Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = phloroglucinol degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7493 KiB  
Article
Carbon-Coated Magnetic Catalysts for Enhanced Degradation of Nitrophenols: Stability and Efficiency in Catalytic Wet Peroxide Oxidation
by Arthur P. Baldo, Ana Júlia B. Bezerra, Adriano S. Silva, Ana Paula Ferreira, Fernanda F. Roman, Ihsan Çaha, Manuel Bañobre-López, Francis Leonard Deepak and Helder T. Gomes
Catalysts 2025, 15(4), 376; https://doi.org/10.3390/catal15040376 - 11 Apr 2025
Viewed by 701
Abstract
Nitrophenols are persistent organic pollutants that pose serious environmental and health risks due to their toxic and lipophilic nature. Their persistence arises from strong aromatic stability and resistance to biodegradation, while their lipophilicity facilitates bioaccumulation, exacerbating ecological and human health concerns. To address [...] Read more.
Nitrophenols are persistent organic pollutants that pose serious environmental and health risks due to their toxic and lipophilic nature. Their persistence arises from strong aromatic stability and resistance to biodegradation, while their lipophilicity facilitates bioaccumulation, exacerbating ecological and human health concerns. To address this challenge, this study focuses on the synthesis and characterization of two different types of hybrid multi-core magnetic catalysts: (i) cobalt ferrite (Co-Fe2O4), which exhibits ferrimagnetic properties, and (ii) magnetite (Fe3O4), which demonstrates close superparamagnetic behavior and is coated with a novel and less hazardous phloroglucinol–glyoxal-derived resin. This approach aims to enhance catalytic efficiency while reducing the environmental impact, offering a sustainable solution for the degradation of nitrophenols in aqueous matrices. Transmission electron microscopy (TEM) images revealed the formation of a multi-core shell structure, with carbon layer sizes of 6.6 ± 0.7 nm for cobalt ferrite and 4.2 ± 0.2 nm for magnetite. The catalysts were designed to enhance the stability and performance in catalytic wet peroxide oxidation (CWPO) processes using sol–gel and solution combustion synthesis methods, respectively. In experiments of single-component degradation, the carbon-coated cobalt ferrite (CoFe@C) catalyst achieved 90% removal of 2-nitrophenol (2-NP) and 96% of 4-nitrophenol (4-NP), while carbon-coated magnetite (Fe3O4@C) demonstrated similar efficiency, with 86% removal of 2-NP and 94% of 4-NP. In the multi-component system, CoFe@C exhibited the highest catalytic activity, reaching 96% removal of 2-NP, 99% of 4-NP, and 91% decomposition of H2O2. No leaching of iron was detected in the coated catalysts, whereas the uncoated materials exhibited similar and significant leaching (CoFe: 5.66 mg/L, Fe3O4: 12 mg/L) in the single- and multi-component system. This study underscores the potential of hybrid magnetic catalysts for sustainable environmental remediation, demonstrating a dual-function mechanism that enhances catalytic activity and structural stability. Full article
(This article belongs to the Special Issue Carbon-Based Catalysts to Address Environmental Challenges)
Show Figures

Figure 1

16 pages, 4512 KiB  
Article
Direct In Situ Conversion of Both Lignin and Hemicellulose into Single Functional Biopolymers via Biomass Fractionation Process
by Caiyun Liu, Shuzhen Ni, Zhaojiang Wang, Yingjuan Fu, Menghua Qin and Yongchao Zhang
Polymers 2025, 17(8), 1029; https://doi.org/10.3390/polym17081029 - 10 Apr 2025
Viewed by 512
Abstract
During the conventional biomass fractionation, the degradation and dissolution of lignin and hemicellulose result in a complex extract which remains very challenging for the thorough separation and purification of a wide variety of fractionated products, limiting their further utilization. Herein, we proposed a [...] Read more.
During the conventional biomass fractionation, the degradation and dissolution of lignin and hemicellulose result in a complex extract which remains very challenging for the thorough separation and purification of a wide variety of fractionated products, limiting their further utilization. Herein, we proposed a facile and efficient strategy for fractionating biomass and simultaneously in situ converting of both lignin and hemicellulose into single products using a formic acid–phloroglucinol system. The introduced phloroglucinol could react with lignin fragments and hemicellulose-derived products, and the generated intermediate product from hemicellulose can be further condensed with lignin fragments, finally forming single lignin-based functional biopolymers containing heterocyclic structures. Only small amounts of hemicellulosic derivatives, such as oligosaccharides, monosaccharides, furfural, and 5-HMF, were detected in the extracted solution, indicating a highly directional and effective in situ conversion process of hemicellulose. The constructed specific structures on fabric surfaces by using the chelation between lignin-based functional biopolymers and metal ions achieved the preparation of functional fabrics with stable hydrophobicity. The dynamic contact angle of water droplets on the surface of prepared fabric only decreased from 122° to 116.8° over 30 min. This work strategy provides an ideal route to maximize the utilization of both lignin and hemicellulose without involving complex separation and purification procedures. This strategy is the first demonstration of using the targeted fractionation system to achieve the simultaneous conversion of hemicellulose and lignin into single functional biopolymers directly from lignocellulosic biomass. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

