, its low stability under certain conditions limits its therapeutic potential. Four different formulations were developed: conventional liposomes, glycerosomes, hyalurosomes, and glycerohyalurosomes. The vesicles were characterized for size, stability, and entrapment efficiency. Glycerosomes were the smallest (~58 nm), while the other formulations ranged around 77 nm, all maintaining a highly negative surface charge, ensuring stability and reduced aggregation. Glycerol-containing formulations demonstrated superior stability over 12 months, while liposomes and hyalurosomes increased their size after only two months. Entrapment efficiency reached up to 100% for most vesicles, except for glycerohyalurosomes (~54%). In vitro studies on Normal Human Dermal Fibroblasts (NHDFs) demonstrated that all formulations were biocompatible and enhanced cell viability under oxidative stress. Glycerosomes, hyalurosomes, and glycerohyalurosomes exhibited significant anti-inflammatory activity by reducing MMP-1 and IL-6 levels in LPS-stimulated fibroblasts. Furthermore, these preliminary results highlighted promising antiviral activity against HSV-1 of the obtained formulations, particularly when applied during or post-infection. Overall, these phospholipid vesicles offer a dual therapeutic approach, combining antioxidant, anti-inflammatory, and antiviral effects, positioning them as promising candidates for the treatment of HSV-induced skin lesions and related inflammatory conditions. Full article
(This article belongs to the Special Issue Recent Trends in Nanoantioxidants—2nd Edition)
Show Figures

Figure 1

23 pages, 1943 KiB  
Article
Potentials and Challenges in Development of Vesicular Phospholipid Gel as a Novel Dermal Vehicle for Thymol
by Sabina Keser, Zora Rukavina, Marica Jozić, Lea Pavlović-Mitrović, Magda Vodolšak, Kristina Kranjčec, Darija Stupin Polančec, Gordana Maravić-Vlahoviček, Jasmina Lovrić, Maja Šegvić Klarić and Željka Vanić
Pharmaceutics 2025, 17(7), 854; https://doi.org/10.3390/pharmaceutics17070854 - 29 Jun 2025
Viewed by 423
Abstract
Background/Objectives: Thymol, one of the main compounds of thyme essential oil, has shown promising effects in treating various skin disorders owing to its anti-inflammatory, antimicrobial and antioxidative activities. Due to its limited solubility in water, thymol is commonly used in higher concentrations to [...] Read more.
Background/Objectives: Thymol, one of the main compounds of thyme essential oil, has shown promising effects in treating various skin disorders owing to its anti-inflammatory, antimicrobial and antioxidative activities. Due to its limited solubility in water, thymol is commonly used in higher concentrations to achieve a suitable therapeutic effect, which can consequently lead to skin irritation. To overcome these limitations, we incorporated thymol into a vesicular phospholipid gel (VPG), a novel semisolid dermal vehicle consisting of highly concentrated dispersion of phospholipid vesicles (liposomes). Methods: Thymol was successfully loaded into two VPGs differing in bilayer fluidity, which were characterized for the physicochemical and rheological properties, storage stability, in vitro release, ex vivo skin permeability, in vitro compatibility with epidermal cells, wound healing potential, and antibacterial activity against skin-relevant bacterial strains. Results: High pressure homogenization method enabled preparation of VPG-liposomes of neutral surface charge in the size range 140–150 nm with polydispersity indexes below 0.5. Both types of VPGs exhibited viscoelastic solid-like structures appropriate for skin administration and ensured skin localization of thymol. Although both types of VPGs enabled prolonged release of thymol, the presence of cholesterol in the VPG increased the rigidity of the corresponding liposomes and further slowed down thymol release. Conclusions: Loading of thymol into VPGs significantly reduced its cytotoxicity toward human keratinocytes in vitro even at very high concentrations, compared to free thymol. Moreover, it facilitated in vitro wound healing activity, proving its potential as a vehicle for herbal-based medicines. However, the antibacterial activity of thymol against Staphylococcus aureus and methicillin-resistant S. aureus was hindered by VPGs, which represents a challenge in their development. Full article
(This article belongs to the Special Issue Skin Care Products for Healthy and Diseased Skin)
Show Figures

