Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = phosphate diesters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 10798 KiB  
Article
Effects and Mechanism of Hyperbranched Phosphate Polycarboxylate Superplasticizers on Reducing Viscosity of Cement Paste
by Jing Chen, Changhui Yang, Yan He, Futao Wang and Chao Zeng
Materials 2024, 17(8), 1896; https://doi.org/10.3390/ma17081896 - 19 Apr 2024
Cited by 2 | Viewed by 1419
Abstract
The adsorption behavior and dispersing capability of hyperbranched phosphated polycarboxylate superplasticizers (PCEs) containing phosphate monoester and phosphate diester were investigated. The hyperbranched structures were constructed using a special monomer dimethylaminoethyl methacrylate (DMAMEA) to create the branches during the polymerization. Meanwhile, the polymer architectures [...] Read more.
The adsorption behavior and dispersing capability of hyperbranched phosphated polycarboxylate superplasticizers (PCEs) containing phosphate monoester and phosphate diester were investigated. The hyperbranched structures were constructed using a special monomer dimethylaminoethyl methacrylate (DMAMEA) to create the branches during the polymerization. Meanwhile, the polymer architectures were tailored by varying the content of phosphate monoester and phosphate diester in the backbone via free radical solution polymerization. In contrast to comb-like PCE, hyperbranched PCEs presented a weaker dispersion capability at w/c = 0.29, but with a lower water-to-cement ratio (w/c), the hyperbranched PCEs exhibited a better dispersion capability than the comb-like PCEs. The dynamic light scattering (DLS) and transmission electron microscope (TEM) analysis showed that the adsorption layer of hyperbranched PCEs were thicker than that of comb-like PCEs. A thicker adsorption layer thickness generated thinner diffusion water layer thickness. The increase of the free water amount due to the thinner water diffusion layer is the key mechanism for improving the dispersibility and decreasing the viscosity of cement paste. Full article
(This article belongs to the Special Issue Advanced Cement and Concrete Composites - Volume 2)
Show Figures

Figure 1

21 pages, 3108 KiB  
Article
The Hydrolytic Activity of Copper(II) Complexes with 1,4,7-Triazacyclononane Derivatives for the Hydrolysis of Phosphate Diesters
by Michaela Buziková, Robert Willimetz and Jan Kotek
Molecules 2023, 28(22), 7542; https://doi.org/10.3390/molecules28227542 - 11 Nov 2023
Cited by 4 | Viewed by 2108
Abstract
A set of substituted 1,4,7-triazacyclononane ligands was synthesised, including a wide series of novel derivatives bearing a thiazole or thiophene side group, with the potential to incorporate these derivatives into a polymeric material; some previously known/studied ligands were also synthesised for comparative purposes. [...] Read more.
A set of substituted 1,4,7-triazacyclononane ligands was synthesised, including a wide series of novel derivatives bearing a thiazole or thiophene side group, with the potential to incorporate these derivatives into a polymeric material; some previously known/studied ligands were also synthesised for comparative purposes. The corresponding copper(II) complexes were prepared, and their ability to mediate the hydrolysis of phosphate ester bonds was studied via UV-Vis spectrophotometry, using bis(p-nitrophenyl)phosphate as a model substrate. Some of the prepared complexes showed a considerable enhancement of the phosphate ester hydrolysis in comparison with previously studied systems, which makes them some of the most effective complexes ever tested for this purpose. Therefore, these novel, potentially bifunctional systems could provide the possibility of creating new coating materials for medicinal devices that could prevent biofilm formation. Full article
(This article belongs to the Special Issue Structures and Applications of Transition Metal Complexes)
Show Figures

