Carbon-Coated Magnetic Catalysts for Enhanced Degradation of Nitrophenols: Stability and Efficiency in Catalytic Wet Peroxide Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Textural Properties
2.2. Thermal and Surface Properties
2.3. Crystalline Phase and Magnetic Properties
2.4. Single-Component CWPO Experiments
2.5. Multi-Component CWPO Experiment
3. Materials and Methods
3.1. Reagents and Materials
3.2. Synthesis of Magnetic Cores
3.3. Carbon Coating
3.4. Characterization Techniques
3.5. Liquid-Phase Oxidation Runs and Analytical Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future Global Urban Water Scarcity and Potential Solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.; Filho, P.Z.; Ferreira, A.P.; Roman, F.F.; Baldo, A.P.; Rauhauser, M.; Diaz de Tuesta, J.L.; Pereira, A.I.; Silva, A.M.T.; Pietrobelli, J.M.T.; et al. Occurrence of Micropollutants in Surface Water and Removal by Catalytic Wet Peroxide Oxidation Enhanced Filtration Using Polymeric Membranes Loaded with Carbon Nanotubes. Chem. Eng. J. Adv. 2025, 21, 100707. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, H.; Zhang, W.; Lai, B.; Yao, G. Removal of Nitrophenols and Their Derivatives by Chemical Redox: A Review. Chem. Eng. J. 2019, 359, 13–31. [Google Scholar] [CrossRef]
- Ji, Y.; Shi, Y.; Yang, Y.; Yang, P.; Wang, L.; Lu, J.; Li, J.; Zhou, L.; Ferronato, C.; Chovelon, J.-M. Rethinking Sulfate Radical-Based Oxidation of Nitrophenols: Formation of Toxic Polynitrophenols, Nitrated Biphenyls and Diphenyl Ethers. J. Hazard. Mater. 2019, 361, 152–161. [Google Scholar] [CrossRef]
- Kavitha, V.; Palanivelu, K. Degradation of Nitrophenols by Fenton and Photo-Fenton Processes. J. Photochem. Photobiol. A Chem. 2005, 170, 83–95. [Google Scholar] [CrossRef]
- Priyanka, M.; Saravanakumar, M.P. New Insights on Aging Mechanism of Microplastics Using PARAFAC Analysis: Impact on 4-Nitrophenol Removal via Statistical Physics Interpretation. Sci. Total Environ. 2022, 807, 150819. [Google Scholar] [CrossRef]
- ToxFAQs TM for Nitrophenols. 1995. Available online: https://wwwn.cdc.gov/TSp/ToxFAQs/ToxFAQsDetails.aspx?faqid=879&toxid=172 (accessed on 9 April 2025).
- Chaara, D.; Pavlovic, I.; Bruna, F.; Ulibarri, M.A.; Draoui, K.; Barriga, C. Removal of Nitrophenol Pesticides from Aqueous Solutions by Layered Double Hydroxides and Their Calcined Products. Appl. Clay Sci. 2010, 50, 292–298. [Google Scholar] [CrossRef]
- Asif, M.; Deng, L.; Mao, Y.; Khan, H.U.; Tang, Q. Efficient Degradation of 2-Nitrophenol during the UV/Chlorine Treatment in the Presence of Fe(III): Kinetics, DFT Calculation and HNMs Formation. J. Environ. Chem. Eng. 2025, 13, 115712. [Google Scholar] [CrossRef]
- Diaz De Tuesta, J.L.; Pantuzza, G.F.; Silva, A.M.T.; Praça, P.; Faria, J.L.; Gomes, H.T. Catalysts Prepared with Matured Compost Derived from Mechanical-Biological Treatment Plants for the Wet Peroxide Oxidation of Pollutants with Different Lipophilicity. Catalysts 2020, 10, 1243. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Silva, A.M.T.; Figueiredo, J.L.; Faria, J.L.; Gomes, H.T. Removal of 2-Nitrophenol by Catalytic Wet Peroxide Oxidation Using Carbon Materials with Different Morphological and Chemical Properties. Appl. Catal. B 2013, 140–141, 356–362. [Google Scholar] [CrossRef]