Graphical abstract

4 pages, 186 KiB  
Proceeding Paper
UV Irradiation’s Influence on Fumitory Extract-Loaded Liposomes
by Rabiea Ashowen Ahmoda, Andrea Pirković, Milena Milošević, Aleksandar Marinković and Aleksandra Jovanović
Eng. Proc. 2025, 99(1), 16; https://doi.org/10.3390/engproc2025099016 - 17 Jun 2025
Viewed by 254
Abstract
The aim of the present study was the characterization of fumitory extract-loaded liposomal vesicles after UV irradiation via the determination of the encapsulation efficiency, size, polydispersity index (PDI), zeta potential, mobility, and conductivity. The encapsulation efficiency was the same before and after UV [...] Read more.
The aim of the present study was the characterization of fumitory extract-loaded liposomal vesicles after UV irradiation via the determination of the encapsulation efficiency, size, polydispersity index (PDI), zeta potential, mobility, and conductivity. The encapsulation efficiency was the same before and after UV irradiation (>69%). The particle size and PDI of the UV-irradiated liposomes with the fumitory extract were 294.2 ± 4.1 nm and 0.387 ± 0.011, respectively. The zeta potential after UV irradiation was −5.51 ± 0.4 mV. The mobility and conductivity of the obtained liposomal particles were −0.429 ± 0.012 µmcm/Vs and 0.468 ± 0.005 mS/cm, respectively. The results indicate the existence of nanoparticles and a non-uniform system, while a negative zeta potential value is related to the organization of phospholipids. Since UV irradiation did not cause significant changes in all of the mentioned parameters of the fumitory extract-loaded liposomes, it can be employed as a sterilization step in the preparation of liposomes. Full article
24 pages, 675 KiB  
Article
Nano-Liposomal Carrier as Promising Dermal Delivery Platform for Fumaria officinalis L. Bioactives
by Rabiea Ashowen Ahmoda, Milena Milošević, Aleksandar Marinković and Aleksandra A. Jovanović
Pharmaceutics 2025, 17(6), 782; https://doi.org/10.3390/pharmaceutics17060782 - 14 Jun 2025
Viewed by 1337
Abstract
Background/Objectives: This study investigates the physical, rheological, and antioxidant properties of nano-liposomal formulations encapsulating Fumaria officinalis L. (fumitory) extract, focusing on their stability and performance under ultraviolet (UV) exposure, as well as polyphenol release within simulated skin conditions in a Franz diffusion cell. [...] Read more.
Background/Objectives: This study investigates the physical, rheological, and antioxidant properties of nano-liposomal formulations encapsulating Fumaria officinalis L. (fumitory) extract, focusing on their stability and performance under ultraviolet (UV) exposure, as well as polyphenol release within simulated skin conditions in a Franz diffusion cell. Methods: Liposomal formulations, composed of phospholipids with or without β-sitosterol or ergosterol, were evaluated for their encapsulation efficiency, liposome size, size distribution, zeta potential, viscosity, surface tension, density, oxidative stability, antioxidant capacity, and polyphenol recovery. Results: Encapsulation efficiency was the highest in phospholipid liposomes (72.2%) and decreased with the incorporation of sterols: 66.7% for β-sitosterol and 62.9% for ergosterol liposomes. Encapsulation significantly increased viscosity and reduced surface tension compared to the plain liposomes, suggesting modified interfacial behavior. The inclusion of fumitory extract significantly increased the viscosity of liposomes (from ~2.5 to 6.09–6.78 mPa × s), consistent with the observed reduction in particle size and zeta potential. Antioxidant assays (thiobarbituric acid reactive substances—TBARS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid—ABTS, and 2,2-diphenyl-1-picrylhydrazyl—DPPH) confirmed enhanced lipid peroxidation inhibition and radical scavenging upon encapsulation, with ABTS activity reaching up to 95.05% in sterol-containing liposomes. Release studies showed that the free extract exhibited the fastest polyphenol diffusion (5.09 × 10−9 m2/s), while liposomes demonstrated slower/controlled release due to bilayer barriers. UV-irradiated liposomes released more polyphenols than untreated ones, particularly in the sterol-containing formulations, due to oxidative destabilization and pore formation. Conclusions: These findings highlight the potential of fumitory extract-loaded liposomes as stable, bioactive carriers with tunable polyphenol antioxidant release properties for dermal applications. Overall, liposomal formulations of fumitory extract exhibit significant potential for further development as a pharmaceutical, cosmetic, or dermo-cosmetic ingredient for use in the prevention and treatment of various skin disorders. Full article
(This article belongs to the Special Issue Emerging Trends in Skin Delivery Systems)
Show Figures

