Comparative Toxicokinetics and Biomarker Responses of Typical Psychiatric Pharmaceuticals in Daphnia magna
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Experimental Animals and Acclimation
2.3. Aqueous Uptake and Depuration of PDs
2.4. Sample Pretreatment and Quantification of Target PDs
2.5. Biomarker Analysis
2.6. Quality Assurance and Quality Control
2.7. Bioaccumulation Dynamic Model
2.8. Statistical Analysis
3. Results and Discussion
3.1. Uptake and Depuration Kinetics of PDs in D. magna
3.2. Bioconcentration Factors
3.3. Biomarker Responses
3.4. Correlation Analysis Between Toxicokinetic Parameters and Biochemical Response
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Yadav, S.; Kataria, N.; Chauhan, A.K.; Joshi, S.; Gupta, R.; Kumar, P.; Chong, J.W.R.; Khoo, K.S.; Show, P.L. Recent advancement in nanotechnology for the treatment of pharmaceutical wastewater: Sources, toxicity, and remediation technology. Curr. Pollut. Rep. 2023, 9, 110–142. [Google Scholar] [CrossRef]
- Słoczyńska, K.; Orzeł, J.; Murzyn, A.; Popiół, J.; Gunia-Krzyżak, A.; Koczurkiewicz-Adamczyk, P.; Pękala, E. Antidepressant pharmaceuticals in aquatic systems, individual-level ecotoxicological effects: Growth, survival and behavior. Aquat. Toxicol. 2023, 260, 106554. [Google Scholar] [CrossRef]
- Duarte, I.A.; Reis-Santos, P.; Fick, J.; Cabral, H.N.; Duarte, B.; Fonseca, V.F. Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species. Environ. Pollut. 2023, 316, 120531. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Luo, T.; Wang, D.; Zhao, Y.; Jin, Y.; Yang, G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms—A review. Sci. Total Environ. 2023, 900, 165732. [Google Scholar] [CrossRef]
- Brauer, R.; Alfageh, B.; Blais, J.E.; Chan, E.W.; Chui, C.S.L.; Hayes, J.F.; Man, K.K.C.; Lau, W.C.Y.; Yan, V.K.C.; Beykloo, M.Y.; et al. Psychotropic medicine consumption in 65 countries and regions, 2008–2019: A longitudinal study. Lancet Psychiatry 2021, 8, 1071–1082. [Google Scholar] [CrossRef]
- de Solla, S.R.; Gilroy, È.A.; Klinck, J.S.; King, L.E.; McInnis, R.; Struger, J.; Backus, S.M.; Gillis, P.L. Bioaccumulation of pharmaceuticals and personal care products in the unionid mussel Lasmigona costata in a river receiving wastewater effluent. Chemosphere 2016, 146, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Carter, L.J.; Ryan, J.J.; Boxall, A.B.A. Effects of soil properties on the uptake of pharmaceuticals into earthworms. Environ. Pollut. 2016, 213, 922–931. [Google Scholar] [CrossRef]
- Castaño-Ortiz, J.M.; Courant, F.; Gomez, E.; García-Pimentel, M.M.; León, V.M.; Campillo, J.A.; Santosa, L.H.M.L.M.; Barceló, D.; Rodríguez-Mozaz, S. Combined exposure of the bivalve Mytilus galloprovincialis to polyethylene microplastics and two pharmaceuticals (citalopram and bezafibrate): Bioaccumulation and metabolomic studies. J. Hazard. Mater. 2023, 458, 131904. [Google Scholar] [CrossRef] [PubMed]
- Arnnok, P.; Singh, R.R.; Burakham, R.; Pérez-Fuentetaja, A.; Aga, D.S. Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara River. Environ. Sci. Technol. 2017, 51, 10652–10662. [Google Scholar] [CrossRef]