Figure 1

23 pages, 2745 KiB  
Article
Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents
by Maheen Gull, Tian Feng, Benjamin Smith, Laurent Calcul and Matthew A. Pasek
Life 2023, 13(11), 2134; https://doi.org/10.3390/life13112134 - 29 Oct 2023
Cited by 3 | Viewed by 2170
Abstract
Reduced-oxidation-state phosphorus (reduced P, hereafter) compounds were likely available on the early Earth via meteorites or through various geologic processes. Due to their reactivity and high solubility, these compounds could have played a significant role in the origin of various organophosphorus compounds of [...] Read more.
Reduced-oxidation-state phosphorus (reduced P, hereafter) compounds were likely available on the early Earth via meteorites or through various geologic processes. Due to their reactivity and high solubility, these compounds could have played a significant role in the origin of various organophosphorus compounds of biochemical significance. In the present work, we study the reactions between reduced P compounds and their oxidation products, with the three nucleosides (uridine, adenosine, and cytidine), with organic alcohols (glycerol and ethanolamine), and with the tertiary ammonium organic compound, choline chloride. These reactions were studied in the non-aqueous solvent formamide and in a semi-aqueous solvent comprised of urea: ammonium formate: water (UAFW, hereafter) at temperatures of 55–68 °C. The inorganic P compounds generated through Fenton chemistry readily dissolve in the non-aqueous and semi-aqueous solvents and react with organics to form organophosphites and organophosphates, including those which are identified as phosphate diesters. This dual approach (1) use of non-aqueous and semi-aqueous solvents and (2) use of a reactive inorganic P source to promote phosphorylation and phosphonylation reactions of organics readily promoted anhydrous chemistry and condensation reactions, without requiring any additive, catalyst, or other promoting agent under mild heating conditions. We also present a comparative study of the release of P from various prebiotically relevant phosphate minerals and phosphite salts (e.g., vivianite, apatite, and phosphites of iron and calcium) into formamide and UAFW. These results have direct implications for the origin of biological P compounds from non-aqueous solvents of prebiotic provenance. Full article
(This article belongs to the Special Issue Origin of Life in Chemically Complex Messy Environments: 2nd Edition)
Show Figures

Figure 1

24 pages, 8430 KiB  
Article
PFAS Biotransformation Pathways: A Species Comparison Study
by Richard C. Kolanczyk, Megan R. Saley, Jose A. Serrano, Sara M. Daley and Mark A. Tapper
Toxics 2023, 11(1), 74; https://doi.org/10.3390/toxics11010074 - 12 Jan 2023
Cited by 34 | Viewed by 8103
Abstract
Limited availability of fish metabolic pathways for PFAS may lead to risk assessments with inherent uncertainties based only upon the parent chemical or the assumption that the biodegradation or mammalian metabolism map data will serve as an adequate surrogate. A rapid and transparent [...] Read more.
Limited availability of fish metabolic pathways for PFAS may lead to risk assessments with inherent uncertainties based only upon the parent chemical or the assumption that the biodegradation or mammalian metabolism map data will serve as an adequate surrogate. A rapid and transparent process, utilizing a recently created database of systematically collected information for fish, mammals, poultry, plant, earthworm, sediment, sludge, bacteria, and fungus using data evaluation tools in the previously described metabolism pathway software system MetaPath, is presented. The fish metabolism maps for 10 PFAS, heptadecafluorooctyl(tridecafluorohexyl)phosphinic acid (C6/C8 PFPiA), bis(perfluorooctyl)phosphinic acid (C8/C8 PFPiA), 2-[(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyl)oxy]-1,1,2,2-tetrafluoroethanesulfonic acid (6:2 Cl-PFESA), N-Ethylperfluorooctane-1-sulfonamide (Sulfuramid; N-EtFOSA), N-Ethyl Perfluorooctane Sulfonamido Ethanol phosphate diester (SAmPAP), Perfluorooctanesulfonamide (FOSA), 8:2 Fluorotelomer phosphate diester (8:2 diPAP), 8:2 fluorotelomer alcohol (8:2 FTOH), 10:2 fluorotelomer alcohol (10:2 FTOH), and 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), were compared across multiple species and systems. The approach demonstrates how comparisons of metabolic maps across species are aided by considering the sample matrix in which metabolites were quantified for each species, differences in analytical methods used to identify metabolites in each study, and the relative amounts of metabolites quantified. Overall, the pathways appear to be well conserved across species and systems. For PFAS lacking a fish metabolism study, a composite map consisting of all available maps would serve as the best basis for metabolite prediction. This emphasizes the importance and utility of collating metabolism into a searchable database such as that created in this effort. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism)
Show Figures