- Silva, A.S.; Roman, F.F.; Dias, A.V.; Diaz de Tuesta, J.L.; Narcizo, A.; da Silva, A.P.F.; Çaha, I.; Deepak, F.L.; Bañobre-López, M.; Ferrari, A.M.C.; et al. Hybrid Multi-Core Shell Magnetic Nanoparticles for Wet Peroxide Oxidation of Paracetamol: Application in Synthetic and Real Matrices. J. Environ. Chem. Eng. 2023, 11, 110806. [Google Scholar] [CrossRef]
- Kalmakhanova, M.S.; Diaz de Tuesta, J.L.; Malakar, A.; Gomes, H.T.; Snow, D.D. Wastewater Treatment in Central Asia: Treatment Alternatives for Safe Water Reuse. Sustainability 2023, 15, 14949. [Google Scholar] [CrossRef]
- Roman, F.F.; Silva, A.S.; Diaz de Tuesta, J.L.; Baldo, A.P.; Lopes, J.P.M.; Gonçalves, G.; Pereira, A.I.; Praça, P.; Silva, A.M.T.; Faria, J.L.; et al. Plastic Waste-Derived Carbon Nanotubes: Influence of Growth Catalyst and Catalytic Activity in CWPO. J. Environ. Chem. Eng. 2025, 13, 115206. [Google Scholar] [CrossRef]
- Kim, T.Y.; Jo, S.; Lee, Y.; Kang, S.H.; Kim, J.W.; Lee, S.C.; Kim, J.C. Influence of Ni on Fe and Co-Fe Based Catalysts for High-Calorific Synthetic Natural Gas. Catalysts 2021, 11, 697. [Google Scholar] [CrossRef]
- Rocha, R.P.; Pereira, M.F.R.; Figueiredo, J.L. Metal-Free Carbon Materials as Catalysts for Wet Air Oxidation. Catal. Today 2020, 356, 189–196. [Google Scholar] [CrossRef]
- Anjaneyulu, B.; Rana, R.; Versha; Afshari, M.; Carabineiro, S.A.C. The Use of Magnetic Porous Carbon Nanocomposites for the Elimination of Organic Pollutants from Wastewater. Surfaces 2024, 7, 120–142. [Google Scholar] [CrossRef]
- Guari, N.M.C.; Silva, A.S.; Diaz de Tuesta, J.-L.; Pottker, W.E.; Cordeiro, P.Y.; Gomes, H.T. Magnetic CoFe2O4@carbon Yolk-Shell Nanoparticles as Catalysts for the Catalytic Wet Peroxide Oxidation of Paracetamol: Kinetic Insights. Glob. NEST J. 2023, 25, 57–66. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Silva, A.M.T.; Tavares, P.B.; Figueiredo, J.L.; Faria, J.L.; Gomes, H.T. Hybrid Magnetic Graphitic Nanocomposites for Catalytic Wet Peroxide Oxidation Applications. Catal. Today 2017, 280, 184–191. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Zhang, X.; Hou, X.; Xu, H.; Yao, Z.; Jiang, Z. A High-Efficient Carbon-Coated Iron-Based Fenton-Like Catalyst with Enhanced Cycle Stability and Regenerative Performance. Catalysts 2020, 10, 1486. [Google Scholar] [CrossRef]
- Mo, Y.; Che, C.; Han, W.; Chen, F.; Guan, J.; Zhang, F.; Yang, B.; Ren, X.; Li, H.; Ahmed, S.; et al. Fabrication of Carbon-Coated Iron-Based Porous Heterogeneous Fenton Catalyst and Enhanced Degradation Performance towards Ciprofloxacin. Chem. Eng. J. 2024, 497, 154680. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, B.; Yang, Y.; Ming, H.; Liu, G.; Zhang, J.; Hou, Y. Carbon-Coated ZnFe2O4 Nanoparticles as an Efficient, Robust and Recyclable Catalyst for Photocatalytic Ozonation of Organic Pollutants. J. Environ. Chem. Eng. 2022, 10, 107419. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Gallo, J.; Bañobre-López, M.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T. Enhanced Performance of Cobalt Ferrite Encapsulated in Graphitic Shell by Means of AC Magnetically Activated Catalytic Wet Peroxide Oxidation of 4-Nitrophenol. Chem. Eng. J. 2018, 376, 120012. [Google Scholar] [CrossRef]
- Maaz, K.; Mumtaz, A.; Hasanain, S.K.; Ceylan, A. Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route. J. Magn. Magn. Mater. 2007, 308, 289–295. [Google Scholar] [CrossRef]