18 pages, 5203 KiB  
Article
Advancing Quantification of Water-Extractable Arabinoxylan in Beer: A High-Throughput Approach
by Julia Steiner, Michael Kupetz and Thomas Becker
Polymers 2023, 15(19), 3959; https://doi.org/10.3390/polym15193959 - 30 Sep 2023
Cited by 5 | Viewed by 2074
Abstract
Water-extractable arabinoxylan (WEAX) may cause major problems during clarification processes in a brewery owing to its ability to form gel networks. However, high WEAX contents can also enhance the nutritional quality of the final product as they play an important role in the [...] Read more.
Water-extractable arabinoxylan (WEAX) may cause major problems during clarification processes in a brewery owing to its ability to form gel networks. However, high WEAX contents can also enhance the nutritional quality of the final product as they play an important role in the human diet. Therefore, precise quantification of WEAX is required. Current methods are very time- and resource-consuming as well as limited in the number of samples and in some cases provide low accuracy. Thus, a reproducible high-throughput method for the quantification of WEAX optimized for beer was developed, reaching recovery rates (RRs) of almost 100%. The assay is based on Douglas’s colorimetric method. Hydrolysis was conducted using glacial acetic acid to induce the formation of red color complexes resulting from the interaction between pentose degradation products and phloroglucinol. The method was successfully transferred to a multi-mode microplate reader to minimize the loss of color intensity over time and to obtain a high throughput. By using 96-well plates, up to 40% of the previous analysis time could be saved, and a larger number of samples could be analyzed in one batch. The collected data determined xylose as an optimal calibration standard due to high accuracy and reproducibility. The respective AX control standards showed RR within the range of 95–105% without exception. To validate and show the ruggedness of the modified method, WEAX concentration in seven commercial German beers (e.g., lager, pilsner, wheat beer, non-alcoholic beer) was quantified. Interfering hexose sugars that lead to measurement errors when analyzing samples with high amounts of fermentable sugars (e.g., non-alcoholic beer produced by limited fermentation) were eliminated by Saccharomyces diastaticus fermentation. Further investigations were carried out by means of LC-MS in order to obtain additional information about the reddish product in the hydrolyzed samples. In this context, C16H12O6 could be identified as one of numerous condensation products, contributing to the coloring. The collected data showed the impact of diverse factors on the measured AX concentration and helped optimize the experimental procedure for a high sample throughput with precise and highly reproducible results. The proposed quantification method should be primarily used in completely fermented finished beer to emphasize the time aspect. Wort samples and non-alcoholic beer produced by limited fermentation can be also analyzed, but only after fermentation with S. diastaticus. Full article
Show Figures