Figure 1

19 pages, 3301 KiB  
Article
The Phosphorus Availability in Mollisol Is Determined by Inorganic Phosphorus Fraction under Long-Term Different Phosphorus Fertilization Regimes
by Qiong Wang, Naiyu Zhang, Yanhua Chen, Zhenhan Qin, Yuwen Jin, Ping Zhu, Chang Peng, Gilles Colinet, Shuxiang Zhang and Jin Liu
Agronomy 2022, 12(10), 2364; https://doi.org/10.3390/agronomy12102364 - 30 Sep 2022
Cited by 12 | Viewed by 2546
Abstract
Understanding the effects of a fertilization regime on the long-term accumulation and transformation of soil phosphorus (P) is essential for promoting the development of sustainable management of soil P. Based on a 29-year field experiment in Mollisol, the compositions and changes of P [...] Read more.
Understanding the effects of a fertilization regime on the long-term accumulation and transformation of soil phosphorus (P) is essential for promoting the development of sustainable management of soil P. Based on a 29-year field experiment in Mollisol, the compositions and changes of P forms using a modified Hedley sequential extraction method, solution 31P-NMR and P K-edge XANES and soil properties were investigated under continuous mono maize with and without manure (NPKM and NPK). Results showed a stronger positive related coefficient between soil total P and labile P, and mid-labile P fraction was found in NPKM than in NPK treatment. It indicated NPKM could improve the availability of soil accumulated P and reduce its transformation to stable P. Accumulated inorganic P (Pi) was dominated by aluminum phosphate (Al-P) and monobasic calcium phosphate monohydrate (MCP) for NPK treatment, Al-P, MCP, and tricalcium phosphate for NPKM treatment with XANES analysis, which contributed to the P availability in Mollisol. Moreover, the proportion of IHP with XANES and ratio of orthophosphate diesters to monoesters in NPK compared to NPKM indicated the higher Po lability with NPK treatment. Pi, especially NaHCO3-Pi and NaOH-Pi, were the potential sources of resin-Pi. Soil organic matter (SOM), organic-bound iron, and alumina oxide (Fep + Alp) showed significant influence on the transformation of P forms. Our research suggested that due to the rise in SOM and Fep + Alp, the fertilization regime significantly increased most highly active soil P fractions, especially in NPKM treatment. This work gives new insight into sustainable P management, which benefits the reduction in soil P accumulation. Full article
Show Figures

Figure 1

20 pages, 1826 KiB  
Review
Vesicular and Planar Membranes of Archaea Lipids: Unusual Physical Properties and Biomedical Applications
by Parkson Lee-Gau Chong, Abby Chang, Allyson Yu and Ayna Mammedova
Int. J. Mol. Sci. 2022, 23(14), 7616; https://doi.org/10.3390/ijms23147616 - 9 Jul 2022
Cited by 13 | Viewed by 3402
Abstract
Liposomes and planar membranes made of archaea or archaea-like lipids exhibit many unusual physical properties compared to model membranes composed of conventional diester lipids. Here, we review several recent findings in this research area, which include (1) thermosensitive archaeosomes with the capability to [...] Read more.
Liposomes and planar membranes made of archaea or archaea-like lipids exhibit many unusual physical properties compared to model membranes composed of conventional diester lipids. Here, we review several recent findings in this research area, which include (1) thermosensitive archaeosomes with the capability to drastically change the membrane surface charge, (2) MthK channel’s capability to insert into tightly packed tetraether black lipid membranes and exhibit channel activity with surprisingly high calcium sensitivity, and (3) the intercalation of apolar squalane into the midplane space of diether bilayers to impede proton permeation. We also review the usage of tetraether archaeosomes as nanocarriers of therapeutics and vaccine adjuvants, as well as the biomedical applications of planar archaea lipid membranes. The discussion on archaeosomal therapeutics is focused on partially purified tetraether lipid fractions such as the polar lipid fraction E (PLFE) and glyceryl caldityl tetraether (GCTE), which are the main components of PLFE with the sugar and phosphate removed. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