Graphical abstract

9 pages, 657 KiB  
Proceeding Paper
Role of Cholesterol in Modifying the Physical and Stability Properties of Liposomes and In Vitro Release of VitaminB12
by Neda Pavlovic, Jelena Mijalković, Bojana Balanč, Nevena Luković and Zorica Knežević-Jugović
Eng. Proc. 2025, 99(1), 10; https://doi.org/10.3390/engproc2025099010 - 12 Jun 2025
Viewed by 553
Abstract
Cholesterol has garnered significant attention in research due to its role in the structure and the fluidity/rigidity of phospholipid membranes. This property makes it an essential component in liposome formulation. Finding the right ratio of phospholipid-to-cholesterolis important for making a liposome formulation that [...] Read more.
Cholesterol has garnered significant attention in research due to its role in the structure and the fluidity/rigidity of phospholipid membranes. This property makes it an essential component in liposome formulation. Finding the right ratio of phospholipid-to-cholesterolis important for making a liposome formulation that is stable and functional. This study involved the investigation of various mass ratios between phospholipid and cholesterol. The resulting formulations were characterized in terms of mean particle size, size distribution, and ζ potential. It was observed that as the cholesterol content increased, the mean particle size also increased, with the stability of the suspensions improving up to a certain point, after which stability decreased. The optimal phospholipid-to-cholesterol ratio of 5:1 was identified and chosen for subsequent studies on the encapsulation of vitamin B12. The vitamin was encapsulated in the liposomes in the amount of 37%, and the controlled release of vitamin B12 under gastrointestinal conditions was demonstrated using the liposomes as a carrier. Full article
Show Figures

Figure 1

17 pages, 2051 KiB  
Article
Comparative Toxicokinetics and Biomarker Responses of Typical Psychiatric Pharmaceuticals in Daphnia magna
by Haohan Yang, Hao Xing, Zhuoyu Chen, Linghui Kong, Hanyu Jiang and Tengyi Zhu
Toxics 2025, 13(6), 481; https://doi.org/10.3390/toxics13060481 - 6 Jun 2025
Cited by 1 | Viewed by 461
Abstract
The widespread availability and pseudo-persistence of typical psychiatric pharmaceuticals (PDs) can have serious impacts on aquatic ecosystems and even human health. However, the toxicokinetics of typical PDs and the corresponding enzymatic biomarker responses are unclear. In this study, eight typical PDs [carbamazepine (CBZ), [...] Read more.
The widespread availability and pseudo-persistence of typical psychiatric pharmaceuticals (PDs) can have serious impacts on aquatic ecosystems and even human health. However, the toxicokinetics of typical PDs and the corresponding enzymatic biomarker responses are unclear. In this study, eight typical PDs [carbamazepine (CBZ), citalopram (CIT), sertraline (SER), venlafaxine (VLF), amitriptyline (AMT), chlorpromazine (CPM), quetiapine (QTP) and clozapine (CLZ)] were selected to study the uptake, depuration and biological effects of PDs in Daphnia magna. The results found that the uptake rates (Ku) were in the sequence of VLF < QTP < CBZ < CLZ < CIT < AMT < SER < CPM, while the depuration rates (Kd) were in the order of CLZ < AMT < CIT < SER < QTP < CBZ < CPM < VLF. Correspondingly, the bioconcentration factors (BCFs) followed on as VLF < QTP < CBZ < CIT < AMT < CLZ < SER < CPM. Both pH-dependent octanol–water partition coefficients (log Dow) and liposome–water partition coefficients (log Dlip-w) exhibited positive correlations with the log BCF of PDs (p < 0.05), indicating the important roles of ionization degree and biological phospholipid contents on bioconcentration. Superoxide dismutase (SOD) activities were evidently induced in the SER and CPM groups, while ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST) activities were significantly induced only in the CBZ group. Acetylcholinesterase (AChE) activity was obviously induced by CBZ, SER and AMT, with levels 1.73, 1.62 and 2.44 times that of the control group (p < 0.05). The Ku of PDs, oxidative stress and metabolic level of D. magna combine to affect BCF levels together. In conclusion, this study contributes to a better understanding of the toxicokinetics and biochemical responses of PDs in D. magna and potential mechanisms of action, which may allow for a better assessment of their environmental health risks to aquatic ecosystems. Full article
Show Figures