Figure 1

16 pages, 2801 KiB  
Article
Ameliorative Effects of Anthocyanin Metabolites on Western Diet-Induced NAFLD by Modulating Co-Occurrence Networks of Gut Microbiome
by Hironobu Nakano, Kozue Sakao, Koji Wada and De-Xing Hou
Microorganisms 2023, 11(10), 2408; https://doi.org/10.3390/microorganisms11102408 - 27 Sep 2023
Cited by 2 | Viewed by 1941
Abstract
Anthocyanins (Acn) have been reported to have preventive effects on Western diet (WD)-induced non-alcoholic fatty liver disease (NAFLD). However, the amount of Acn that reached the bloodstream were less than 1%, suggesting that anthocyanin metabolites (Acn-M) in the gut may contribute to their [...] Read more.
Anthocyanins (Acn) have been reported to have preventive effects on Western diet (WD)-induced non-alcoholic fatty liver disease (NAFLD). However, the amount of Acn that reached the bloodstream were less than 1%, suggesting that anthocyanin metabolites (Acn-M) in the gut may contribute to their in vivo effects. This study is focused on a gut microbiota investigation to elucidate the effect of two major Acn-M, protocatechuic acid (PC) and phloroglucinol carboxaldehyde (PG), on NAFLD prevention. C57BL/6N male mice were divided into five groups and fed with a normal diet (ND), WD, WD + 0.5% PC, WD + 0.5% PG and WD + a mixture of 0.25% PC + 0.25% PG (CG) for 12 weeks. The results revealed that WD-fed mice showed a significant increase in final body weight, epididymis fat weight, liver weight and fat accumulation rate, serum total cholesterol, alanine aminotransferase, monocyte chemoattractant protein 1, and 2-thiobarbituric acid reactive substances. At the same time, these indices were significantly decreased by Acn-M in the order of PG, CG > PC. In particular, PG significantly decreased serum glucose and insulin resistance. Gut microbiome analysis revealed that PG significantly increased the relative abundance of Parabacteroides, Prevotella, Prevotella/Bacteroides ratio, and upregulated glucose degradation pathway. Interestingly, the co-occurrence networks of Lachnospiraceae and Desulfovibrionaceae in the PC and PG groups were similar to the ND group and different to WD group. These data suggest that PC and PG were able to recover the gut microbiome networks and functions from dysbiosis caused by WD. Therefore, PG might act as a master metabolite for anthocyanins and prevent WD-induced NAFLD and gut dysbiosis. Full article
(This article belongs to the Special Issue Gut Microbiome and Functional Foods)
Show Figures

Figure 1

16 pages, 3470 KiB  
Article
Whole Genome Sequence Analysis of Cupriavidus necator C39, a Multiple Heavy Metal(loid) and Antibiotic Resistant Bacterium Isolated from a Gold/Copper Mine
by Zhenchen Xie, Dan Wang, Ibtissem Ben Fekih, Yanshuang Yu, Yuanping Li, Hend Alwathnani, Martin Herzberg and Christopher Rensing
Microorganisms 2023, 11(6), 1518; https://doi.org/10.3390/microorganisms11061518 - 7 Jun 2023
Cited by 6 | Viewed by 3172
Abstract
Here a multiple heavy metal and antibiotic resistant bacterium Cupriavidus necator C39 (C. necator C39) was isolated from a Gold-Copper mine in Zijin, Fujian, China. C. necator C39 was able to tolerate intermediate concentrations of heavy metal(loid)s in Tris Minimal (TMM) Medium [...] Read more.
Here a multiple heavy metal and antibiotic resistant bacterium Cupriavidus necator C39 (C. necator C39) was isolated from a Gold-Copper mine in Zijin, Fujian, China. C. necator C39 was able to tolerate intermediate concentrations of heavy metal(loid)s in Tris Minimal (TMM) Medium (Cu(II) 2 mM, Zn(II) 2 mM, Ni(II) 0.2 mM, Au(III) 70 μM and As(III) 2.5 mM). In addition, high resistance to multiple antibiotics was experimentally observed. Moreover, strain C39 was able to grow on TMM medium containing aromatic compounds such as benzoate, phenol, indole, p-hydroxybenzoic acid or phloroglucinol anhydrous as the sole carbon sources. The complete genome of this strain revealed 2 circular chromosomes and 1 plasmid, and showed the closest type strain is C. necator N-1T based on Genome BLAST Distance Phylogeny. The arsenic-resistance (ars) cluster GST-arsR-arsICBR-yciI and a scattered gene encoding the putative arsenite efflux pump ArsB were identified on the genome of strain C39, which thereby may provide the bacterium a robust capability for arsenic resistance. Genes encoding multidrug resistance efflux pump may confer high antibiotic resistance to strain C39. Key genes encoding functions in degradation pathways of benzene compounds, including benzoate, phenol, benzamide, catechol, 3- or 4-fluorobenzoate, 3- or 4-hydroxybenzoate and 3,4-dihydroxybenzoate, indicated its potential for degrading those benzene compounds. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