15 pages, 3734 KiB  
Article
Computational Insight into Biotransformation Profiles of Organophosphorus Flame Retardants to Their Diester Metabolites by Cytochrome P450
by Yue Jia, Tingji Yao, Guangcai Ma, Qi Xu, Xianglong Zhao, Hui Ding, Xiaoxuan Wei, Haiying Yu and Zhiguo Wang
Molecules 2022, 27(9), 2799; https://doi.org/10.3390/molecules27092799 - 28 Apr 2022
Cited by 10 | Viewed by 2539
Abstract
Biotransformation of organophosphorus flame retardants (OPFRs) mediated by cytochrome P450 enzymes (CYPs) has a potential correlation with their toxicological effects on humans. In this work, we employed five typical OPFRs including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri(2-chloroethyl) phosphate (TCEP), triethyl phosphate (TEP), [...] Read more.
Biotransformation of organophosphorus flame retardants (OPFRs) mediated by cytochrome P450 enzymes (CYPs) has a potential correlation with their toxicological effects on humans. In this work, we employed five typical OPFRs including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri(2-chloroethyl) phosphate (TCEP), triethyl phosphate (TEP), and 2-ethylhexyl diphenyl phosphate (EHDPHP), and performed density functional theory (DFT) calculations to clarify the CYP-catalyzed biotransformation of five OPFRs to their diester metabolites. The DFT results show that the reaction mechanism consists of Cα-hydroxylation and O-dealkylation steps, and the biotransformation activities of five OPFRs may follow the order of TCEP ≈ TEP ≈ EHDPHP > TCIPP > TDCIPP. We further performed molecular dynamics (MD) simulations to unravel the binding interactions of five OPFRs in the CYP3A4 isoform. Binding mode analyses demonstrate that CYP3A4-mediated metabolism of TDCIPP, TCIPP, TCEP, and TEP can produce the diester metabolites, while EHDPHP metabolism may generate para-hydroxyEHDPHP as the primary metabolite. Moreover, the EHDPHP and TDCIPP have higher binding potential to CYP3A4 than TCIPP, TCEP, and TEP. This work reports the biotransformation profiles and binding features of five OPFRs in CYP, which can provide meaningful clues for the further studies of the metabolic fates of OPFRs and toxicological effects associated with the relevant metabolites. Full article
Show Figures

