Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = phorate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3010 KiB  
Article
Assessment of Pesticide Contamination of Groundwater from Titu-Sarata Plain, Romania
by Crinela Dumitrescu, Claudia Stihi, Diana Costinel, Elisabeta Irina Geana, Corina Teodora Ciucure, Diana Ionela Popescu (Stegarus), Danut Tanislav and Petre Bretcan
Appl. Sci. 2025, 15(11), 5880; https://doi.org/10.3390/app15115880 - 23 May 2025
Viewed by 445
Abstract
In Romania, groundwater is an important source of drinking water, especially in rural areas. This study investigated the concentrations of organophosphorus, carbamate, and triazine pesticides (OPs) along with organochlorine pesticides (OCPs) in groundwater samples collected from the Titu-Sarata Plain. Sensitive analytical techniques were [...] Read more.
In Romania, groundwater is an important source of drinking water, especially in rural areas. This study investigated the concentrations of organophosphorus, carbamate, and triazine pesticides (OPs) along with organochlorine pesticides (OCPs) in groundwater samples collected from the Titu-Sarata Plain. Sensitive analytical techniques were employed, including Ultrahigh-Performance Liquid Chromatography coupled with Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spectrometry (UHPLC-Orbitrap-MS/MS) and Gas Chromatography coupled with an electron capture detector (GC-ECD). Environmental and human health risks were assessed in the case of pesticides that exceeded the maximum allowed concentration. The environmental risk assessment (ERA) revealed significant risks associated with Phosdrin, Phorate, and pp’DDE. Additionally, particular concerns arose from the presence of Aldrin and Dieldrin, which pose a high carcinogenic risk, especially through groundwater consumption in agricultural areas. The results of this research highlight the need for the implementation of a continuous quality monitoring program for groundwater in the agricultural regions that were studied. Full article
(This article belongs to the Special Issue Novel Approaches for Water Resources Assessment)
Show Figures

Figure 1

18 pages, 1560 KiB  
Article
Influence of Organic Matter and Growing Conditions on Dissipation Behavior and Mobility of Two Pesticides in Soils
by Rakhi Nandi, Aniruddha Sarker, Md Masud Rana and Ahmed Khairul Hasan
Environments 2025, 12(4), 123; https://doi.org/10.3390/environments12040123 - 16 Apr 2025
Viewed by 667
Abstract
The dissipation pattern and mobility of applied pesticides in the soil represent a crucial process for pesticide safety and subsequent groundwater contamination. In this study, two distinct experiments were conducted to explore the environmental fate, dissipation, and mobility of two pesticides, phorate and [...] Read more.
The dissipation pattern and mobility of applied pesticides in the soil represent a crucial process for pesticide safety and subsequent groundwater contamination. In this study, two distinct experiments were conducted to explore the environmental fate, dissipation, and mobility of two pesticides, phorate and boscalid, in greenhouse conditions and laboratory soil column studies, respectively. The role of organic matter and growing conditions was evaluated during dissipation and mobility studies. In the first study, commercial formulations of phorate (10 G) and boscalid (20% SC) were sprayed in the designated greenhouse for Korean cabbage following the recommended dosage. A sequential collection of plant samples (e.g., 0, 7, 14, 21 days) was performed. On the other hand, three sets of packing columns were prepared (control, biochar-amended, and H2O2 treated). The effect of organic matter addition or removal during the leaching of pesticides was explored. A 14-day interval after the last spray was suggested for safe spraying. After 30 days of leachate collection, no pesticide residue was detected in the leaching water, indicating the immobility of the studied pesticides. However, the metabolic transformation of phorate was evident during this column study, with slight mobility within soil columns. In particular, phorate sulfoxide and sulfone were mostly detected in the top soil layer (vadose zone) of the soil column. In summary, phorate and boscalid were considered immobile pesticides with moderate persistence in the soils. The safe pre-harvest interval should be maintained to reduce the health risk of pesticides. Full article
Show Figures