32 pages, 4087 KiB  
Article
Cytotoxic and Antibacterial Prenylated Acylphloroglucinols from Hypericum olympicum L.
by Yana Ilieva, Georgi Momekov, Maya Margaritova Zaharieva, Teodor Marinov, Zlatina Kokanova-Nedialkova, Hristo Najdenski and Paraskev T. Nedialkov
Plants 2023, 12(7), 1500; https://doi.org/10.3390/plants12071500 - 29 Mar 2023
Cited by 2 | Viewed by 3545
Abstract
Two new bicyclo[3.3.1]nonane type bicyclic polyprenylated acylphloroglucinol derivatives (BPAPs), olympiforin A and B as well as three known prenylated phloroglucinols, were isolated from the aerial parts of Hypericum olympicum L. The structures of the isolated compounds were established by means of spectral techniques (HRESIMS [...] Read more.
Two new bicyclo[3.3.1]nonane type bicyclic polyprenylated acylphloroglucinol derivatives (BPAPs), olympiforin A and B as well as three known prenylated phloroglucinols, were isolated from the aerial parts of Hypericum olympicum L. The structures of the isolated compounds were established by means of spectral techniques (HRESIMS and 1D and 2D NMR). All compounds were tested on a panel of human tumor (MDA-MB-231, EJ, K-562, HL-60 and HL-60/DOX) and non- tumorigenic (HEK-293 and EA.hy926) cell lines using the MTT assay. All tested compounds exerted significant in vitro cytotoxicity with IC50 values ranging from 1.2 to 24.9 μM and from 0.9 to 34 μM on tumor and non-cancerous cell lines, respectively. Most of the compounds had good selectivity and were more cytotoxic to the tumor cell lines than to the normal ones. A degradation of the precursor caspase 9 for some of the compounds was observed; therefore, the intrinsic pathway of apoptosis is the most likely mechanism of cytotoxic activity. The BPAPs were examined for antibacterial and antibiofilm activity through the broth microdilution method and the protocol of Stepanović. They showed a moderate effect against Enterococcus faecalis and Streptococcus pyogenes but a very profound activity against Staphylococcus aureus with minimum inhibitory concentrations (MIC) in the range of 0.78–2 mg/L. Olympiforin B also had a great effect against methicillin-resistant S. aureus (MRSA) with an MIC value of 1 mg/L and a very significant antibiofilm activity on that strain with a minimum biofilm inhibition concentration (MBIC) value of 0.5 mg/L. The structures of the isolated compounds were in silico evaluated using ADME and drug likeness tests. Full article
Show Figures

Graphical abstract

16 pages, 2993 KiB  
Article
Effect of Cocoa Roasting on Chocolate Polyphenols Evolution
by Alessandro La Mantia, Federica Ianni, Aurélie Schoubben, Marco Cespi, Klemen Lisjak, Davide Guarnaccia, Roccaldo Sardella and Paolo Blasi
Antioxidants 2023, 12(2), 469; https://doi.org/10.3390/antiox12020469 - 13 Feb 2023
Cited by 8 | Viewed by 5314
Abstract
Cocoa and chocolate antioxidants might contribute to human health through, for instance, blood flow improvement or blood pressure and glycemia reduction, as well as cognitive function improvement. Unfortunately, polyphenol content is reduced during cocoa fermentation, drying, roasting and all the other phases involved [...] Read more.
Cocoa and chocolate antioxidants might contribute to human health through, for instance, blood flow improvement or blood pressure and glycemia reduction, as well as cognitive function improvement. Unfortunately, polyphenol content is reduced during cocoa fermentation, drying, roasting and all the other phases involved in the chocolate production. Here, we investigated the evolution of the polyphenol content during all the different steps of chocolate production, with a special emphasis on roasting (3 different roasting cycles with 80, 100, and 130 °C as maximum temperature). Samples were followed throughout all processes by evaluating the total polyphenols content, the antioxidant power, the epicatechin content, and epicatechin mean degree of polymerization (phloroglucinol adducts method). Results showed a similar trend for total polyphenol content and antioxidant power with an unexpected bell-shaped curve: an increase followed by a decrease for the three different roasting temperatures. At the intermediate temperature (100 °C), the higher polyphenol content was found just after roasting. The epicatechin content had a trend similar to that of total polyphenol content but, interestingly, the mean degree of polymerization data had the opposite behavior with some deviation in the case of the highest temperature, probably due to epicatechin degradation. It seems likely that roasting can free epicatechin from oligomers, as a consequence of oligomers remodeling. Full article
Show Figures