Graphical abstract

19 pages, 2598 KiB  
Article
Phospholipid/HP-β-CD Hybrid Nanosystems Amplify Neohesperidin Bioavailability via Dual Enhancement of Solubility and Stability
by Na Xia, Qian Zhou, Yanquan Liu, Dan Gao, Siming Zhu and Zuoshan Feng
Nanomaterials 2025, 15(11), 862; https://doi.org/10.3390/nano15110862 - 3 Jun 2025
Viewed by 555
Abstract
Neohesperidin (NH), a bioactive flavanone glycoside, exhibits multifaceted pharmacological properties including antioxidant and anti-inflammatory activities. However, its clinical application is severely constrained by inherent physicochemical limitations such as poor aqueous solubility and instability under physiological conditions. To address these challenges, this study developed [...] Read more.
Neohesperidin (NH), a bioactive flavanone glycoside, exhibits multifaceted pharmacological properties including antioxidant and anti-inflammatory activities. However, its clinical application is severely constrained by inherent physicochemical limitations such as poor aqueous solubility and instability under physiological conditions. To address these challenges, this study developed a dual-carrier nano-liposomal system through the synergistic integration of phospholipid complexation and hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion technologies. Two formulations—NH-PC (phospholipid complex) and NH-PC-CD (phospholipid/HP-β-CD hybrid)—were fabricated via ultrasonication-assisted ethanol precipitation. Comprehensive characterization using FTIR and PXRD confirmed the amorphous dispersion of NH within lipid bilayers, with complete elimination of crystalline diffraction peaks, indicative of molecular-level interactions between NH’s hydroxyl groups and phospholipid polar moieties. The engineered nanosystems demonstrated remarkable solubility enhancement, achieving 321.77 μg/mL (NH-PC) and 318.75 μg/mL (NH-PC-CD), representing 2.01- and 1.99-fold increases over free NH. Encapsulation efficiencies exceeded 95% for both formulations, with sustained release profiles revealing 60.81% (NH-PC) and 80.78% (NH-PC-CD) cumulative release over 72 h, governed predominantly by non-Fickian diffusion kinetics. In vitro gastrointestinal simulations highlighted superior bioaccessibility for NH-PC-CD (66.35%) compared to NH-PC (58.52%) and free NH (20.85%), attributed to enhanced stability against enzymatic degradation. Storage stability assessments further validated the robustness of HP-β-CD-modified liposomes, with NH-PC-CD maintaining consistent particle size (<3% variation) and encapsulation efficiency (>92%) over 30 days. Antioxidant evaluations demonstrated concentration-dependent DPPH radical scavenging, wherein nanoencapsulation significantly amplified NH’s activity compared to its free form. This study establishes a paradigm for dual-functional nanocarriers, offering a scalable strategy to optimize the delivery of hydrophobic nutraceuticals while addressing critical challenges in bioavailability and physiological stability. Full article
(This article belongs to the Special Issue Advanced Nanomedicine for Drug Delivery)
Show Figures