Figure 1

19 pages, 265 KiB  
Article
Organophosphorus Pesticides Management Strategies: Prohibition and Restriction Multi-Category Multi-Class Models, Environmental Transformation Risks, and Special Attention List
by Yingwei Wang, Lu Wang and Yufei Li
Toxics 2025, 13(1), 16; https://doi.org/10.3390/toxics13010016 - 26 Dec 2024
Cited by 4 | Viewed by 1244
Abstract
Organophosphorus pesticides (OPs) have become one of the most widely used pesticides in Chinese agriculture; however, methods to identify potential restrictions on OPs molecules are lacking. Therefore, this study retrieved the OPs restriction list and constructed eight multi-class, multi-category machine learning models for [...] Read more.
Organophosphorus pesticides (OPs) have become one of the most widely used pesticides in Chinese agriculture; however, methods to identify potential restrictions on OPs molecules are lacking. Therefore, this study retrieved the OPs restriction list and constructed eight multi-class, multi-category machine learning models for OPs restrictions. Among these, the random forest (RF) model demonstrated excellent predictive performance, as it was successfully validated and applied. Potential environmental transformation products of OPs were obtained using EAWAG-BBD software, while toxicity indicators for the parent OPs and their transformation products were predicted with ADMETlab 3.0 software. This study found that unrestricted OPs, such as phorate, parathion, and chlorpyrifos, exhibited a high probability of toxicity. Additionally, the environmental transformation products of OPs posed similar comprehensive toxicity risks as the parent compounds. A special attention list for OPs was created based on the toxicity risks of unrestricted parent OPs and their transformation products, using standard deviation classification. Phorate and parathion were identified as OPs requiring special attention. This paper aims to provide an effective method for identifying the potential restriction levels of OPs and to propose an evaluation system that comprehensively considers the health risk, thereby supporting the improvement and optimization of management and usage strategies for OPs. Full article
15 pages, 4092 KiB  
Article
Preparation of Hybrid Magnetic Nanoparticles for Sensitive and Rapid Detection of Phorate Residue in Celery Using SERS Immunochromatography Assay
by Xiangyang Li, Hean Qian, Jin Tao, Mingshuo Cao, Meng Wang and Wenlei Zhai
Nanomaterials 2024, 14(12), 1046; https://doi.org/10.3390/nano14121046 - 18 Jun 2024
Cited by 1 | Viewed by 1712
Abstract
Extensive use of pesticides in agricultural production has been causing serious health threats to humans and animals. Among them, phorate is a highly toxic organophosphorus insecticide that has been widely used in planting. Due to its harmful effects on human and animal health, [...] Read more.
Extensive use of pesticides in agricultural production has been causing serious health threats to humans and animals. Among them, phorate is a highly toxic organophosphorus insecticide that has been widely used in planting. Due to its harmful effects on human and animal health, it has been restricted for use in many countries. Analytical methods for the rapid and sensitive detection of phorate residues in agricultural products are urgently needed. In this study, a new method was developed by combining surface-enhanced Raman spectroscopy (SERS) and immunochromatography assay (ICA). Hybrid magnetic Fe3O4@Au@DTNB-Ab nanoprobes were prepared by modifying and growing Au nanoseeds on an Fe3O4 core. SERS activity of the nanoprobe was optimized by adjusting the concentration of the Au precursor. A rapid and sensitive assay was established by replacing the traditional colloidal gold-based ICA with hybrid SERS nanoprobes for SERS-ICA. After optimizing parameters including coating antibody concentrations and the composition and pH of the buffer solution, the limit of detection (LOD) for phorate could reach 1 ng/mL, with a linear range of 5~100 ng/mL. This LOD is remarkably lower than the maximum residue limit in vegetables and fruits set by the Chinese government. The feasibility of this method was further examined by conducting a spiking test with celery as the real sample. The result demonstrated that this method could serve as a promising platform for rapid and sensitive detection of phorate in agricultural products. Full article
(This article belongs to the Special Issue Novel Nanomaterials and Nanotechnology for Food Safety)
Show Figures