Graphical abstract

13 pages, 2123 KiB  
Article
The Polar Lipid Fraction E from Sulfolobus acidocaldarius Can Be Used as Liposomal Drug Stabilizing Agents to Reduce the Leakage of the Antivascular Drug Combretastatin A4 Disodium Phosphate from Tetraether/Diester Hybrid Archaeosomes
by Varsha P. Daswani, Umme Ayesa and Parkson Lee-Gau Chong
Biophysica 2021, 1(4), 474-486; https://doi.org/10.3390/biophysica1040034 - 9 Dec 2021
Cited by 2 | Viewed by 3888
Abstract
Liposomes have many advantages as therapeutic capsules over free drugs such as small molecule drugs and nucleic acids. Cholesterol is commonly used as a membrane stabilizing agent in liposomal drugs (e.g., mRNA-lipid nanoparticle COVID-19 vaccines). However, due to the vulnerability of cholesterol to [...] Read more.
Liposomes have many advantages as therapeutic capsules over free drugs such as small molecule drugs and nucleic acids. Cholesterol is commonly used as a membrane stabilizing agent in liposomal drugs (e.g., mRNA-lipid nanoparticle COVID-19 vaccines). However, due to the vulnerability of cholesterol to oxidation and the etiological role of cholesterol in many disorders, it is desirable to find an alternative means to stabilize liposomal membranes for drug delivery. In this study, we demonstrated that the polar lipid fraction E (PLFE), which contains exclusively bipolar tetraether macrocyclic lipids, isolated from the thermoacidophilic archaeon S. acidocaldarius can greatly stabilize the liposomal formulation of the anti-vascular drug, combretastatin A4 disodium phosphate (CA4P). Stability was assessed by determining the leakage rate constant k of entrapped CA4P fluorometrically. We found that, at 37 °C, PLFE decreases the k value monotonically from 1.54 × 10−2 s−1 for 100% 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) liposomes to 3.4 × 10−5 s−1 for 100% PLFE archaeosomes, a change of k by two orders of magnitude. The changes in k of CA4P leakage are correlated well with the changes in liposomal CA4P’s cytotoxicity against MCF-7 breast cancer cells. We further showed that the reduction in spontaneous leakage of entrapped CA4P by PLFE can be attributed to the increased membrane surface charge and the increased membrane order and packing tightness in liposomes, as reflected by the zeta potential (−6.83 to −41.1 mV from 0 to 100 mol% PLFE) and diphenylhexatriene (DPH) fluorescence polarization (0.13 to 0.4 from 0 to 100 mol% PLFE) measurements. Moreover, we showed that PLFE slows down CA4P leakage more than cholesterol in POPC liposomes. These results together suggest that PLFE lipids can serve as an effective stabilizing agent for liposomal drugs and could potentially be useful for the optimization of liposomal CA4P for cancer treatment. Full article
Show Figures

Graphical abstract

11 pages, 1259 KiB  
Article
Effects of Escherichia coli Alkaline Phosphatase PhoA on the Mineralization of Dissolved Organic Phosphorus
by Yanwen Zhou, Tingxi Zhang, Shengyan Jin, Siyu Chen and Yinlong Zhang
Water 2021, 13(23), 3315; https://doi.org/10.3390/w13233315 - 23 Nov 2021
Cited by 11 | Viewed by 4380
Abstract
Alkaline phosphatases, which play the key role in the mineralization of organic phosphorus, have been grouped into three distinct families, PhoA, PhoX, and PhoD. PhoA is still an important component of the Pho regulon for many microbes although its distribution is not as [...] Read more.
Alkaline phosphatases, which play the key role in the mineralization of organic phosphorus, have been grouped into three distinct families, PhoA, PhoX, and PhoD. PhoA is still an important component of the Pho regulon for many microbes although its distribution is not as wide as that of PhoX and PhoD. However, several questions remain unclear about the effect of PhoA mineralization of dissolved organic phosphorus. In this study, the role of Escherichia coli alkaline phosphatase PhoA (hereinafter referred to as PhoA) in the mineralization of different organic phosphorus including phosphate monoesters, phosphate diesters, and phytic acids was investigated. The influence of the reaction time, organic phosphorus concentration, and L-amino acid on PhoA mineralization was examined. The results show that PhoA specifically hydrolyzes phosphate monoesters except for phytic acid and the optimal reaction time is around 12 h. The PhoA mineralization rate of glucose 6-phosphate disodium (G6P), 5′-adenosine monophosphate (AMP), and sodium glycerophosphate (BGP) significantly decreased by 38.01%, 55.31%, and 57.08%, respectively (p < 0.01), while the concentration of organic phosphorus increased from 0.50 to 5.00 mg/L. Overall, L-amino acids inhibited PhoA mineralization in a concentration-independent manner. The inhibitory effect of neutral amino acids serine (L-Ser) and tyrosine (L-Tyr) was significantly higher than that of basic amino acids arginine (L-Arg), lysine (L-Lys), and histidine (L-His). All the five amino acids can inhibit PhoA mineralization of AMP, with the highest inhibition rate observed for L-Tyr (23.77%), the lowest—for L-Arg (1.54%). Compared with other L-amino acids, L-Tyr has the highest G6P and BGP mineralization inhibition rate, with the average inhibition rates of 12.89% and 11.65%, respectively. This study provides meaningful information to better understand PhoA mineralization. Full article
Show Figures