- Grabicová, K.; Duchet, C.; Švecová, H.; Randák, T.; Boukal, D.S.; Grabic, R. The effect of warming and seasonality on bioaccumulation of selected pharmaceuticals in freshwater invertebrates. Water Res. 2024, 254, 121360. [Google Scholar] [CrossRef]
- Ashauer, R.; Escher, B.I. Advantages of toxicokinetic and toxicodynamic modelling in aquatic ecotoxicology and risk assessment. J. Environ. Monit. 2010, 12, 2056–2061. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Yang, L.; Lu, X.; Duan, Z.; Zhu, L.; Feng, J. A review of interactions of microplastics and typical pollutants from toxicokinetics and toxicodynamics perspective. J. Hazard. Mater. 2022, 432, 128736. [Google Scholar] [CrossRef] [PubMed]
- Alonzo, F.; Trijau, M.; Plaire, D.; Billoir, E. A toxicokinetic–toxicodynamic model with a transgenerational damage to explain toxicity changes over generations (in Daphnia magna exposed to depleted uranium). Sci. Total Environ. 2024, 914, 169845. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Barreto, A.; Coelho, T.; Carvalho, E.; Pereira, D.; Calisto, V.; Maria, V.L. Amitriptyline ecotoxicity in Danio rerio (Hamilton, 1822) embryos–similar toxicity profile in the presence of nanoplastics. Environ. Toxicol. Pharmacol. 2024, 106, 104372. [Google Scholar] [CrossRef]
- Zhang, F.; Han, L.; Wang, J.; Shu, M.; Liu, K.; Zhang, Y.; Hsiao, C.; Tian, Q.; He, Q. Clozapine induced developmental and cardiac toxicity on zebrafish embryos by elevating oxidative stress. Cardiovasc. Toxicol. 2021, 21, 399–409. [Google Scholar] [CrossRef]
- Gu, L.; Yang, Y.; Chen, X.; Liu, Q.; Sun, Y.; Zhang, L.; Yang, Z. Delicate plasticity: Maladaptive responses to fish predation risk in Daphnia magna caused by sertraline pollution. Chemosphere 2023, 344, 140393. [Google Scholar] [CrossRef]
- Althagafy, H.S.; Harakeh, S.; Azhari, S.A.; Farsi, R.M.; Al-Abbas, N.S.; Shaer, N.A.; Sharawi, Z.W.; Almohaimeed, H.M.; Hassanein, E.H. Quetiapine attenuates cadmium neurotoxicity by suppressing oxidative stress, inflammation, and pyroptosis. Mol. Biol. Rep. 2024, 51, 660. [Google Scholar] [CrossRef]
- Impellitteri, F.; Yunko, K.; Martyniuk, V.; Khoma, V.; Piccione, G.; Stoliar, O.; Faggio, C. Cellular and oxidative stress responses of Mytilus galloprovincialis to chlorpromazine: Implications of an antipsychotic drug exposure study. Front. Physiol. 2023, 14, 1267953. [Google Scholar] [CrossRef]
- Zhang, L.; Brooks, B.W.; Liu, F.; Zhou, Z.; Li, H.; You, J. Human apparent volume of distribution predicts bioaccumulation of ionizable organic chemicals in zebrafish embryos. Environ. Sci. Technol. 2022, 56, 11547–11558. [Google Scholar] [CrossRef]
- Yang, H.; Lu, G.; Yan, Z.; Liu, J.; Dong, H. Influence of suspended sediment characteristics on the bioaccumulation and biological effects of citalopram in Daphnia magna. Chemosphere 2018, 207, 293–302. [Google Scholar] [CrossRef]
- Ding, J.; Lu, G.; Li, S.; Nie, Y.; Liu, J. Biological fate and effects of propranolol in an experimental aquatic food chain. Sci. Total Environ. 2015, 532, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, H.; Meng, Q.; Feng, Q.; Yan, Z.; Liu, J.; Liu, Z.; Zhou, Z. Intergenerational and biological effects of roxithromycin and polystyrene microplastics to Daphnia magna. Aquat. Toxicol. 2022, 248, 106192. [Google Scholar] [CrossRef] [PubMed]