Figure 1

17 pages, 16775 KiB  
Article
Visible Light Photocatalytic Degradation of Environmental Pollutants Using Zn-Doped NiO Nanoparticles
by S. Minisha, J. Johnson, Saikh Mohammad, Jeetendra Kumar Gupta, Sikandar Aftab, Asma A. Alothman and Wen-Cheng Lai
Water 2024, 16(2), 340; https://doi.org/10.3390/w16020340 - 19 Jan 2024
Cited by 16 | Viewed by 3378
Abstract
The study aims to contribute valuable insights into the potential applications of the photocatalyst, particularly in the realms of sustainable energy and environmental remediation. Here, Zn-doped NiO nanoparticles with different mole percentages of zinc ingredients are produced and analyzed. Synthesized Zn-doped NiO nanoparticles [...] Read more.
The study aims to contribute valuable insights into the potential applications of the photocatalyst, particularly in the realms of sustainable energy and environmental remediation. Here, Zn-doped NiO nanoparticles with different mole percentages of zinc ingredients are produced and analyzed. Synthesized Zn-doped NiO nanoparticles were evaluated structurally, optically, morphologically, elementally, and photocatalytically. According to X-ray diffraction analysis, cubic NiO and hexagonal Zn-doped cubic NiO nanoparticles were formed, and Fourier transform infrared spectroscopy revealed metal dopants and metal-oxygen stretching, as well as Zn substitution and stabilization. A UV analysis revealed that zinc dopants reduced visible light absorption and bandgap. A decrease in bandgap indicates the importance of zinc incorporation and its interface with NiO. Electron scanning microscopy and transmission electron microscopy confirmed that the nanoparticles exhibited quasi-spherical morphologies and contained Ni, Zn, and O elements. Photocatalytic activity of the synthesized Zn-doped NiO nanoparticles increased with increasing Zn content, achieving a maximum at 8% Zn doping into NiO lattices of 92%. Through XPS analysis, the valencies of Zn, Ni, and O elements are demonstrated, as well as electron movements and bonding between the atoms. The zinc dopants on the metal oxide surface led to charge separation and radical reactions, resulting in enhanced degradation of phorate, salbutamol, and rhoda mine B activities. Hence, Zn-doped NiO nanoparticles are proposed as effective photocatalysts for environmental remediation. The findings are expected to have implications for advancing the field of photocatalysis and addressing challenges related to pollution and energy sustainability. Full article
(This article belongs to the Special Issue Water Treatment and Biopharmaceuticals – Research and Innovations)
Show Figures

Figure 1

29 pages, 13915 KiB  
Article
Characterization of Growth-Promoting Activities of Consortia of Chlorpyrifos Mineralizing Endophytic Bacteria Naturally Harboring in Rice Plants—A Potential Bio-Stimulant to Develop a Safe and Sustainable Agriculture
by Md. Yeasin Prodhan, Md. Bokhtiar Rahman, Aminur Rahman, Md. Ahedul Akbor, Sibdas Ghosh, Mst. Nur-E-Nazmun Nahar, Simo, Md. Shamsuzzoha, Kye Man Cho and Md. Azizul Haque
Microorganisms 2023, 11(7), 1821; https://doi.org/10.3390/microorganisms11071821 - 16 Jul 2023
Cited by 9 | Viewed by 3981
Abstract
Eighteen pesticide-degrading endophytic bacteria were isolated from the roots, stems, and leaves of healthy rice plants and identified through 16S rRNA gene sequencing. Furthermore, biochemical properties, including enzyme production, dye degradation, anti-bacterial activities, plant-growth-promoting traits, including N-fixation, P-solubilization, auxin production, and ACC-deaminase activities [...] Read more.
Eighteen pesticide-degrading endophytic bacteria were isolated from the roots, stems, and leaves of healthy rice plants and identified through 16S rRNA gene sequencing. Furthermore, biochemical properties, including enzyme production, dye degradation, anti-bacterial activities, plant-growth-promoting traits, including N-fixation, P-solubilization, auxin production, and ACC-deaminase activities of these naturally occurring endophytic bacteria along with their four consortia, were characterized. Enterobacter cloacae HSTU-ABk39 and Enterobacter sp. HSTU-ABk36 displayed inhibition zones of 41.5 ± 1.5 mm, and 29 ± 09 mm against multidrug-resistant human pathogenic bacteria Staphylococcus aureus and Staphylococcus epidermidis, respectively. FT-IR analysis revealed that all eighteen isolates were able to degrade chlorpyrifos pesticide. Our study confirms that pesticide-degrading endophytic bacteria from rice plants play a key role in enhancing plant growth. Notably, rice plants grown in pots containing reduced urea (30%) mixed with either endophytic bacterial consortium-1, consortium-2, consortium-3, or consortia-4 demonstrated an increase of 17.3%, 38.6%, 18.2%, and 39.1% yields, respectively, compared to the control plants grown in pots containing 100% fertilizer. GC–MS/MS analysis confirmed that consortia treatment caused the degradation of chlorpyrifos into different non-toxic metabolites, including 2-Hydroxy-3,5,6 trichloropyridine, Diethyl methane phosphonate, Phorate sulfoxide, and Carbonochloridic. Thus, these isolates could be deployed as bio-stimulants to improve crop production by creating a sustainable biological system. Full article
(This article belongs to the Special Issue Special Abilities of Microbes and Their Application in Agro-Biology)
Show Figures