Figure 1

4 pages, 319 KiB  
Proceeding Paper
Phosphate Diesters and DNA Cleavage by Gold Nanozymes
by Paolo Scrimin and Joanna Czescik
Mater. Proc. 2021, 4(1), 70; https://doi.org/10.3390/IOCN2020-07844 - 15 Nov 2020
Viewed by 1107
Abstract
Phosphate diesters and plasmid DNA are cleaved by gold nanoparticles functionalized with Zn(II)-triazacyclonononane complexes with different mechanisms, dinuclear and mononuclear, respectively, with impressive rate accelerations with respect to the uncatalyzed processes. Full article
(This article belongs to the Proceedings of The 2nd International Online-Conference on Nanomaterials)
Show Figures

Figure 1

14 pages, 3111 KiB  
Article
Solvent Deuterium Oxide Isotope Effects on the Reactions of Organophosphorylated Acetylcholinesterase
by Terrone L. Rosenberry
Molecules 2020, 25(19), 4412; https://doi.org/10.3390/molecules25194412 - 25 Sep 2020
Cited by 5 | Viewed by 2532
Abstract
Organophosphates (OPs) are esters of substituted phosphates, phosphonates or phosphoramidates that react with acetylcholinesterase (AChE) by initially transferring the organophosphityl group to a serine residue in the enzyme active site, concomitant with loss of an alcohol or halide leaving group. With substituted phosphates, [...] Read more.
Organophosphates (OPs) are esters of substituted phosphates, phosphonates or phosphoramidates that react with acetylcholinesterase (AChE) by initially transferring the organophosphityl group to a serine residue in the enzyme active site, concomitant with loss of an alcohol or halide leaving group. With substituted phosphates, this transfer is followed by relatively slow hydrolysis of the organophosphoryl AChE, or dephosphorylation, that is often accompanied by an aging reaction that renders the enzyme irreversibly inactivated. Aging is a dealkylation that converts the phosphate triester to a diester. OPs are very effective AChE inhibitors and have been developed as insecticides and chemical warfare agents. We examined three reactions of two organophosphoryl AChEs, dimethyl- and diethylphosphorylated AChE, by comparing rate constants and solvent deuterium oxide isotope effects for hydrolysis, aging and oxime reactivation with pralidoxime (2-PAM). Our study was motivated (1) by a published x-ray crystal structure of diethylphosphorylated AChE, which showed severe distortion of the active site that was restored by the binding of pralidoxime, and (2) by published isotope effects for decarbamoylation that decreased from 2.8 for N-monomethylcarbamoyl AChE to 1.1 for N,N-diethylcarbamoyl AChE. We previously reconciled these results by proposing a shift in the rate-limiting step from proton transfer for the small carbamoyl group to a likely conformational change in the distorted active site of the large carbamoyl enzyme. This proposal was tested but was not supported in this report. The smaller dimethylphosphoryl AChE and the larger diethylphosphoryl AChE gave similar isotope effects for both oxime reactivation and hydrolysis, and the isotope effect values of about two indicated that proton transfer was rate limiting for both reactions. Full article
(This article belongs to the Special Issue Enzymes Reacting with Organophosphorus Compounds)
Show Figures