Graphical abstract

16 pages, 4647 KiB  
Article
Phloroglucinol Attenuates DNA Damage and Apoptosis Induced by Oxidative Stress in Human Retinal Pigment Epithelium ARPE-19 Cells by Blocking the Production of Mitochondrial ROS
by Cheol Park, Hee-Jae Cha, Min Yeong Kim, EunJin Bang, Sung-Kwon Moon, Seok Joong Yun, Wun-Jae Kim, Jeong Sook Noh, Gi-Young Kim, Suengmok Cho, Hyesook Lee and Yung Hyun Choi
Antioxidants 2022, 11(12), 2353; https://doi.org/10.3390/antiox11122353 - 28 Nov 2022
Cited by 16 | Viewed by 2973
Abstract
Phloroglucinol, a phenolic compound, is known to possess a potent antioxidant ability. However, its role in retinal cells susceptible to oxidative stress has not been well elucidated yet. Thus, the objective of this study was to evaluate whether phloroglucinol could protect against oxidative [...] Read more.
Phloroglucinol, a phenolic compound, is known to possess a potent antioxidant ability. However, its role in retinal cells susceptible to oxidative stress has not been well elucidated yet. Thus, the objective of this study was to evaluate whether phloroglucinol could protect against oxidative damage in cultured human retinal pigment epithelium ARPE-19 cells. For this purpose, ARPE-19 cells were stimula ted with hydrogen peroxide (H2O2) to mimic oxidative stress. Cell viability, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial function, DNA damage, and autophagy were then assessed. Our results revealed that phloroglucinol ameliorated cell viability, cytotoxicity, and DNA damage in H2O2-exposued ARPE-19 cells and blocked production of ROS. Phloroglucinol also counteracted H2O2-induced apoptosis by reducing Bax/Bcl-2 ratio, blocking activation of caspase-3, and inhibiting degradation of poly (ADP-ribose) polymerase. H2O2 caused mitochondrial impairment and increased expression levels of mitophagy markers such as PINK1and PARKIN known to be associated with mitochondrial ROS (mtROS) generation and cytosolic release of cytochrome c. However, these changes were significantly attenuated by phloroglucinol. Mito-TEMPO, a selective mitochondrial antioxidant, further enhanced the protective effect of phloroglucinol against dysfunctional mitochondria. Furthermore, H2O2 induced autophagy, but not when ARPE-19 cells were pretreated with phloroglucinol, meaning that autophagy by H2O2 contributed to the pro-survival mechanism and that phloroglucinol protected ARPE-19 cells from apoptosis by blocking autophagy. Taken together, these results suggest that phloroglucinol can inhibit oxidative stress-induced ARPE-19 cell damage and dysfunction by protecting DNA damage, autophagy, and subsequent apoptosis through mitigation of mtROS generation. Thus, phloroglucinol might have therapeutic potential to prevent oxidative stress-mediated damage in RPE cells. Full article
(This article belongs to the Special Issue Oxidative Stress and Retinal Diseases)
Show Figures