Figure 1

13 pages, 2526 KiB  
Article
Highly Sensitive Fluorescence Detection of Three Organophosphorus Pesticides Based on Highly Bright DNA-Templated Silver Nanoclusters
by Guowen Li, Xiufang Huang, Chifang Peng and Fengxia Sun
Biosensors 2023, 13(5), 520; https://doi.org/10.3390/bios13050520 - 5 May 2023
Cited by 6 | Viewed by 2413
Abstract
It is still challenging to achieve simultaneous and sensitive detection of multiple organophosphorus pesticides (OPs). Herein, we optimized the ssDNA templates for the synthesis of silver nanoclusters (Ag NCs). For the first time, we found that the fluorescence intensity of T base-extended DNA-templated [...] Read more.
It is still challenging to achieve simultaneous and sensitive detection of multiple organophosphorus pesticides (OPs). Herein, we optimized the ssDNA templates for the synthesis of silver nanoclusters (Ag NCs). For the first time, we found that the fluorescence intensity of T base-extended DNA-templated Ag NCs was over three times higher than the original C-riched DNA-templated Ag NCs. Moreover, a “turn-off” fluorescence sensor based on the brightest DNA-Ag NCs was constructed for the sensitive detection of dimethoate, ethion and phorate. Under strong alkaline conditions, the P-S bonds in three pesticides were broken, and the corresponding hydrolysates were obtained. The sulfhydryl groups in the hydrolyzed products formed Ag-S bonds with the silver atoms on the surface of Ag NCs, which resulted in the aggregation of Ag NCs, following the fluorescence quenching. The fluorescence sensor showed that the linear ranges were 0.1–4 ng/mL for dimethoate with a limit of detection (LOD) of 0.05 ng/mL, 0.3–2 µg/mL for ethion with a LOD of 30 ng/mL, and 0.03–0.25 µg/mL for phorate with a LOD of 3 ng/mL. Moreover, the developed method was successfully applied to the detection of dimethoate, ethion and phorate in lake water samples, indicating a potential application in OP detection. Full article
(This article belongs to the Special Issue DNA Biosensors for Highly Sensitive Detection)
Show Figures