Graphical abstract

7 pages, 213 KiB  
Proceeding Paper
Antioxidant Potential of Ergosterol–Phospholipid Liposomes with Thymus serpyllum Extract
by Dragana Dekanski, Andrea Pirković, Diana Lupulović, Predrag Petrović and Aleksandra A. Jovanović
Proceedings 2025, 119(1), 1; https://doi.org/10.3390/proceedings2025119001 - 15 May 2025
Viewed by 357
Abstract
The antioxidant activity of ergosterol–phospholipid liposomes with chemically characterized, encapsulated wild thyme (Thymus serpyllum) extract was examined. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and ferric ion-reducing potential of the extract-loaded liposomes with different proportions of ergosterol were investigated. [...] Read more.
The antioxidant activity of ergosterol–phospholipid liposomes with chemically characterized, encapsulated wild thyme (Thymus serpyllum) extract was examined. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and ferric ion-reducing potential of the extract-loaded liposomes with different proportions of ergosterol were investigated. The neutralization of DPPH radicals for the samples with 10 and 20 mol% of ergosterol was 56.3 ± 2.2% and 53.1 ± 3.5%, respectively. The elimination of ABTS radicals was significantly higher and amounted to 95.3 ± 2.6% (10 mol% of ergosterol) and 98.2 ± 1.7% (20 mol% of ergosterol). The Fe3+-reducing potential of the liposomes was 0.14 ± 0.01 and 0.15 ± 0.03 mmol FeSO4/L. Therefore, there was no significant difference between the antioxidant capacity of the liposomes with various amounts of ergosterol. The shown antioxidant potential highlights the employment of prepared liposomes with ergosterol and T. serpyllum extract active compounds in functional foods, pharmaceutics, or cosmetics. Full article
26 pages, 2841 KiB  
Review
Modified Phospholipid Vesicular Gel for Transdermal Drug Delivery: The Influence of Glycerin and/or Ethanol on Their Lipid Bilayer Fluidity and Penetration Characteristics
by Marwa H. Abdallah, Mona M. Shahien, Hemat El-Sayed El-Horany and Enas Haridy Ahmed
Gels 2025, 11(5), 358; https://doi.org/10.3390/gels11050358 - 13 May 2025
Cited by 1 | Viewed by 917
Abstract
This review explores the enhanced transdermal therapy of several skin disorders with the application of carriers comprising phospholipid vesicular gel systems. Topical drug delivery has several advantages compared to other administration methods, including enhanced patient compliance, the avoidance of the first-pass impact associated [...] Read more.
This review explores the enhanced transdermal therapy of several skin disorders with the application of carriers comprising phospholipid vesicular gel systems. Topical drug delivery has several advantages compared to other administration methods, including enhanced patient compliance, the avoidance of the first-pass impact associated with oral administration, and the elimination of the need for repeated doses. Nonetheless, the skin barrier obstructs the penetration of drugs, hence affecting its therapeutic efficacy. Carriers with phospholipid soft vesicles comprise a novel strategy used to augment drug delivery into the skin and boost therapeutic efficacy. These vesicles encompass chemicals that possess the ability to fluidize phospholipid bilayers, producing a pliable vesicle that facilitates penetration into the deeper layers of the skin. Phospholipid-based vesicular carriers have been extensively studied for improved drug delivery through dermal and transdermal pathways. Traditional liposomes are limited to the stratum corneum of the skin and do not penetrate the deeper layers. Ethosomes, glycerosomes, and glycethosomes are nanovesicular systems composed of ethanol, glycerol, or a combination of ethanol and glycerol, respectively. Their composition produce pliable vesicles by fluidizing the phospholipid bilayers, facilitating deeper penetration into the skin. This article examines the impact of ethanol and glycerol on phospholipid vesicles, and outlines their respective manufacturing techniques. Thus far, these discrepancies have not been analyzed comparatively. The review details several active compounds integrated into these nanovesicular gel systems and examined through in vitro, in vivo, or clinical human trials involving compositions with various active molecules for the treatment of various dermatological conditions. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Figure 1

19 pages, 1438 KiB  
Article
µ-Raman Spectroscopic Temperature Dependence Study of Biomimetic Lipid 1,2-Diphytanoyl-sn-glycero-3-phosphocholine
by Carmen Rizzuto, Antonello Nucera, Irene Barba Castagnaro, Riccardo C. Barberi and Marco Castriota
Biomimetics 2025, 10(5), 308; https://doi.org/10.3390/biomimetics10050308 - 11 May 2025
Viewed by 537
Abstract
Raman spectroscopy is one of the best techniques for obtaining information concerning the physical–chemical interactions between a lipid and a solvent. Phospholipids in water are the main elements of cell membranes and, by means of their chemical and physical structures, their cells can [...] Read more.
Raman spectroscopy is one of the best techniques for obtaining information concerning the physical–chemical interactions between a lipid and a solvent. Phospholipids in water are the main elements of cell membranes and, by means of their chemical and physical structures, their cells can interact with other biological molecules (i.e., proteins and vitamins) and express their own biological functions. Phospholipids, due to their amphiphilic structure, form biomimetic membranes which are useful for studying cellular interactions and drug delivery. Synthetic systems such as DPhPC-based liposomes replicate the key properties of biological membranes. Among the different models, phospholipid mimetic membrane models of lamellar vesicles have been greatly supported. In this work, a biomimetic system, a deuterium solution (50 mM) of the synthetic phospholipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhDC), is studied using μ-Raman spectroscopy in a wide temperature range from −181.15 °C up to 22.15 °C, including the following temperatures: −181.15 °C, −146.15 °C, −111.15 °C, −76.15 °C, −61.15 °C, −46.15 °C, −31.15 °C, −16.15 °C, −1.15 °C, 14.15 °C, and 22.15 °C. Based on the Raman evidence, phase transitions as a function of temperature are shown and grouped into five classes, where the corresponding Raman modes describe the stretching of the (C−N) bond in the choline head group (gauche) and the asymmetric stretching of the (O−P−O) bond. The acquisition temperature of each Raman spectrum characterizes the rocking mode of the methylene of the acyl chain. These findings enhance our understanding of the role of artificial biomimetic lipids in complex phospholipid membranes and provide valuable insights for optimizing their use in biosensing applications. Although the phase stability of DPhPC is known, the collected Raman data suggest subtle molecular rearrangements, possibly due to hydration and second-order transitions, which are relevant for membrane modeling and biosensing applications. Full article
Show Figures

Figure 1

17 pages, 1960 KiB  
Article
Engineered Fluorescent Variants of Lactadherin C2 Domain for Phosphatidylserine Detection in Flow Cytometry
by Ekaterina Koltsova, Albina Avilova, Elena Nikolaeva, Nikita Kolchin and Kirill Butov
Biomolecules 2025, 15(5), 673; https://doi.org/10.3390/biom15050673 - 6 May 2025
Viewed by 755
Abstract
Phosphatidylserine (PS) is an essential phospholipid and an emerging biomarker involved in key biological processes. While annexin V (axV) is the most widely used tool for PS detection, its calcium-dependent binding and other limitations have spurred interest in alternative probes. The lactadherin C2 [...] Read more.
Phosphatidylserine (PS) is an essential phospholipid and an emerging biomarker involved in key biological processes. While annexin V (axV) is the most widely used tool for PS detection, its calcium-dependent binding and other limitations have spurred interest in alternative probes. The lactadherin C2 domain (lactC2) offers a promising alternative, addressing many of the drawbacks associated with axV. However, its broader adoption has been hindered by challenges in production and modification for convenient experimental use. Here, we demonstrate the successful in-house engineering of fully functional recombinant bovine lactC2-based fluorescent sensors and compare their key parameters to axV probes. We show that mNeonGreen–lactC2 fusion exhibits calcium-independent binding with a comparable dissociation constant for 20% PS liposomes. We also demonstrate the detrimental effects of primary amine modification on lactC2’s PS binding efficiency, suggesting the preferential use of fluorescent protein fusion or alternative approaches. Finally, we show that unlike full-length lactadherin or axV, lactC2 inhibited thrombin generation only at high concentrations (>250 nM) in coagulation assays. These findings establish recombinant lactC2 as a versatile and promising PS sensor, with potential applications in experimental settings where axV might be unsuitable Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