Figure 1

12 pages, 620 KiB  
Article
31P-NMR Metabolomics Revealed Species-Specific Use of Phosphorous in Trees of a French Guiana Rainforest
by Albert Gargallo-Garriga, Jordi Sardans, Joan Llusià, Guille Peguero, Dolores Asensio, Romà Ogaya, Ifigenia Urbina, Leandro Van Langenhove, Lore T. Verryckt, Elodie A. Courtois, Clément Stahl, Oriol Grau, Otmar Urban, Ivan A. Janssens, Pau Nolis, Miriam Pérez-Trujillo, Teodor Parella and Josep Peñuelas
Molecules 2020, 25(17), 3960; https://doi.org/10.3390/molecules25173960 - 31 Aug 2020
Cited by 8 | Viewed by 4255
Abstract
Productivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling to study the [...] Read more.
Productivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test the hypotheses that P-use is species-specific, and that species diversity relates to species P-use and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate monoesters and diesters, phosphonates and organic polyphosphates. We found that tree species explained the 59% of variance in 31P-NMR metabolite profiling of leaves. A principal component analysis showed that tree species were separated along PC 1 and PC 2 of detected P-containing compounds, which represented a continuum going from high concentrations of metabolites related to non-active P and P-storage, low total P concentrations and high N:P ratios, to high concentrations of P-containing metabolites related to energy and anabolic metabolism, high total P concentrations and low N:P ratios. These results highlight the species-specific use of P and the existence of species-specific P-use niches that are driven by the distinct species-specific position in a continuum in the P-allocation from P-storage compounds to P-containing molecules related to energy and anabolic metabolism. Full article
(This article belongs to the Special Issue NMR-Based Metabolomics)
Show Figures

Figure 1

20 pages, 4376 KiB  
Article
A Novel Alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium Cobetia amphilecti KMM 296
by Yulia Noskova, Galina Likhatskaya, Natalia Terentieva, Oksana Son, Liudmila Tekutyeva and Larissa Balabanova
Mar. Drugs 2019, 17(12), 657; https://doi.org/10.3390/md17120657 - 22 Nov 2019
Cited by 18 | Viewed by 4519
Abstract
A novel extracellular alkaline phosphatase/phosphodiesterase from the structural protein family PhoD that encoded by the genome sequence of the marine bacterium Cobetia amphilecti KMM 296 (CamPhoD) has been expressed in Escherichia coli cells. The calculated molecular weight, the number of amino acids, and [...] Read more.
A novel extracellular alkaline phosphatase/phosphodiesterase from the structural protein family PhoD that encoded by the genome sequence of the marine bacterium Cobetia amphilecti KMM 296 (CamPhoD) has been expressed in Escherichia coli cells. The calculated molecular weight, the number of amino acids, and the isoelectric point (pI) of the mature protein’s subunit are equal to 54832.98 Da, 492, and 5.08, respectively. The salt-tolerant, bimetal-dependent enzyme CamPhoD has a molecular weight of approximately 110 kDa in its native state. CamPhoD is activated by Co2+, Mg2+, Ca2+, or Fe3+ at a concentration of 2 mM and exhibits maximum activity in the presence of both Co2+ and Fe3+ ions in the incubation medium at pH 9.2. The exogenous ions, such as Zn2+, Cu2+, and Mn2+, as well as chelating agents EDTA and EGTA, do not have an appreciable effect on the CamPhoD activity. The temperature optimum for the CamPhoD activity is 45 °C. The enzyme catalyzes the cleavage of phosphate mono- and diester bonds in nucleotides, releasing inorganic phosphorus from p-nitrophenyl phosphate (pNPP) and guanosine 5′-triphosphate (GTP), as determined by the Chen method, with rate approximately 150- and 250-fold higher than those of bis-pNPP and 5′-pNP-TMP, respectively. The Michaelis–Menten constant (Km), Vmax, and efficiency (kcat/Km) of CamPhoD were 4.2 mM, 0.203 mM/min, and 7988.6 S−1/mM; and 6.71 mM, 0.023 mM/min, and 1133.0 S−1/mM for pNPP and bis-pNPP as the chromogenic substrates, respectively. Among the 3D structures currently available, in this study we found only the low identical structure of the Bacillus subtilis enzyme as a homologous template for modeling CamPhoD, with a new architecture of the phosphatase active site containing Fe3+ and two Ca2+ ions. It is evident that the marine bacterial phosphatase/phosphidiesterase CamPhoD is a new structural member of the PhoD family. Full article
(This article belongs to the Special Issue Selected Papers from the 3rd International Symposium on Life Science)
Show Figures