Figure 1

14 pages, 2107 KiB  
Article
Empirical Kinetic Modelling and Mechanisms of Quercetin Thermal Degradation in Aqueous Model Systems: Effect of pH and Addition of Antioxidants
by Abdessamie Kellil, Spyros Grigorakis, Sofia Loupassaki and Dimitris P. Makris
Appl. Sci. 2021, 11(6), 2579; https://doi.org/10.3390/app11062579 - 14 Mar 2021
Cited by 9 | Viewed by 3726
Abstract
Quercetin (Qt) is a natural flavonoid of high biological significance, and it occurs in a wide variety of plant foods. Although its oxidation by various means has been extensively studied, its behavior with regard to thermal treatments remains a challenge. The study described [...] Read more.
Quercetin (Qt) is a natural flavonoid of high biological significance, and it occurs in a wide variety of plant foods. Although its oxidation by various means has been extensively studied, its behavior with regard to thermal treatments remains a challenge. The study described herein aimed at investigating Qt thermal decomposition, by proposing an empirical sigmoidal model for tracing degradation kinetics. This model was employed to examine the effect of addition of antioxidants on Qt thermal degradation, including ascorbic acid, L-cysteine, and sulfite. Furthermore, degradation pathways were proposed by performing liquid chromatography-tandem mass spectrometry analyses. Upon addition of any antioxidant used, the sigmoidal course of Qt thermal degradation was pronounced, evidencing the validity of the empirical model used in the study of similar cases. The antioxidants retarded Qt degradation in a manner that appeared to depend on Qt/antioxidant molar ratio. No major differentiation in the degradation mechanism was observed in response to the addition of various antioxidants, and in all cases protocatechuic acid and phloroglucinol carboxylic acid were typical degradation products identified. Furthermore, in all cases tested the solutions resulted after thermal treatment possessed inferior antioxidant properties compared to the initial Qt solutions, and this demonstrated the detrimental effects of heating on Qt. The empirical model proposed could be of assistance in interpreting the degradation behavior of other polyphenols, but its validity merits further investigation. Full article
(This article belongs to the Special Issue Bioactive Molecules in Food)
Show Figures

Figure 1

13 pages, 2967 KiB  
Article
Eckol from Ecklonia cava Suppresses Immunoglobulin E-mediated Mast Cell Activation and Passive Cutaneous Anaphylaxis in Mice
by Eui Jeong Han, Hyun-Soo Kim, K.K.A. Sanjeewa, K.H.I.N.M. Herath, You-Jin Jeon, Youngheun Jee, Jeongjun Lee, Taehee Kim, Sun-Yup Shim and Ginnae Ahn
Nutrients 2020, 12(5), 1361; https://doi.org/10.3390/nu12051361 - 9 May 2020
Cited by 23 | Viewed by 4201
Abstract
Eckol, a precursor compound belonging to the dibenzo-1,4-dioxin class of phlorotannins, is a phloroglucinol derivative that exerts various activities. In the present study, we investigated the antiallergic effects of eckol isolated from the marine brown algae, Ecklonia cava using immunoglobulin E (IgE)/bovine serum [...] Read more.
Eckol, a precursor compound belonging to the dibenzo-1,4-dioxin class of phlorotannins, is a phloroglucinol derivative that exerts various activities. In the present study, we investigated the antiallergic effects of eckol isolated from the marine brown algae, Ecklonia cava using immunoglobulin E (IgE)/bovine serum albumin (BSA)-stimulated mouse bone marrow-derived cultured mast cells (BMCMC) and a mouse model of anaphylaxis. Eckol inhibited IgE/BSA-induced BMCMC degranulation by reducing β-hexosaminidase release. A flow cytometric analysis revealed that eckol decreases FcεRI expression on cell surface and IgE binding to the FcεRI in BMCMC. Moreover, eckol suppressed the production of the cytokines, interleukin (IL)-4, IL-5, IL-6, and IL-13 and the chemokine, thymus activation-regulated chemokine (TARC) by downregulating, IκB-α degradation and NF-κB nuclear translocation. Furthermore, it attenuated the passive cutaneous anaphylactic reaction induced by IgE/BSA-stimulation in the ear of BALB/c mice. These results suggest that eckol is a potential therapeutic candidate for the prevention and treatment of allergic disorders. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