- OECD 211. Guideline For Testing of Chemicals–Daphnia magna Reproduction Test; OECD Series on Testing and Assessment; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Yang, H.; Lu, G.; Yan, Z.; Liu, J. Influence of suspended sediment on the bioavailability of benzophenone-3: Focus on accumulation and multi-biological effects in Daphnia magna. Chemosphere 2021, 275, 129974. [Google Scholar] [CrossRef] [PubMed]
- Nkoom, M.; Lu, G.; Liu, J.; Yang, H.; Dong, H. Bioconcentration of the antiepileptic drug carbamazepine and its physiological and biochemical effects on Daphnia magna. Ecotoxicol. Environ. Saf. 2019, 172, 11–18. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Habig, W.H.; Jakoby, W.B. Assays for differentiation of glutathione S-Transferases. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1981; Volume 77, pp. 398–405. [Google Scholar]
- Mayeaux, M.H.; Winston, G.W. Antibiotic effects on cytochromes P450 content and mixed-function oxygenase (MFO) activities in the American alligator, Alligator mississippiensis. J. Vet. Pharmacol. Ther. 1998, 21, 274–281. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.L.D.; Antunes, S.C.; Gonçalves, F.; Rocha, O.; Nunes, B. Acute and chronic ecotoxicological effects of four pharmaceuticals drugs on cladoceran Daphnia magna. Drug Chem. Toxicol. 2016, 39, 13–21. [Google Scholar] [CrossRef]
- Lamichhane, K.; Garcia, S.N.; Huggett, D.B.; DeAngelis, D.L.; La Point, T.W. Exposures to a selective serotonin reuptake inhibitor (SSRI), sertraline hydrochloride, over multiple generations: Changes in life history traits in Ceriodaphnia dubia. Ecotoxicol. Environ. Saf. 2014, 101, 124–130. [Google Scholar] [CrossRef]
- Minguez, L.; Farcy, E.; Ballandonne, C.; Lepailleur, A.; Serpentini, A.; Lebel, J.M.; Bureau, R.; Halm-Lemeille, M.P. Acute toxicity of 8 antidepressants: What are their modes of action? Chemosphere 2014, 108, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Sheetz, M.P.; Singer, S.J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. USA 1974, 71, 4457–4461. [Google Scholar] [CrossRef]
- Lemieux, B.; Percival, M.D.; Falgueyret, J.P. Quantitation of the lysosomotropic character of cationic amphiphilic drugs using the fluorescent basic amine Red DND-99. Anal. Biochem. 2004, 327, 247–251. [Google Scholar] [CrossRef]
- del Carmen Gómez-Regalado, M.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E.; Zafra-Gómez, A. Bioaccumulation/bioconcentration of pharmaceutical active compounds in aquatic organisms: Assessment and factors database. Sci. Total Environ. 2023, 861, 160638. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Lu, G.; Liu, J.; Yang, H.; Li, Y. Uptake, depuration, and bioconcentration of two pharmaceuticals, roxithromycin and propranolol, in Daphnia magna. Ecotoxicol. Environ. Saf. 2016, 126, 85–93. [Google Scholar] [CrossRef]
- Nkoom, M.; Lu, G.; Liu, J.; Dong, H.; Yang, H. Bioconcentration, behavioral, and biochemical effects of the non-steroidal anti-inflammatory drug diclofenac in Daphnia magna. Environ. Sci. Pollut. Res. 2019, 26, 5704–5712. [Google Scholar] [CrossRef]
- Niu, L.; Henneberger, L.; Huchthausen, J.; Krauss, M.; Ogefere, A.; Escher, B.I. pH-dependent partitioning of ionizable organic chemicals between the silicone polymer polydimethylsiloxane (PDMS) and water. ACS Environ. Au 2022, 2, 253–262. [Google Scholar] [CrossRef]
- Henneberger, L.; Goss, K.U. Environmental sorption behavior of ionic and ionizable organic chemicals. In Reviews of Environmental Contamination and Toxicology; Springer: Cham, Switzerland, 2019; Volume 253, pp. 43–64. [Google Scholar]
- Netherton, M. Uptake and Metabolism of Pharmaceuticals in Aquatic Invertebrates. Doctoral Dissertation, University of York, York, UK, 2011. [Google Scholar]
- Ivankovic, K.; Krizman-Matasic, I.; Dragojevic, J.; Mihaljevic, I.; Smital, T.; Ahel, M.; Terzic, S. Uptake/depuration kinetics, bioaccumulation potential and metabolic transformation of a complex pharmaceutical mixture in zebrafish (Danio rerio). J. Hazard. Mater. 2024, 470, 134144. [Google Scholar] [CrossRef]
- Chen, F.; Gong, Z.; Kelly, B.C. Bioaccumulation behavior of pharmaceuticals and personal care products in adult zebrafish (Danio rerio): Influence of physical-chemical properties and biotransformation. Environ. Sci. Technol. 2017, 51, 11085–11095. [Google Scholar] [CrossRef]
- Serra-Compte, A.; Maulvault, A.L.; Camacho, C.; Alvarez-Munoz, D.; Barcelo, D.; Rodriguez-Mozaz, S.; Marques, A. Effects of water warming and acidification on bioconcentration, metabolization and depuration of pharmaceuticals and endocrine disrupting compounds in marine mussels (Mytilus galloprovincialis). Environ. Pollut. 2018, 236, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Boillot, C.; Martinez Bueno, M.J.; Munaron, D.; Le Dreau, M.; Mathieu, O.; David, A.; Fenet, H.; Casellas, C.; Gomez, E. In vivo exposure of marine mussels to carbamazepine and 10-hydroxy-10,11-dihydro-carbamazepine: Bioconcentration and metabolization. Sci. Total Environ. 2015, 532, 564–570. [Google Scholar] [CrossRef]
- Rousu, T.; Herttuainen, J.; Tolonen, A. Comparison of triple quadrupole, hybrid linear ion trap triple quadrupole, time-of-flight and LTQ-Orbitrap mass spectrometers in drug discovery phase metabolite screening and identification in vitro-amitriptyline and verapamil as model compounds. Rapid Commun. Mass Spectrom. 2010, 24, 939–957. [Google Scholar] [CrossRef] [PubMed]
- Ziarrusta, H.; Mijangos, L.; Izagirre, U.; Plassmann, M.M.; Benskin, J.P.; Anakabe, E.; Olivares, M.; Zuloaga, O. Bioconcentration and biotransformation of amitriptyline in gilt-head bream. Environ. Sci. Technol. 2017, 51, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.A.; Gobas, F.A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 257–297. [Google Scholar] [CrossRef]
- Duarte, I.A.; Fick, J.; Cabral, H.N.; Fonseca, V.F. Bioconcentration of neuroactive pharmaceuticals in fish: Relation to lipophilicity, experimental design and toxicity in the aquatic environment. Sci. Total Environ. 2022, 812, 152543. [Google Scholar] [CrossRef]
- Yang, H.; Lu, G.; Yan, Z.; Liu, J.; Dong, H.; Bao, X.; Zhang, X.; Sun, Y. Residues, bioaccumulation, and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion. J. Hazard. Mater. 2020, 391, 122245. [Google Scholar] [CrossRef]
- Bittner, L.; Klüver, N.; Henneberger, L.; Mühlenbrink, M.; Zarfl, C.; Escher, B.I. Combined ion-trapping and mass balance models to describe the pH-dependent uptake and toxicity of acidic and basic pharmaceuticals in zebrafish embryos (Danio rerio). Environ. Sci. Technol. 2019, 53, 7877–7886. [Google Scholar] [CrossRef]
- Neha, R.; Adithya, S.; Jayaraman, R.S.; Gopinath, K.P.; Pandimadevi, M.; Praburaman, L.; Arun, J. Nano-adsorbents an effective candidate for removal of toxic pharmaceutical compounds from aqueous environment: A critical review on emerging trends. Chemosphere 2021, 272, 129852. [Google Scholar] [CrossRef]
- Armitage, J.M.; Erickson, R.J.; Luckenbach, T.; Ng, C.A.; Prosser, R.S.; Arnot, J.A.; Schirmer, K.; Nichols, J.W. Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities. Environ. Toxicol. Chem. 2017, 36, 882–897. [Google Scholar] [CrossRef]
- Dołżonek, J.; Cho, C.W.; Stepnowski, P.; Markiewicz, M.; Thöming, J.; Stolte, S. Membrane partitioning of ionic liquid cations, anions and ion pairs-Estimating the bioconcentration potential of organic ions. Environ. Pollut. 2017, 228, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Pi, N.; Ng, J.Z.; Kelly, B.C. Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes. Sci. Total Environ. 2017, 601, 812–820. [Google Scholar] [CrossRef]
- Escher, B.I.; Schwarzenbach, R.P.; Westall, J.C. Evaluation of liposome-water partitioning of organic acids and bases. 1. Development of a sorption model. Environ. Sci. Technol. 2000, 34, 3954–3961. [Google Scholar] [CrossRef]
- Endo, S.; Escher, B.I.; Goss, K.U. Capacities of membrane lipids to accumulate neutral organic chemicals. Environ. Sci. Technol. 2011, 45, 5912–5921. [Google Scholar] [CrossRef]
- Dickens, D.; Radisch, S.; Chiduza, G.N.; Giannoudis, A.; Cross, M.J.; Malik, H.; Schaeffeler, E.; Sison-Young, R.L.; Wilkinson, E.L.; Goldring, C.E.; et al. Cellular uptake of the atypical antipsychotic clozapine is a carrier-mediated process. Mol. Pharm. 2018, 15, 3557–3572. [Google Scholar] [CrossRef]
- Fuertes, I.; Piña, B.; Barata, C. Changes in lipid profiles in Daphnia magna individuals exposed to low environmental levels of neuroactive pharmaceuticals. Sci. Total Environ. 2020, 733, 139029. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Canela, C.; García, X.R.; Martínez-Jerónimo, F.; Marcé, R.M.; Barata, C. Analysis of neurotransmitters in Daphnia magna affected by neuroactive pharmaceuticals using liquid chromatography-high resolution mass spectrometry. Environ. Pollut. 2019, 254, 113029. [Google Scholar] [CrossRef]
- Quinn, B.; Gagne, F.; Blaise, C. Oxidative metabolism activity in Hydra attenuata exposed to carbamazepine. Fresenius Environ. Bull. 2004, 13, 783–788. [Google Scholar]