- Saragi, T.; Nurjannah, S.; Novia, R.; Syakir, N.; Simanjuntak, E.; Safriani, L.; Risdiana; Bahtiar, A. Synthesis of Cobalt Ferrite Particles by Utilized Sol-Gel Method. In Materials Science Forum; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2015; Volume 827, pp. 219–222. [Google Scholar]
- Nguyen, M.D.; Tran, H.V.; Xu, S.; Lee, T.R. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci. 2021, 11, 11301. [Google Scholar] [CrossRef]
- Abbas, M.; Parvatheeswara Rao, B.; Nazrul Islam, M.; Kim, K.W.; Naga, S.M.; Takahashi, M.; Kim, C. Size-Controlled High Magnetization CoFe2O4 Nanospheres and Nanocubes Using Rapid One-Pot Sonochemical Technique. Ceram. Int. 2014, 40, 3269–3276. [Google Scholar] [CrossRef]
- Akter, S.; Khan, M.N.I.; Ferdous, F.; Das, H.N.; Alam, M.K.; Rahman, M.A.; Hasan, T.; Syed, I.M. Unveiling the Role of Sintering Temperatures in the Physical Properties of Cu-Mg Ferrite Nanoparticles for Photocatalytic Application. Heliyon 2024, 10, e40771. [Google Scholar] [CrossRef]
- Wojciechowska, A.; Lendzion-Bielun, Z. Synthesis and Characterization of Magnetic Nanomaterials with Adsorptive Properties of Arsenic Ions. Molecules 2020, 25, 4117. [Google Scholar] [CrossRef]
- Denisova, K.; Ilyin, A.A.; Rumyantsev, R.; Sakharova, J.; Ilyin, A.P.; Gordina, N. Low-Temperature Synthesis and Catalytic Activity of Cobalt Ferrite in Nitrous Oxide (N2O) Decomposition Reaction. Catalysts 2021, 11, 889. [Google Scholar] [CrossRef]
- Raut, S.D.; Dahotre, S.G.; Singh, L.N.; Jadhav, S.N. Synthesis and Characterization of Magnetite and Cobalt Ferrite Nanoparticles by Sol-Gel Auto Combustion Technique. Int. J. 2021, 6, 17–22. [Google Scholar] [CrossRef]
- Kaidar, B.; Lesbayev, A.; Imash, A.; Baskanbayeva, D.; Akalim, D.; Keneshbekova, A.; Yensep, E.; Ilyanov, A.; Smagulova, G. Magnetite Nanoparticles Obtained by Solution Combustion Synthesis. Гoрение и Плазмoхимия 2023, 21, 147–157. [Google Scholar] [CrossRef]
- Gao, J.; Ma, Z.; Liu, F.; Chen, C. Synthesis of Carbon-Coated Cobalt Ferrite Core–Shell Structure Composite: A Method for Enhancing Electromagnetic Wave Absorption Properties by Adjusting Impedance Matching. Chin. J. Chem. Eng. 2022, 47, 206–217. [Google Scholar] [CrossRef]
- Nalbandian, L.; Patrikiadou, E.; Zaspalis, V.; Patrikidou, A.; Hatzidaki, E.; Papandreou, C.N. Magnetic Nanoparticles in Medical Diagnostic Applications: Synthesis, Characterization and Proteins Conjugation. Curr. Nanosci. 2015, 12, 455–468. [Google Scholar] [CrossRef]
- Qi, R.; Jones, D.L.; Liu, Q.; Liu, Q.; Li, Z.; Yan, C. Field Test on the Biodegradation of Poly(Butylene Adipate-Co-Terephthalate) Based Mulch Films in Soil. Polym. Test. 2021, 93, 107009. [Google Scholar] [CrossRef]
- Ansari, S.M.; Ghosh, K.C.; Devan, R.S.; Sen, D.; Sastry, P.U.; Kolekar, Y.D.; Ramana, C.V. Eco-Friendly Synthesis, Crystal Chemistry, and Magnetic Properties of Manganese-Substituted CoFe2O4 Nanoparticles. ACS Omega 2020, 5, 19315–19330. [Google Scholar] [CrossRef]
- Li, Z.; Ren, X.; Zheng, Y.; Tian, W.; An, L.; Sun, J.; Guo, J.; Wen, L.; Wang, L.; Liang, G. Double-Layer Carbon-Coating Method for Simultaneous Improvement of Conductivity and Tap Density of LiMn0.65Fe0.35PO4/C/KB Cathode Materials. ACS Appl. Energy Mater. 2020, 3, 8573–8582. [Google Scholar] [CrossRef]