18 pages, 3871 KiB  
Article
The Flavonoid Metabolite 2,4,6-Trihydroxybenzoic Acid Is a CDK Inhibitor and an Anti-Proliferative Agent: A Potential Role in Cancer Prevention
by Ranjini Sankaranarayanan, Chaitanya K. Valiveti, D. Ramesh Kumar, Severine Van slambrouck, Siddharth S. Kesharwani, Teresa Seefeldt, Joy Scaria, Hemachand Tummala and G. Jayarama Bhat
Cancers 2019, 11(3), 427; https://doi.org/10.3390/cancers11030427 - 26 Mar 2019
Cited by 44 | Viewed by 16348
Abstract
Flavonoids have emerged as promising compounds capable of preventing colorectal cancer (CRC) due to their anti-oxidant and anti-inflammatory properties. It is hypothesized that the metabolites of flavonoids are primarily responsible for the observed anti-cancer effects owing to the unstable nature of the parent [...] Read more.
Flavonoids have emerged as promising compounds capable of preventing colorectal cancer (CRC) due to their anti-oxidant and anti-inflammatory properties. It is hypothesized that the metabolites of flavonoids are primarily responsible for the observed anti-cancer effects owing to the unstable nature of the parent compounds and their degradation by colonic microflora. In this study, we investigated the ability of one metabolite, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) to inhibit Cyclin Dependent Kinase (CDK) activity and cancer cell proliferation. Using in vitro kinase assays, we demonstrated that 2,4,6-THBA dose-dependently inhibited CDKs 1, 2 and 4 and in silico studies identified key amino acids involved in these interactions. Interestingly, no significant CDK inhibition was observed with the structurally related compounds 3,4,5-trihydroxybenzoic acid (3,4,5-THBA) and phloroglucinol, suggesting that orientation of the functional groups and specific amino acid interactions may play a role in inhibition. We showed that cellular uptake of 2,4,6-THBA required the expression of functional SLC5A8, a monocarboxylic acid transporter. Consistent with this, in cells expressing functional SLC5A8, 2,4,6-THBA induced CDK inhibitory proteins p21Cip1 and p27Kip1 and inhibited cell proliferation. These findings, for the first time, suggest that the flavonoid metabolite 2,4,6-THBA may mediate its effects through a CDK- and SLC5A8-dependent pathway contributing to the prevention of CRC. Full article
Show Figures

Figure 1

18 pages, 8684 KiB  
Article
Characterization of Proanthocyanidin Oligomers of Ephedra sinica
by Joanna Orejola, Yosuke Matsuo, Yoshinori Saito and Takashi Tanaka
Molecules 2017, 22(8), 1308; https://doi.org/10.3390/molecules22081308 - 6 Aug 2017
Cited by 17 | Viewed by 7509
Abstract
Ephedra sinica, an important plant in Chinese traditional medicine, contains a complex mixture of proanthocyanidin oligomers as major constituents; however, only the minor components have been chemically characterized. In this study, oligomers with relatively large molecular weights, which form the main body [...] Read more.
Ephedra sinica, an important plant in Chinese traditional medicine, contains a complex mixture of proanthocyanidin oligomers as major constituents; however, only the minor components have been chemically characterized. In this study, oligomers with relatively large molecular weights, which form the main body of the proanthocyanidin fractions, were separated by adsorption and size-exclusion chromatography. Acid-catalyzed degradation in the presence of mercaptoethanol or phloroglucinol led to the isolation of 18 fragments, the structures of which were elucidated from their experimental and TDDFT-calculated ECD spectra. The results indicated that (−)-epigallocatechin was the main extension unit, while catechin, the A-type epigallocatechin–gallocatechin dimer, and the A-type epigallocatechin homodimer, were identified as the terminal units. Among the degradation products, thioethers of gallocatechin with 3,4-cis configurations, a B-type prodelphinidin dimer, a prodelphinidin trimer with both A- and B-type linkages, and a prodelphinidin dimer with an α-substituted A-type linkage were new compounds. In addition, a phloroglucinol adduct of an A-type prodelphinidin dimer, a doubly-linked phloroglucinol adduct of epigallocatechin, and a unique product with a flavan-3-ol skeleton generated by the rearrangement of the aromatic rings were also isolated. Full article
Show Figures