- Ács, A.; Schmidt, J.; Németh, Z.; Fodor, I.; Farkas, A. Elevated temperature increases the susceptibility of D. magna to environmental mixtures of carbamazepine, tramadol and citalopram. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2025, 287, 110052. [Google Scholar] [CrossRef]
- Jia, D.; Li, X.; Du, S.; Xu, N.; Zhang, W.; Yang, R.; Zhang, Y.; He, Y.; Zhang, Y. Single and combined effects of carbamazepine and copper on nervous and antioxidant systems of zebrafish (Danio rerio). Environ. Toxicol. 2020, 35, 1091–1099. [Google Scholar] [CrossRef]
- Xie, Z.; Lu, G.; Li, S.; Nie, Y.; Ma, B.; Liu, J. Behavioral and biochemical responses in freshwater fish Carassius auratus exposed to sertraline. Chemosphere 2015, 135, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ding, R.; Nie, X. Assessment of oxidative stress of paracetamol to Daphnia magna via determination of Nrf1 and genes related to antioxidant system. Aquat. Toxicol. 2019, 211, 73–80. [Google Scholar] [CrossRef]
- Li, W.; Zhu, L.; Du, Z.; Li, B.; Wang, J.; Wang, J.; Zhang, C.; Zhu, L. Acute toxicity, oxidative stress and DNA damage of three task-specific ionic liquids ([C2NH2MIm] BF4, [MOEMIm]BF4, and [HOEMIm]BF4) to zebrafish (Danio rerio). Chemosphere 2020, 249, 126119. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Csenki, Z.; Ivánovics, B.; Bock, I.; Csorbai, B.; Molnár, J.; Vásárhelyi, E.; Griffitts, J.; Ferincz, Á.; Urbányi, B.; et al. Biochemical marker assessment of chronic carbamazepine exposure at environmentally relevant concentrations in juvenile common carp (Cyprinus carpio). Antioxidants 2022, 11, 1136. [Google Scholar] [CrossRef]
- Jönsson, E.M.; Abrahamson, A.; Brunström, B.; Brandt, I. Cytochrome P4501A induction in rainbow trout gills and liver following exposure to waterborne indigo, benzo [a] pyrene and 3, 3’, 4, 4’, 5-pentachlorobiphenyl. Aquat. Toxicol. 2006, 79, 226–232. [Google Scholar] [CrossRef]
- Burkina, V.; Sakalli, S.; Giang, P.T.; Grabicová, K.; Staňová, A.V.; Zamaratskaia, G.; Zlabek, V. In vitro metabolic transformation of pharmaceuticals by hepatic S9 fractions from common carp (Cyprinus carpio). Molecules 2020, 25, 2690. [Google Scholar] [CrossRef]
- Vaccaro, E.; Giorgi, M.; Longo, V.; Mengozzi, G.; Gervasi, P.G. Inhibition of cytochrome P450 enzymes by enrofloxacin in the sea bass (Dicentrarchus labrax). Aquat. Toxicol. 2003, 62, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, C.S.; Tyndale, R.F. Cytochrome P450 enzymes in the brain: Emerging evidence of biological significance. Trends Pharmacol. Sci. 2011, 32, 708–714. [Google Scholar] [CrossRef]
- Laville, N.; Aıt-Aıssa, S.; Gomez, E.; Casellas, C.; Porcher, J.M. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology 2004, 196, 41–55. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Li, F.; Zhang, Y.; Ding, S. Bioaccumulation and behavioral response patterns of crucian carp (Carassius carassius) after carbamazepine exposure and elimination. Sci. Total Environ. 2024, 951, 175519. [Google Scholar] [CrossRef]
- Chen, H.; Liang, X.; Gu, X.; Zeng, Q.; Mao, Z.; Martyniuk, C.J. Environmentally relevant concentrations of sertraline disrupts behavior and the brain and liver transcriptome of juvenile yellow catfish (Tachysurus fulvidraco): Implications for the feeding and growth axis. J. Hazard. Mater. 2021, 409, 124974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Yang, L.; Zhao, Q.; Caen, J.P.; He, H.Y.; Jin, Q.H.; Guo, L.H.; Alemany, M.; Zhang, L.Y.; Shi, Y.F. Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ. 2002, 9, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, L.; Yu, L.; Lin, B.; Hou, Y.; Wu, J.; Huang, Q.; Han, Y.; Guo, L.; Ouyang, Q.; et al. Acetylcholinesterase is associated with apoptosis in β cells and contributes to insulin-dependent diabetes mellitus pathogenesis. Acta Biochim. Biophys. Sin. 2012, 44, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.K.; Carvalho-Silva, M.; Gonçalves, C.L.; Vieira, J.S.; Scaini, G.; Ghedim, F.V.; Deroza, P.F.; Zugno, A.I.; Pereira, T.C.B.; Oliveira, G.M.D.; et al. L-tyrosine administration increases acetylcholinesterase activity in rats. Neurochem. Int. 2012, 61, 1370–1374. [Google Scholar] [CrossRef]
- Tõugu, V.; Kesvatera, T. Role of ionic interactions in cholinesterase catalysis. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1996, 1298, 12–30. [Google Scholar] [CrossRef]
- Pfeifer, S.; Schiedek, D.; Dippner, J.W. Effect of temperature and salinity on acetylcholinesterase activity, a common pollution biomarker, in Mytilus sp. from the south-western Baltic Sea. J. Exp. Mar. Biol. Ecol. 2005, 320, 93–103. [Google Scholar] [CrossRef]
- Santos da Silva, N.; Oliveira, R.; Lisboa, C.A.; e Pinto, J.M.; Sousa-Moura, D.; Camargo, N.S.; Perillo, V.; Oliveira, V.; Grisolia, C.K.; Domingues, I. Chronic effects of carbamazepine on zebrafish: Behavioral, reproductive and biochemical endpoints. Ecotoxicol. Environ. Saf. 2018, 164, 297–304. [Google Scholar] [CrossRef]
- Scheibener, S.; Song, Y.; Tollefsen, K.E.; Salbu, B.; Teien, H.C. Uranium accumulation and toxicokinetics in the crustacean Daphnia magna provide perspective to toxicodynamic responses. Aquat. Toxicol. 2021, 235, 105836. [Google Scholar] [CrossRef]
- Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M.; Rosales-Pérez, K.E.; Orozco-Hernández, J.M.; García-Medina, S.; Islas-Flores, H.; Galar-Martínez, M. Chronic exposure to environmentally relevant concentrations of guanylurea induces neurotoxicity of Danio rerio adults. Sci. Total Environ. 2022, 819, 153095. [Google Scholar] [CrossRef]
- Livingstone, D.R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 2001, 42, 656–666. [Google Scholar] [CrossRef]
- Jemec, A.; Tišler, T.; Erjavec, B.; Pintar, A. Antioxidant responses and whole-organism changes in Daphnia magna acutely and chronically exposed to endocrine disruptor bisphenol A. Ecotoxicol. Environ. Saf. 2012, 86, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shen, J.; Lu, G.; Xu, X.; Yang, H.; Yan, Z.; Chen, W. Multilevel ecotoxicity assessment of environmentally relevant bisphenol F concentrations in Daphnia magna. Chemosphere 2020, 240, 124917. [Google Scholar] [CrossRef] [PubMed]