Figure 1

13 pages, 2793 KiB  
Article
Computational Studies on the Interaction of Organophosphorus Pesticides with Acetylcholinesterase and Butyrylcholinesterase: Quantum Chemical Cluster Model and HSAB Approaches
by Shu-Chun Chi and Chia Ming Chang
Crystals 2023, 13(1), 153; https://doi.org/10.3390/cryst13010153 - 16 Jan 2023
Viewed by 2650
Abstract
In the present study, the interaction between organophosphorus pesticides and cholinesterase enzymes was investigated by quantum chemical cluster model and hard-soft acid-base (HSAB) approaches. The computational results of the equilibrium structure and reaction enthalpy were used to decipher the mechanism of organophosphorus pesticides [...] Read more.
In the present study, the interaction between organophosphorus pesticides and cholinesterase enzymes was investigated by quantum chemical cluster model and hard-soft acid-base (HSAB) approaches. The computational results of the equilibrium structure and reaction enthalpy were used to decipher the mechanism of organophosphorus pesticides coumaphos, dicrotophos, phorate, and terbufos, which interacted with the molecular cluster models of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. In addition, the HOMO-LUMO energy gap and the HSAB descriptors prove that AChE has outstanding electron acceptability, which is suitable as a biosensing material. In terms of the calculated electronic spectrum, because the energy level of the ground state and the excited state are changed after adding pesticides with enzymes, a significant red shift phenomenon will occur. Full article
(This article belongs to the Special Issue Theoretical Investigation on Non-covalent Interactions)
Show Figures

Figure 1

10 pages, 1063 KiB  
Communication
Effect of Phorate on the Development of Hyperglycaemia in Mouse and Resistance Genes in Intestinal Microbiota
by Tingting Cao, Yajie Guo, Dan Wang, Zhiyang Liu, Suli Huang, Changfeng Peng, Shaolin Wang, Yang Wang, Qi Lu, Fan Xiao, Zhaoyi Liang, Sijia Zheng, Jianzhong Shen, Yongning Wu, Ziquan Lv and Yuebin Ke
Antibiotics 2022, 11(11), 1584; https://doi.org/10.3390/antibiotics11111584 - 9 Nov 2022
Cited by 5 | Viewed by 1956
Abstract
Phorate is a systemic, broad-spectrum organophosphorus insecticide. Although it is commonly used worldwide, phorate, like other pesticides, not only causes environmental pollution but also poses serious threats to human and animal health. Herein, we measured the blood glucose concentrations of high-fat-diet-fed mice exposed [...] Read more.
Phorate is a systemic, broad-spectrum organophosphorus insecticide. Although it is commonly used worldwide, phorate, like other pesticides, not only causes environmental pollution but also poses serious threats to human and animal health. Herein, we measured the blood glucose concentrations of high-fat-diet-fed mice exposed to various concentrations of phorate (0, 0.005, 0.05, or 0.5 mg/kg); we also assessed the blood glucose concentrations of high-fat-diet-fed mice exposed to phorate; we also assessed the distribution characteristics of the resistance genes in the intestinal microbiota of these mice. We found that 0.005 and 0.5 mg/kg of phorate induced obvious hyperglycaemia in the high-fat-diet-fed mice. Exposure to phorate markedly reduced the abundance of Akkermansia muciniphila in the mouse intestine. The resistance genes vanRG, tetW/N/W, acrD, and evgS were significantly upregulated in the test group compared with the control group. Efflux pumping was the primary mechanism of drug resistance in the Firmicutes, Proteobacteria, Bacteroidetes, Verrucomicrobia, Synergistetes, Spirochaetes, and Actinobacteria found in the mouse intestine. Our findings indicate that changes in the abundance of the intestinal microbiota are closely related to the presence of antibiotic-resistant bacteria in the intestinal tract and the metabolic health of the host. Full article
Show Figures

Figure 1

11 pages, 9493 KiB  
Article
Fluorescence Assay for Detecting Four Organophosphorus Pesticides Using Fluorescently Labeled Aptamer
by He Li, Xue Huang, Jingcheng Huang, Mengyuan Bai, Mengjiao Hu, Yemin Guo and Xia Sun
Sensors 2022, 22(15), 5712; https://doi.org/10.3390/s22155712 - 30 Jul 2022
Cited by 11 | Viewed by 2695
Abstract
In this work, we reported a rapid and sensitive fluorescence assay in homogenous solution for detecting organophosphorus pesticides by using tetramethylrhodamine (TAMRA)-labeled aptamer and its complementary DNA (cDNA) with extended guanine (G) bases. The hybridization of cDNA and aptamer drew TAMRA close to [...] Read more.
In this work, we reported a rapid and sensitive fluorescence assay in homogenous solution for detecting organophosphorus pesticides by using tetramethylrhodamine (TAMRA)-labeled aptamer and its complementary DNA (cDNA) with extended guanine (G) bases. The hybridization of cDNA and aptamer drew TAMRA close to repeated G bases, then the fluorescence of TAMRA was quenched by G bases due to the photoinduced electron transfer (PET). Upon introducing the pesticide target, the aptamer bound to pesticide instead of cDNA because of the competition between pesticide and cDNA. Thus, the TAMRA departed from G bases, resulting in fluorescence recovery of TAMRA. Under optimal conditions, the limits of detection for phorate, profenofos, isocarbophos, and omethoate were 0.333, 0.167, 0.267, and 0.333 µg/L, respectively. The method was also used in the analysis of profenofos in vegetables. Our fluorescence design was simple, rapid, and highly sensitive, which provided a means for monitoring the safety of agricultural products. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

7 pages, 249 KiB  
Article
Suicide by Pesticide (Phorate) Ingestion: Case Report and Review of Literature
by Angela Simonelli, Anna Carfora, Pascale Basilicata, Bruno Liguori, Pasquale Mascolo, Fabio Policino, Massimo Niola and Carlo Pietro Campobasso
Toxics 2022, 10(5), 205; https://doi.org/10.3390/toxics10050205 - 21 Apr 2022
Cited by 12 | Viewed by 6425
Abstract
It has been estimated that approximately one in seven of all global suicides is due to pesticide self-poisoning, mostly in rural areas of developing countries. Organophosphorus (OP) compounds are a group of pesticides exerting their toxicological effects through non-reversible inhibition of the enzyme [...] Read more.
It has been estimated that approximately one in seven of all global suicides is due to pesticide self-poisoning, mostly in rural areas of developing countries. Organophosphorus (OP) compounds are a group of pesticides exerting their toxicological effects through non-reversible inhibition of the enzyme acetylcholinesterase (AChE). Among these compounds, phorate (thimet) is one of the most dangerous compounds, the use of which is restricted in many countries. A case of intentional suicide after phorate ingestion in a 24-year-old Bengali male is described. This is the second case of suicidal ingestion of phorate reported in the forensic literature, and the first presenting complete toxicological findings. Full article
(This article belongs to the Special Issue The Identification of Drug Abuse)
12 pages, 1553 KiB  
Article
Study of Ultrastructural Abnormalities in the Renal Cells of Cyprinus carpio Induced by Toxicants
by Sumayya Nazir, Md. Niamat Ali, Javeed Ahmad Tantray, Irfan Akram Baba, Arizo Jan, Simona Mariana Popescu, Bilal Ahamad Paray and Aneela Gulnaz
Toxics 2022, 10(4), 177; https://doi.org/10.3390/toxics10040177 - 2 Apr 2022
Cited by 7 | Viewed by 2701
Abstract
Transmission Electron Microscopic (TEM) assessments were performed on the renal cells of common carp Cyprinus carpio to observe the deleterious effects of two organophosphate insecticides, Phorate and Dimethoate. Pesticides such as Phorate and Dimethoate often pollute aquatic systems where they may negatively impact [...] Read more.
Transmission Electron Microscopic (TEM) assessments were performed on the renal cells of common carp Cyprinus carpio to observe the deleterious effects of two organophosphate insecticides, Phorate and Dimethoate. Pesticides such as Phorate and Dimethoate often pollute aquatic systems where they may negatively impact fish, but so far, the ultrastructural toxicity of these pesticides remains poorly understood. Here, we use Transmission Electron Microscopy (TEM) to determine how acute exposure to sublethal concentrations of these two pesticides may affect the renal cells of common carp Cyprinus carpio. For each insecticide, the fish were divided in four experimental conditions: a control and three different exposure concentrations of the pesticide. The Phorate treated fish were exposed to three sublethal concentrations of 0.2 mg/L, 0.4 mg/L, 0.6 mg/L for a duration of 24, 48 & 72 h. The dimethoate treated fish were exposed to three sublethal concentrations of 0.005 mL/L, 0.01 mL/L, 0.015 mL/L for a duration of 24, 48 and 72 h. The two-dimensional transmission electron microscopy revealed ultrastructural abnormalities in the treated fish renal cells when exposed to two toxicants including deformation in the glomerulus, vacuolization of cytoplasm, degenerative nucleus and damaged mitochondria. Furthermore, the ultrastructural abnormalities were more prominent with the increase in the concentrations of both the insecticides and also with their exposure period. Overall, these results provide important baseline data on the ultrastructural toxicity of Phorate and Dimethoate and will allow important follow-up studies to further elucidate the underlying cellular mechanisms of pesticide toxicity in wildlife. Full article
Show Figures