Figure 1

18 pages, 2670 KiB  
Review
Hydrolytic Metallo-Nanozymes: From Micelles and Vesicles to Gold Nanoparticles
by Fabrizio Mancin, Leonard J. Prins, Paolo Pengo, Lucia Pasquato, Paolo Tecilla and Paolo Scrimin
Molecules 2016, 21(8), 1014; https://doi.org/10.3390/molecules21081014 - 4 Aug 2016
Cited by 57 | Viewed by 10094
Abstract
Although the term nanozymes was coined by us in 2004 to highlight the enzyme-like properties of gold nanoparticles passivated with a monolayer of Zn(II)-complexes in the cleavage of phosphate diesters, systems resembling those metallo-nanoparticles, like micelles and vesicles, have been the subject of [...] Read more.
Although the term nanozymes was coined by us in 2004 to highlight the enzyme-like properties of gold nanoparticles passivated with a monolayer of Zn(II)-complexes in the cleavage of phosphate diesters, systems resembling those metallo-nanoparticles, like micelles and vesicles, have been the subject of investigation since the mid-eighties of the last century. This paper reviews what has been done in the field and compares the different nanosystems highlighting the source of catalysis and frequent misconceptions found in the literature. Full article
(This article belongs to the Special Issue Nanozymes and Beyond)
Show Figures

Figure 1

16 pages, 4970 KiB  
Article
Expression and Characterization of a Novel Glycerophosphodiester Phosphodiesterase from Pyrococcus furiosus DSM 3638 That Possesses Lysophospholipase D Activity
by Fanghua Wang, Linhui Lai, Yanhua Liu, Bo Yang and Yonghua Wang
Int. J. Mol. Sci. 2016, 17(6), 831; https://doi.org/10.3390/ijms17060831 - 30 May 2016
Cited by 9 | Viewed by 5636
Abstract
Glycerophosphodiester phosphodiesterases (GDPD) are enzymes which degrade various glycerophosphodiesters to produce glycerol-3-phosphate and the corresponding alcohol moiety. Apart from this, a very interesting finding is that this enzyme could be used in the degradation of toxic organophosphorus esters, which has resulted in much [...] Read more.
Glycerophosphodiester phosphodiesterases (GDPD) are enzymes which degrade various glycerophosphodiesters to produce glycerol-3-phosphate and the corresponding alcohol moiety. Apart from this, a very interesting finding is that this enzyme could be used in the degradation of toxic organophosphorus esters, which has resulted in much attention on the biochemical and application research of GDPDs. In the present study, a novel GDPD from Pyrococcus furiosus DSM 3638 (pfGDPD) was successfully expressed in Escherichia coli and biochemically characterized. This enzyme hydrolyzed bis(p-nitrophenyl) phosphate, one substrate analogue of organophosphorus diester, with an optimal reaction temperature 55 °C and pH 8.5. The activity of pfGDPD was strongly dependent on existing of bivalent cations. It was strongly stimulated by Mn2+ ions, next was Co2+ and Ni2+ ions. Further investigations were conducted on its substrate selectivity towards different phospholipids. The results indicated that except of glycerophosphorylcholine (GPC), this enzyme also possessed lysophospholipase D activity toward both sn1-lysophosphatidylcholine (1-LPC) and sn2-lysophosphatidylcholine (2-LPC). Higher activity was found for 1-LPC than 2-LPC; however, no hydrolytic activity was found for phosphatidylcholine (PC). Molecular docking based on the 3D-modeled structure of pfGDPD was conducted in order to provide a structural foundation for the substrate selectivity. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop