Assessment of Pesticide Contamination of Groundwater from Titu-Sarata Plain, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. UHPLC-Orbitrap-MS/MS Analysis of OPs
2.4. GC-ECD Analysis of OCPs
2.5. Environmental Risk Assessment
2.6. Human Health Risk Assessment
2.6.1. Non-Carcinogenic Risk Assessment
2.6.2. Carcinogenic Risk Assessment
3. Results
3.1. Occurrence and Distribution of Pesticides in the Groundwater Sample from Titu-Sarata Plain, Romania
3.2. Environmental Risk Assessment
3.3. Human Health Risk Assessment
3.3.1. Non-Carcinogenic Risk Assessment
3.3.2. Carcinogenic Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EPA | Environmental Protection Agency |
ERA | Environmental risk assessment |
USEPA | United States Environmental Protection Agency |
GC-ECD | Gas Chromatography coupled with an electron capture detector |
UHPLC-Orbitrap-MS/MS | Ultrahigh-Performance Liquid Chromatography coupled with Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spectrometry |
EUROSTAT | Statistical Office of the European Union |
OPs | Organophosphorus, carbamate, and triazine pesticides |
OCPs | Organochlorine pesticides |
ACN | Acetonitrile |
HQ | Hazard quotient |
HI | Hazard index |
IARC | International Agency for Research on Cancer |
PNEC | Predicted no-effect concentration |
RfD | Oral reference dose via oral ingestion |
RQ | Risk quotient |
IARC | International Agency for Research on Cancer |
ILCR | Incremental lifetime cancer risk |
References
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Damalas, C.A. Understanding benefits and risks of pesticide use. Sci. Res. Essays 2009, 4, 945–949. [Google Scholar]
- Maroni, M.; Fanetti, A.C.; Metruccio, F. Risk assessment and management of occupational exposure to pesticides in agriculture. La Med. Del Lav. 2006, 97, 430–437. [Google Scholar]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Ghodsi, S.; Esrafili, A.; Kalantary, R.R.; Gholami, M.; Sobhi, H.R. Synthesis and evaluation of the performance of g-C3N4/Fe3O4/Ag photocatalyst for the efficient removal of diazinon: Kinetic studies. J. Photochem. Photobiol. Chem. 2020, 389, 112279. [Google Scholar] [CrossRef]
- Li, Z. Spatiotemporal pattern models for bioaccumulation of pesticides in common herbaceous and woody plants. J. Environ. Manag. 2020, 276, 111334. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2021/1165. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_consumption_of_pesticides (accessed on 10 April 2025).
- Dumitrescu, C. Poluanti Organici; Bibliotheca: Targoviste, Romania, 2008; pp. 87–93. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating. pp. 329–490. Available online: https://www.who.int/publications/i/item/9789240045064 (accessed on 19 May 2025).
- Yue, N.; Wu, J.; Qi, W.; Su, R. Algae-derived biochar nanozyme array for discrimination and detection of multiple pesticides in soil, water and food. Food Chem. 2024, 438, 137946. [Google Scholar] [CrossRef] [PubMed]
- Kalantary, R.R.; Barzegar, G.; Jorfi, S. Monitoring of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers using Monte Carlo simulation in Behbahan City, Iran. Chemosphere 2022, 286, 131667. [Google Scholar] [CrossRef]
- Längin, A.; Schuster, A.; Kümmerer, K. Chemicals in the environment—The need for a clear nomenclature: Parent compounds, metabolites, transformation products and their elimination. CLEAN—Soil Air Water 2008, 36, 349–350. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Stockholm Convention on Persistent Organic Pollutants. Available online: https://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx (accessed on 19 May 2025).
- Khezami, F.; Gómez-Navarro, O.; Barbieri, M.V.; Khiari, N.; Chkirbene, A.; Chiron, S.; Khadhar, S.; Pérez, S. Occurrence of contaminants of emerging concern and pesticides and relative risk assessment in Tunisian groundwater. Sci. Total Environ. 2024, 906, 167319. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Kimura, S.Y. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2019, 92, 473–505. [Google Scholar] [CrossRef]
- Rastkari, N.; Ahmadkhaniha, R.; Soleymani, F.; Ravanipour, M. Pesticide residues in drinking water treatment plants and human health risk assessment: A case study from Northern Iran. Environ. Geochem. Health 2024, 46, 68. [Google Scholar] [CrossRef] [PubMed]
- Bempah, C.K.; Ewusi, A. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana. Environ. Monit. Assess. 2016, 188, 261. [Google Scholar] [CrossRef]
- Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ. Geochem. Health 2014, 36, 169–182. [Google Scholar] [CrossRef]
- Zhong, T.; Xue, D.; Zhao, L.; Zhang, X. Concentration of heavy metals in vegetables and potential health risk assessment in China. Environ. Geochem. Health 2018, 40, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Risk Assessment. Training for the Health Sector. Available online: https://ec.europa.eu/health/ph_projects/2003/action3/docs/2003_3_09_a23_en.pdf (accessed on 23 April 2025).
- Ahmadi, M.; Akhbarizadeh, R.; Jaafarzadeh, N.; Barzegar, G.; Jorfi, S. Geochemical determination and pollution assessment of heavy metals in agricultural soils of south western of Iran. J. Environ. Health Sci. Eng. 2019, 17, 657–669. [Google Scholar] [CrossRef]
- Husain Khan, A.; Abdul Aziz, H.; Khan, N.A.; Dhingra, A.; Ahmed, S.; Naushad, M. Effect of seasonal variation on the occurrences of high-risk pharmaceutical in drain-laden surface water: A risk analysis of Yamuna River. Sci. Total Environ. 2021, 794, 148484. [Google Scholar] [CrossRef]
- Ferencs, L.; Balog, A. A Pesticide survey in soil, water and foodstuffs from Central Romania. Carpathian J. Earth Environ. Sci. 2010, 5, 111–118. [Google Scholar]
- Ciucure, C.T.; Geana, E.I.; Arseni, M.; Ionete, R.E. Status of different anthropogenic organic pollutants accumulated in sediments from Olt River Basin, Romania: From distribution and sources to risk assessment. Sci. Total Environ. 2023, 886, 163967. [Google Scholar] [CrossRef]
- CORINE Land Cover 2018 (Vestor/Raster 100m), Europe, 6-Yearly. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 10 March 2025).
- EPA Groundwater Sampling-Operating Procedure-U.S. Environmental Protection Agency. Science and Ecosystem Support Division, Operating Procedure—Groundwater Sampling. 2017. Available online: https://www.epa.gov/sites/production/files/2017-07/documents/groundwater_sampling301_af.r4.pdf (accessed on 10 March 2025).
- Barbieri, M.V.; Peris, A.; Postigo, C.; Moya-Garces, A.; Monllor-Alcaraz, L.S.; Rambla-Alegre, M.; Eljarrat, E.; de Alda, M.L. Evaluation of the occurrence and fate of pesticides in a typical Mediterranean delta ecosystem (Ebro River Delta) and risk assessment for aquatic organisms. Environ. Pollut. 2021, 274, 115813. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wu, Y.; Shi, L.; Song, J.; Jiang, Y. Organochlorine pesticides and polychlorinated biphenyls in sediments of the Lanzhou reach of Yellow River (China): Spatial distribution, sources and risk assessment. Mar. Pollut. Bull. 2024, 208, 116962. [Google Scholar] [CrossRef] [PubMed]
- NORMAN Ecotoxicology Database. Available online: https://www.norman-network.com/nds/ecotox/ (accessed on 10 March 2025).
- Ebrahimzadeh, G.; Alimohammadi, M.; Rezaei Kahkha, M.R.; Mahvi, A.H. Contamination level and human non-carcinogenic risk assessment of diazinon pesticide residue in drinking water resources—A case study, IRAN. Int. J. Environ. Anal. Chem. 2020, 102, 4726–4737. [Google Scholar] [CrossRef]
- Ravanipour, M.; Nabipour, I.; Yunesian, M.; Rastkari, N.; Mahvi, A.H. Exposure sources of polychlorinated biphenyls (PCBs) and health risk assessment: A systematic review in Iran. Environ. Sci. Pollut. Res. 2022, 29, 55437–55456. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A). 1989. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf (accessed on 10 March 2025).
- Wu, B.; Zhao, D.Y.; Jia, H.Y.; Zhang, Y.; Zhang, X.X.; Cheng, S.P. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bull. Environ. Contam. Toxicol. 2009, 82, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Hubal, E.A.C.; de Wet, T.; Du Toit, L.; Firestone, M.P.; Ruchirawat, M.; van Engelen, J.; Vickers, C. Identifying important life stages for monitoring and assessing risks from exposures to environmental contaminants: Results of a World Health Organization review. Regul. Toxicol. Pharmacol. 2014, 69, 113–124. [Google Scholar] [CrossRef]
- Mekonen, S.; Argaw, R.; Simanesew, A.; Houbraken, M.; Senaeve, D.; Ambelu, A.; Spanoghe, P. Pesticide residues in drinking water and associated risk to consumers in Ethiopia. Chemosphere 2016, 162, 252–260. [Google Scholar] [CrossRef]
- Tinning, K.; Acworth, J. Make your Best Guess: An updated method for paediatric weight estimation in emergencies. Emerg. Med. Australas. 2007, 19, 528–534. [Google Scholar] [CrossRef]
- USEPA. Chapter 7: Characterizing Risk and Hazard. U.S. EPA Region 6. 2005. Available online: https://archive.epa.gov/epawaste/hazard/tsd/td/web/pdf/05hhrap7.pdf (accessed on 10 March 2025).
- Bamuwamye, M.; Ogwok, P.; Tumuhairwe, V. Cancer and non-cancer risks associated with heavy metal exposures from street foods: Evaluation of roasted meats in an urban setting. J. Environ. Pollut. Hum. Health 2015, 3, 24–30. [Google Scholar]
- Huang, M.; Zhou, S.; Sun, B.; Zhao, Q. Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. Sci. Total Environ. 2008, 405, 54–61. [Google Scholar] [CrossRef]
- Meftaul, I.M.; Venkateswarlu, K.; Annamalai, P.; Parven, A.; Megharaj, M. Degradation of four pesticides in five urban landscape soils: Human and environmental health risk assessment. Environ. Geochem. Health 2022, 45, 1599–1614. [Google Scholar]
- Guerra, F.; Trevizam, A.R.; Muraoka, T.; Marcante, N.C.; Canniatti-Brazaca, S.G. Heavy metals in vegetables and potential risk for human health. Sci. Agric. 2012, 69, 54–60. [Google Scholar] [CrossRef]
- Sultana, M.S.; Rana, S.; Yamazaki, S.; Aono, T.; Yoshida, S. Health risk assessment for carcinogenic and non-carcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. Cogent Environ. Sci. 2017, 3, 1291107. [Google Scholar] [CrossRef]
- European Commission. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast). Official Journal of the European Union. 2020. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC201243/ (accessed on 25 April 2025).
- US EPA. Baseline Human Health Risk Assessment: Vasquez Boulevard and I-70 Superfund Site, Denver, CO; U.S. Environmental Protection Agency: Denver, CO, USA, 2001.
- Dragus, A.B. Assessment of the Incidence of Triazine Pesticides in Environmental Samples and Food Products. Ph.D. Thesis, Universitatea Babeș-Bolyai din Cluj-Napoca, Cluj-Napoca, Romania, 2015. Available online: https://teze.doctorat.ubbcluj.ro/doctorat/teza/fisier/2513 (accessed on 19 May 2025).
- OLAF Teams Up with Europol Against Illegal Pesticides. Available online: https://anti-fraud.ec.europa.eu/media-corner/news/olaf-teams-europol-against-illegal-pesticides-2021-06-17_en (accessed on 17 May 2025).
OCPs | Linearity (µg/L) | Correlation Coefficient (r2) | Recovery (%) | LOD (µg/L) | LOQ (µg/L) |
---|---|---|---|---|---|
Aldrin | 2.5–25 | 0.9995 | 86.8 | 0.0116 | 0.0386 |
alfa-Endosulfan | 2.5–25 | 0.9993 | 103.5 | 0.0101 | 0.0336 |
pp’DDE | 2.5–25 | 0.9967 | 97.5 | 0.0104 | 0.0346 |
Dieldrin | 2.5–25 | 0.9968 | 81.5 | 0.0110 | 0.0366 |
Pesticides | Dichloroprop | Aldicarb Sulfoxide | Phosdrin | Carbaryl | Simazine | Atrazine | Phorate | pp’DDE | Alfa Endosulfan |
---|---|---|---|---|---|---|---|---|---|
freshwater (µg/L) | 1 | 0.69 | 0.00017 | 0.23 | 1 | 0.6 | 0.0033 | 0.0004 | 0.005 |
Location | Dichloroprop | Aldicarb Sulfoxide | Phosdrin | Carbaryl | Simazine | Atrazine | Phorate | pp’DDE | Total |
---|---|---|---|---|---|---|---|---|---|
Baraitaru | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 89 | 89 |
Brezoaia | 0 | 0 | 100 | 0.4 | 0.1 | 0.7 | 59 | 0 | 160.2 |
Ciocanesti | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 27 |
Crovu | 0.0 | 0.0 | 1023.5 | 0.0 | 0.0 | 0.0 | 12.7 | 0 | 1036.2 |
Gageni | 0.0 | 0.0 | 264.7 | 0.0 | 0.0 | 0.0 | 120.9 | 0 | 388.6 |
Jilavele | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 91 | 91 |
Lunguletu | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 96 | 96 |
Niculesti | 0.0 | 0.0 | 88.2 | 0.0 | 0.0 | 0.0 | 210.3 | 95 | 393.5 |
Odaia Turcului | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 125 | 125 |
Olarii Vechi | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 136 | 136 |
Predesti | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 129 | 129 |
Palanca | 0.0 | 0.2 | 17.6 | 0.0 | 0.0 | 0.0 | 4.2 | 76 | 98 |
Romanesti | 0.1 | 0.0 | 17.6 | 0 | 0 | 0.0 | 1.5 | 68 | 87.2 |
Spataru | 0.0 | 0.1 | 58.8 | 0.0 | 0.0 | 0.0 | 2.4 | 0 | 61.3 |
Suseni Bilciuresti | 0.0 | 0.0 | 958.8 | 0.0 | 0.0 | 0.0 | 20.6 | 117 | |
Sicrita | 0.0 | 0.0 | 741.1 | 0.0 | 0.0 | 0.0 | 109.0 | 0 | |
Salcuta | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 112 | 112 |
Pesticide | Oral (mg/kg/day) | CSF (mg/kg/day)−1 |
---|---|---|
Aldrin | 3 × 10−5 | 17 |
Dieldrin | 5 × 10−5 | 16 |
pp’DDT | 5 × 10−4 | 0.34 |
Dichloroprop | - | - |
Aldicarb sulfoxide | 1 × 10−3 | - |
Phosdrin | - | - |
Carbaryl | 1 × 10−1 | - |
Simazine | 5 × 10−3 | 0.12 |
Atrazine | 3.5 × 10−2 | 0.222 |
Phorate | 2 × 10−4 | - |
Location | Infants | Children | Adults |
---|---|---|---|
Brezoaia | 1 × 10−4 | 5 × 10−5 | 2.9 × 10−5 |
Crovu | 2.3 × 10−5 | 1 × 10−5 | 6 × 10−6 |
Gageni | 2.1 × 10−4 | 10 × 10−5 | 5.7 × 10−5 |
Niculesti | 3.7 × 10−4 | 1.7 × 10−4 | 10 × 10−5 |
Palanca | 2.3 × 10−5 | 1 × 10−5 | 6 × 10−6 |
Romanesti | 7.5 × 10−6 | 3.5 × 10−6 | 2 × 10−6 |
Spataru | 1.8 × 10−5 | 8.5 × 10−6 | 4.9 × 10−6 |
Suseni Bilciuresti | 3.7 × 10−5 | 1.7 × 10−5 | 9.9 × 10−6 |
Sicrita | 1.9 × 10−4 | 9 × 10−5 | 5.1 × 10−5 |
Location | Infants | Children | Adults |
---|---|---|---|