14 pages, 2650 KiB  
Review
Liposomes as Imaging Agents of Inflammation and Oxidative Stress in Bone Implants
by Delia Danila, Patricia S. Pardo, R. Devesh Kumar Misra and Aladin M. Boriek
Curr. Issues Mol. Biol. 2025, 47(5), 295; https://doi.org/10.3390/cimb47050295 - 22 Apr 2025
Viewed by 643
Abstract
Liposomes are tiny, spherical vesicles made from cholesterol and natural phospholipids that are promising imaging agents for detecting medical complications. They can carry fluorescent markers or other imaging agents, making them effective for medical imaging. Furthermore, liposomes can target specific cells involved in [...] Read more.
Liposomes are tiny, spherical vesicles made from cholesterol and natural phospholipids that are promising imaging agents for detecting medical complications. They can carry fluorescent markers or other imaging agents, making them effective for medical imaging. Furthermore, liposomes can target specific cells involved in inflammation, such as macrophages, and accumulate at inflammation sites when injected. Additionally, liposomes can be designed to respond to oxidative stress, which is often associated with bone implant complications. By detecting areas of stress, liposomes provide valuable information about implant health. However, challenges such as rapid clearance from the body, precise targeting, immune reactions, and high production costs must be addressed. Research is ongoing to improve the design and functionality of liposomes. They can potentially monitor bone implants as non-invasive imaging agents, enabling early detection of complications and timely interventions. This approach can enhance patient outcomes and extend the longevity of implants, making it a promising strategy for better patient care and implant success. Full article
(This article belongs to the Special Issue Molecular Research on Free Radicals and Oxidative Stress)
Show Figures

Figure 1

20 pages, 3758 KiB  
Article
Study of Natural Dyes’ Liposomal Encapsulation in Food Dispersion Model Systems via High-Pressure Homogenization
by Lubomír Lapčík, Barbora Lapčíková, Tomáš Valenta, Martin Vašina, Pavlína Dudová and Miroslav Fišera
Molecules 2025, 30(8), 1845; https://doi.org/10.3390/molecules30081845 - 20 Apr 2025
Viewed by 697
Abstract
The aim of this study was to investigate the encapsulation of natural food dyes incorporated into liposomes in terms of particle size, rheological and colour properties, zeta potential, and encapsulation efficiency. The liposomes contained dye substances of anthocyanins from freeze-dried raspberry powder (R), [...] Read more.
The aim of this study was to investigate the encapsulation of natural food dyes incorporated into liposomes in terms of particle size, rheological and colour properties, zeta potential, and encapsulation efficiency. The liposomes contained dye substances of anthocyanins from freeze-dried raspberry powder (R), copper complexes of chlorophyllins (C), or commercial-grade β-carotene (B). The phospholipid envelope was composed of sunflower lecithin and carboxymethylcellulose sodium salt as a surface stabilizer treated by high-pressure homogenization. The median particle diameter of R and C systems fluctuated around 200 nm, while B systems showed a broader range of 165–405 nm. The rheological results demonstrated a specific flow behaviour pattern dependent on the rotational shear applied, indicating a flow-induced structural change in the dispersions. Samples were characterized by a translucent profile with relatively high lightness, accompanied by a hue angle (h*) typical of the dye encapsulated. The zeta potential was approx. −30 mV, showing electrokinetically stabilized dispersions. The encapsulation efficiency (EE) varied significantly, with the highest EE observed for anthocyanins, ranging from 36.17 to 84.61%. The chlorophyll encapsulation was the least effective, determined in the range between 1.82 and 16.03%. Based on the suitability index, optimal liposomal formulations were evaluated by means of the Central Composite Design (CCD). Full article
Show Figures

Graphical abstract

Back to TopTop