Figure 1

17 pages, 1913 KiB  
Article
Detection and Risk Assessments of Multi-Pesticides in Traditional Chinese Medicine Chuanxiong Rhizoma by LC/MS-MS and GC/MS-MS
by Delin Zhang, Yan Gou, Xingyu Yu, Mei Wang, Wen Yu, Juan Zhou, Wei Liu and Min Li
Molecules 2022, 27(3), 622; https://doi.org/10.3390/molecules27030622 - 18 Jan 2022
Cited by 23 | Viewed by 4261
Abstract
With the internationalization of traditional Chinese medicines (TCMs) and the increasing use of herbal medicines around the world, there are concerns over their safety. In recent years, there have been some sporadic reports of pesticide residues in Chuanxiong Rhizoma (CX), although the lack [...] Read more.
With the internationalization of traditional Chinese medicines (TCMs) and the increasing use of herbal medicines around the world, there are concerns over their safety. In recent years, there have been some sporadic reports of pesticide residues in Chuanxiong Rhizoma (CX), although the lack of systematic and comprehensive analyses of pesticide residues and evaluations of toxicological risks in human health has increased the uncertainty of the potential effects of pesticides exposure in humans. This study aimed to clarify the status of pesticide residues and to determine the health risks of pesticide residues in CX. The findings of this study revealed that 99 batches of CX samples contained pesticide residues ranging from 0.05 to 3013.17 μg/kg. Here, 6–22 kinds of pesticides were detected in each sample. Prometryn, carbendazim, dimethomorph, chlorpyrifos, chlorantraniliprole, pyraclostrobin, and paclobutrazol were the most frequently detected pesticides, with detection rates of 68.69–100%. Insecticides and fungicides accounted for 43.23% and 37.84% of the total pesticides detected, respectively. Here, 86.87% of the pesticide content levels were lower than 50 μg/kg, and a small number of samples contained carbofuran, dimethoate, and isofenphos-methyl exceeding the maximum residue levels (MRLs). A risk assessment based on the hazard quotient/hazard index (HQ/HI) approach revealed that the short-term, long-term, and cumulative risks of pesticide residues in CX are well below the levels that may pose a health risk. Worryingly, six banned pesticides (carbofuran, phorate sulfone, phorate-sulfoxide, isofenphos-methyl, terbufos-sulfone, and terbufoxon sulfoxide) were detected. This study has improved our understanding of the potential exposure risk of pesticide multi-residues in CX. The results of the study will have a positive impact on improving the quality and safety of CX and the development of MRLs for pesticide residues. Full article
Show Figures