Baba Ana | 1.8 × 10−4 | 8.6 × 10−5 | 4.9 × 10−5 |
Brezoaia | 2.7 × 10−4 | 1.2 × 10−4 | 7.4 × 10−5 |
Baraitaru | 2 × 10−4 | 9.5 × 10−5 | 5.4 × 10−5 |
Ciocanesti | 1.2 × 10−4 | 6 × 10−5 | 3.3 × 10−5 |
Cosereni | 9.5 × 10−4 | 4.4 × 10−4 | 2.5 × 10−4 |
Fanari | 1.9 × 10−4 | 9 × 10−5 | 5.1 × 10−5 |
Jilavele | 7.7 × 10−6 | 3.6 × 10−6 | 2 × 10−6 |
Lunguletu | 8.2 × 10−6 | 3.8 × 10−6 | 2.2 × 10−6 |
Niculesti | 8.1 × 10−6 | 3.7 × 10−6 | 2.2 × 10−6 |
Odaia Turcului | 1 × 10−5 | 5 × 10−6 | 2.8 × 10−6 |
Olarii Vechi | 1.1 × 10−5 | 5.4 × 10−6 | 3.1 × 10−6 |
Predesti | 1.1 × 10−5 | 5.1 × 10−6 | 2.9 × 10−6 |
Palanca | 6.5 × 10−6 | 3 × 10−6 | 1.7 × 10−6 |
Romanesti | 5.8 × 10−6 | 2.7 × 10−6 | 1.5 × 10−6 |
Suseni Bilciuresti | 1 × 10−5 | 4.6 × 10−6 | 2.6 × 10−6 |
Salcuta | 9.6 × 10−6 | 4.5 × 10−6 | 2.5 × 10−6 |
Location | ILCR Infants | ILCR Children | ILCR Adults |
---|---|---|---|
Baba Ana | 9.4 × 10−5 | 4.4 × 10−5 | 2.5 × 10−5 |
Brezoaia | 1.4 × 10−4 | 6.6 × 10−5 | 3.7 × 10−5 |
Baraitaru | 1 × 10−4 | 4.7 × 10−5 | 2.7 × 10−5 |
Ciocanesti | 6.4 × 10−5 | 3 × 10−5 | 1.7 × 10−5 |
Cosereni | 7.1 × 10−4 | 3.3 × 10−4 | 1.8 × 10−4 |
Fanari | 9.8 × 10−5 | 4.5 × 10−5 | 2.6 × 10−5 |
Jilavele | 1.3 × 10−6 | 6.1 × 10−7 | 3.5 × 10−7 |
Lunguletu | 1.4 × 10−6 | 6.5 × 10−7 | 3.7 × 10−7 |
Niculesti | 1.3 × 10−6 | 6.4 × 10−7 | 3.7 × 10−7 |
Odaia Turcului | 1.8 × 10−6 | 8.5 × 10−7 | 4.9 × 10−7 |
Olarii Vechi | 1.9 × 10−6 | 9.2 × 10−7 | 5.3 × 10−7 |
Predesti | 1.8 × 10−6 | 8.7 × 10−7 | 5 × 10−7 |
Palanca | 1.1 × 10−6 | 5.1 × 10−7 | 3 × 10−7 |
Romanesti | 9.9 × 10−7 | 4.6 × 10−7 | 2.6 × 10−7 |
Suseni Bilciuresti | 1.7 × 10−6 | 7.9 × 10−7 | 4.6 × 10−7 |
Salcuta | 1.6 × 10−6 | 7.6 × 10−7 | 4.4 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitrescu, C.; Stihi, C.; Costinel, D.; Geana, E.I.; Ciucure, C.T.; Popescu, D.I.; Tanislav, D.; Bretcan, P. Assessment of Pesticide Contamination of Groundwater from Titu-Sarata Plain, Romania. Appl. Sci. 2025, 15, 5880. https://doi.org/10.3390/app15115880
Dumitrescu C, Stihi C, Costinel D, Geana EI, Ciucure CT, Popescu DI, Tanislav D, Bretcan P. Assessment of Pesticide Contamination of Groundwater from Titu-Sarata Plain, Romania. Applied Sciences. 2025; 15(11):5880. https://doi.org/10.3390/app15115880
Chicago/Turabian StyleDumitrescu, Crinela, Claudia Stihi, Diana Costinel, Elisabeta Irina Geana, Corina Teodora Ciucure, Diana Ionela Popescu (Stegarus), Danut Tanislav, and Petre Bretcan. 2025. "Assessment of Pesticide Contamination of Groundwater from Titu-Sarata Plain, Romania" Applied Sciences 15, no. 11: 5880. https://doi.org/10.3390/app15115880
APA StyleDumitrescu, C., Stihi, C., Costinel, D., Geana, E. I., Ciucure, C. T., Popescu, D. I., Tanislav, D., & Bretcan, P. (2025). Assessment of Pesticide Contamination of Groundwater from Titu-Sarata Plain, Romania. Applied Sciences, 15(11), 5880. https://doi.org/10.3390/app15115880