Figure 1

16 pages, 1575 KiB  
Article
Salix daphnoides: A Screening for Oligomeric and Polymeric Proanthocyanidins
by Stefan Wiesneth, Frank Petereit and Guido Jürgenliemk
Molecules 2015, 20(8), 13764-13779; https://doi.org/10.3390/molecules200813764 - 29 Jul 2015
Cited by 16 | Viewed by 6903
Abstract
In the present study, a qualitative analysis of proanthocyanidins (PAs) from an aqueous-methanolic extract of Salix daphnoides VILL. bark is described. Procyanidin B1 (1), B2 (2), B3 (3), B4 (4), C1 (5), epicatechin-(4 [...] Read more.
In the present study, a qualitative analysis of proanthocyanidins (PAs) from an aqueous-methanolic extract of Salix daphnoides VILL. bark is described. Procyanidin B1 (1), B2 (2), B3 (3), B4 (4), C1 (5), epicatechin-(4β→8)-epicatechin-(4β→8)-catechin (6) and epicatechin-(4β→8)-epicatechin-(4β→8)-epicatechin-(4β→8)-catechin (7) have been isolated by a combination of different chromatographic separations on Sephadex® LH-20-, MCI®-, Diol-and RP-18-phases. Mass spectrometry, 1D- and 2D-NMR, circular dichroism and polarimetry were used for their structure elucidation and verification by comparison with the literature. Additionally, two fractions of very polar flavan-3-ols were compared: “regular” polymeric PAs received at the very end of the Sephadex® LH-20 chromatography showing no mobility on silica TLC and “unusual” PAs with the same RF-value but already eluting together with flavonoids in the Sephadex® LH-20 system. These “unusual” PAs were subsequently enriched by centrifugal partition chromatography (CPC). 13C-NMR, polarimetry, thiolysis, acid hydrolysis and phloroglucinol degradation were used to characterize both fractions. Differences in the composition of different flavan-3-ol units and the middle chain length were observed. Full article
Show Figures

Figure 1

11 pages, 241 KiB  
Article
Polyphenols from Ginkgo biloba
by Fadi QA’DAN, Adolf NAHRSTEDT, Mathias SCHMIDT and Kenza MANSOOR
Sci. Pharm. 2010, 78(4), 897-908; https://doi.org/10.3797/scipharm.1003-19 - 28 Oct 2010
Cited by 23 | Viewed by 1866
Abstract
By Sephadex LH-20 gel chromatography of an extract from Gingko biloba leaves, polymeric proanthocyanidins were eluted after the fractions of flavonol glycosides and biflavone glycosides. A purified proanthocyanidin polymer accounted for 86.6% of the total proanthocyanidins, and for 37.7% of the total antioxidant [...] Read more.
By Sephadex LH-20 gel chromatography of an extract from Gingko biloba leaves, polymeric proanthocyanidins were eluted after the fractions of flavonol glycosides and biflavone glycosides. A purified proanthocyanidin polymer accounted for 86.6% of the total proanthocyanidins, and for 37.7% of the total antioxidant activity of this leaf extract. For structure elucidation, the polymer was submitted to acidic depolymerization in the presence of phloroglucinol. The structures of the resulting flavan-3-ols and phloroglucinol adducts were determined on the basis of 1D-and reverse 2D-NMR (HSQC, HMBC) spectra of their peracetylated derivatives, MALDI-TOF-MS and CD-spectroscopy. The observations resulting from the degradation with phloroglucinol were confirmed by 13C-NMR spectroscopy of the polymer. The mean molecular weight of the polymeric fraction was estimated to be 9–10 flavan-3-ol-units. Full article
19 pages, 223 KiB  
Article
Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature
by Igor G Zenkevich, Anna Yu Eshchenko, Svetlana V Makarova, Alexander G Vitenberg, Yuri G Dobryakov and Viktor A Utsal
Molecules 2007, 12(3), 654-672; https://doi.org/10.3390/12030654 - 27 Mar 2007
Cited by 140 | Viewed by 19408
Abstract
Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10) at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction [...] Read more.
Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10) at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic) and 2,4,6-trihydroxybenzoic (phloroglucinic) acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol). In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C) of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxy)benzoic acid (depside). However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO) should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol), but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin), or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics)
Show Figures

Figure 1

Back to TopTop