Figure 1

11 pages, 2005 KiB  
Case Report
A Rare Case of Suicide by Ingestion of Phorate: A Case Report and a Review of the Literature
by Angelo Montana, Venerando Rapisarda, Massimiliano Esposito, Francesco Amico, Giuseppe Cocimano, Nunzio Di Nunno, Caterina Ledda and Monica Salerno
Healthcare 2021, 9(2), 131; https://doi.org/10.3390/healthcare9020131 - 29 Jan 2021
Cited by 20 | Viewed by 3691
Abstract
Phorate is a systemic organophosphorus pesticide (OP) that acts by inhibiting cholinesterases. Recent studies have reported that long-term low/moderate exposure to OP could be correlated with impaired cardiovascular and pulmonary function and other neurological effects. A 70-year-old farmer died after an intention ingestion [...] Read more.
Phorate is a systemic organophosphorus pesticide (OP) that acts by inhibiting cholinesterases. Recent studies have reported that long-term low/moderate exposure to OP could be correlated with impaired cardiovascular and pulmonary function and other neurological effects. A 70-year-old farmer died after an intention ingestion of a granular powder mixed with water. He was employed on a farm for over 50 years producing fruit and vegetables, and for about 20 years, he had also applied pesticides. In the last 15 years, he used phorate predominantly. The Phorate concentration detected in gastric contents was 3.29 µg/mL. Chronic exposure to phorate is experimentally studied by histopathological changes observed in the kidney. In the light of current literature, our case confirms that there is an association between renal damage and chronic exposure to phorate in a subject exposed for years to the pesticide. Autopsies and toxicological analyses play a key role in the reconstruction of the dynamics, including the cause of the death. Full article
(This article belongs to the Special Issue Forensic Science and Legal Medicine: A Multidisciplinary Puzzle!)
Show Figures

Figure 1

15 pages, 1685 KiB  
Article
Self-Assembled Three-Dimensional Microporous rGO/PNT/Fe3O4 Hydrogel Sorbent for Magnetic Preconcentration of Multi-Residue Insecticides
by Sheng Wang, Xiuqin Li, Ming Li, Xianjiang Li, Xiaomin Li, Shuangqing Li, Qinghe Zhang and Hongmei Li
Appl. Sci. 2020, 10(16), 5665; https://doi.org/10.3390/app10165665 - 15 Aug 2020
Cited by 12 | Viewed by 2718
Abstract
The purpose of this work was to develop a highly selective, sensitive, and reliable method for multi-residual analysis. A three-dimensional microporous reduced graphene oxide/polypyrrole nanotube/magnetite hydrogel (3D-rGOPFH) composite was synthesized and utilized as a magnetic solid-phase extraction (MSPE) sorbent to preconcentrate thirteen insecticides, [...] Read more.
The purpose of this work was to develop a highly selective, sensitive, and reliable method for multi-residual analysis. A three-dimensional microporous reduced graphene oxide/polypyrrole nanotube/magnetite hydrogel (3D-rGOPFH) composite was synthesized and utilized as a magnetic solid-phase extraction (MSPE) sorbent to preconcentrate thirteen insecticides, including five organophosphorus (isocarbophos, quinalphos, phorate, chlorpyrifos, and phosalone), two carbamates (pirimor and carbaryl), two triazoles (myclobutanil and diniconazole), two pyrethroids (lambda-cyhalothrin and bifenthrin), and two organochlorines (2, 4′-DDT and mirex), from vegetables, followed by gas chromatography-tandem mass spectrometry. This method exhibited several major advantages, including simultaneous enrichment of different types of insecticides, no matrix effect, high sensitivity, and ease of operation. This is ascribed to the beneficial effects of 3D-rGOPFH, including the large specific surface (237 m2 g−1), multiple adsorption interactions (hydrogen bonding, electrostatic, π–π stacking and hydrophobic interaction force), appropriate pore size distribution (1–10 nm), and the good paramagnetic property. Under the optimal conditions, the analytical figures of merit were obtained as: linear dynamic range of 0.1–100 ng g−1 with determination coefficients of 0.9975–0.9998; limit of detections of 0.006–0.03 ng g−1; and the intra-day and inter-day relative standard deviations were 2.8–7.1% and 3.5–8.8%, respectively. Recoveries were within the range of 79.2 to 109.4% for tomato, cucumber, and pakchoi samples at the fortification levels of 5, 25, and 50 ng g−1. This effective and robust method can be applied for determining multi-classes of insecticide residues in vegetables. Full article
(This article belongs to the Special Issue Advanced Analysis Techniques of Food Contaminants and Risk Assessment)
Show Figures

Graphical abstract

Back to TopTop