- Strobel, A.; Burkhardt-Holm, P.; Schmid, P.; Segner, H. Benzo (a) pyrene metabolism and EROD and GST biotransformation activity in the liver of red-and white-blooded Antarctic fish. Environ. Sci. Technol. 2015, 49, 8022–8032. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, G.; Yang, H.; Yan, Z.; Wang, Y.; Wang, P. Bioconcentration and metabolism of ketoconazole and effects on multi-biomarkers in crucian carp (Carassius auratus). Chemosphere 2016, 150, 145–151. [Google Scholar] [CrossRef]
Type | Substance | Abb | CAS | Molecular Mass (g/mol) | Log Kow | pKa | Log Dow (pH = 7.5) | Ionic Form | Proportion of Neutral Molecules (%) | Log Klip-w | Log Dlip-w |
---|---|---|---|---|---|---|---|---|---|---|---|
Antiepileptics | Carbamazepine | CBZ | 298-46-4 | 236.27 | 2.45 | 13.9 | 2.45 | Neutral | 100 | 1.18 | 1.18 |
SSRIs | Citalopram | CIT | 59729-33-8 | 324.39 | 3.74 | 9.78 | 1.46 | Positive | 0.5 | 3.06 | 0.78 |
Sertraline | SER | 79617-96-2 | 306.2 | 5.29 | 9.16 | 3.62 | Positive | 0.8 | 5.32 | 3.66 | |
SNRI | Venlafaxine | VLF | 93413-69-5 | 277.4 | 3.2 | 10.1 | 0.61 | Positive | 3.7 | 2.28 | 0.85 |
TCA | Amitriptyline | AMT | 549-18-8 | 313.86 | 4.92 | 9.4 | 3.02 | Positive | 0.5 | 4.77 | 3.21 |
Chlorpromazine | CPM | 50-53-3 | 318.86 | 5.41 | 9.3 | 3.60 | Positive | 2.0 | 5.47 | 3.76 | |
Atypical antipsychotics | Quetiapine | QTP | 111974-69-7 | 883.09 | 1.94 | 7.06 | 1.37 | Negative | 26.6 | 1.85 | 1.28 |
Clozapine | CLZ | 5786-21-0 | 326.82 | 3.35 | 7.35 | 2.97 | Negative | 41.4 | 2.57 | 2.19 |
Chemicals | LC50 (mg/L) | Exposure Concentration (mg/L) | Ku (L/kg/h) | Kd (h−1) | BCFk (L/kg ww) | BCFss (L/kg ww) | log BCF | R2 |
---|---|---|---|---|---|---|---|---|
CBZ | 149 | 1.5 | 3.7 ± 1.01 | 0.15 ± 0.01 | 24.67 | 36.16 | 1.70 | 0.95 |
CIT | 13.72 | 0.15 | 8.52 ± 1.97 | 0.045 ± 0.023 | 189.33 | 163.19 | 2.28 | 0.92 |
SER | 0.98 | 0.001 | 48.00 ± 3.1 | 0.049 ± 0.007 | 979.59 | 1183.87 | 3.18 | 0.90 |
VLF | 100.3 | 0.1 | 1.53 ± 0.001 | 0.25 ± 0.008 | 6.12 | 9.45 | 0.99 | 0.88 |
AMT | 6.2 | 0.06 | 12.88 ± 9.89 | 0.040 ± 0.012 | 286.22 | 315.32 | 2.47 | 0.67 |
CPM | 0.73 | 0.001 | 180.0 ± 6.23 | 0.166 ± 0.025 | 1084.34 | 1576.27 | 3.75 | 0.90 |
QTP | 1.80 | 0.02 | 3.49 ± 0.87 | 0.148 ± 0.024 | 23.58 | 16.23 | 1.37 | 0.92 |
CLZ | 2.91 | 0.03 | 6.85 ± 1.03 | 0.01 ± 0.007 | 685.00 | 993.76 | 2.06 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Xing, H.; Chen, Z.; Kong, L.; Jiang, H.; Zhu, T. Comparative Toxicokinetics and Biomarker Responses of Typical Psychiatric Pharmaceuticals in Daphnia magna. Toxics 2025, 13, 481. https://doi.org/10.3390/toxics13060481
Yang H, Xing H, Chen Z, Kong L, Jiang H, Zhu T. Comparative Toxicokinetics and Biomarker Responses of Typical Psychiatric Pharmaceuticals in Daphnia magna. Toxics. 2025; 13(6):481. https://doi.org/10.3390/toxics13060481
Chicago/Turabian StyleYang, Haohan, Hao Xing, Zhuoyu Chen, Linghui Kong, Hanyu Jiang, and Tengyi Zhu. 2025. "Comparative Toxicokinetics and Biomarker Responses of Typical Psychiatric Pharmaceuticals in Daphnia magna" Toxics 13, no. 6: 481. https://doi.org/10.3390/toxics13060481
APA StyleYang, H., Xing, H., Chen, Z., Kong, L., Jiang, H., & Zhu, T. (2025). Comparative Toxicokinetics and Biomarker Responses of Typical Psychiatric Pharmaceuticals in Daphnia magna. Toxics, 13(6), 481. https://doi.org/10.3390/toxics13060481