- Robinson, I. Nanoparticle Structure by Coherent X-ray Diffraction. J. Phys. Soc. Jpn. 2013, 82, 021012. [Google Scholar] [CrossRef]
- Hobday, C.L.; Krause, S.; Rogge, S.M.J.; Evans, J.D.; Bunzen, H. Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials. Front. Chem. 2021, 9, 772059. [Google Scholar] [CrossRef]
- Sanpo, N.; Wang, J.; Berndt, C.C. Sol-Gel Synthesized Copper-Substituted Cobalt Ferrite Nanoparticles for Biomedical Applications. J. Nano Res. 2013, 22, 95–106. [Google Scholar] [CrossRef]
- Ma, J.; Chen, K. Discovery of Superparamagnetism in Sub-Millimeter-Sized Magnetite Porous Single Crystals. Phys. Lett. A 2016, 380, 3313–3318. [Google Scholar] [CrossRef]
- Baldini, A.; Petrecca, M.; Sangregorio, C.; Anselmi-Tamburini, U. Magnetic Properties of Bulk Nanocrystalline Cobalt Ferrite Obtained by High-Pressure Field Assisted Sintering. J. Phys. D Appl. Phys. 2021, 54, 194006. [Google Scholar] [CrossRef]
- Wirecka, R.; Maćkosz, K.; Żywczak, A.; Marzec, M.M.; Zapotoczny, S.; Bernasik, A. Magnetoresistive Properties of Nanocomposites Based on Ferrite Nanoparticles and Polythiophene. Nanomaterials 2023, 13, 879. [Google Scholar] [CrossRef]
- Milutinović, A.; Lazarević, Z.; Šuljagić, M.; Andjelković, L. Synthesis-Dependent Structural and Magnetic Properties of Monodomain Cobalt Ferrite Nanoparticles. Metals 2024, 14, 833. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Dai, M.; Niu, Q.; Wu, S.; Lin, Y.; Biswas, J.K.; Yang, C. Hydroxyl Radicals in Ozone-Based Advanced Oxidation of Organic Contaminants: A Review. Environ. Chem. Lett. 2024, 22, 3059–3106. [Google Scholar] [CrossRef]
- Guo, S.; Chen, M.; Wei, Y.; You, L.; Cai, C.; Wei, Q.; Zhou, K. Designing Hierarchically Porous Zero-Valent Iron via 3D Printing to Degrade Organic Pollutants by Activating Peroxymonosulfate Using High-Valent Iron-Oxo Species. Chem. Eng. J. 2023, 476, 146523. [Google Scholar] [CrossRef]
- Hao, T.; Rao, X.; Li, Z.; Niu, C.; Wang, J.; Su, X. Synthesis of Magnetic Separable Iron Oxide/Carbon Nanocomposites for Efficient Adsorptive Removal of Congo Red. J. Alloys Compd. 2014, 617, 76–80. [Google Scholar] [CrossRef]
- Qin, X.; Cao, P.; Quan, X.; Zhao, K.; Chen, S.; Yu, H.; Su, Y. Highly Efficient Hydroxyl Radicals Production Boosted by the Atomically Dispersed Fe and Co Sites for Heterogeneous Electro-Fenton Oxidation. Environ. Sci. Technol. 2023, 57, 2907–2917. [Google Scholar] [CrossRef]
- Xu, G.; Sun, L.; Tu, Y.; Teng, X.; Qi, Y.; Wang, Y.; Li, A.; Xie, X.; Gu, X. Highly Stable Carbon-Coated NZVI Composite Fe0@RF-C for Efficient Degradation of Emerging Contaminants. Environ. Sci. Ecotechnol. 2024, 22, 100457. [Google Scholar] [CrossRef]
- Khan, M.; Ahmad, S.; Alzahrani, K.A.; Khan, S.B. Development and Detailed Investigation of Metal Nanoparticles Decorated Carbon Black/Sodium Alginate Composite Beads for Catalytic Reduction of Environmental Toxicants and Hydrogen Production. Int. J. Biol. Macromol. 2024, 283, 137300. [Google Scholar] [CrossRef]
- Neto, B.A.D.; Rocha, R.O.; Rodrigues, M.O. Catalytic Approaches to Multicomponent Reactions: A Critical Review and Perspectives on the Roles of Catalysis. Molecules 2022, 27, 132. [Google Scholar] [CrossRef]
- Gupta, V.K.; Atar, N.; Yola, M.L.; Üstündaǧ, Z.; Uzun, L. A Novel Magnetic Fe@Au Core–Shell Nanoparticles Anchored Graphene Oxide Recyclable Nanocatalyst for the Reduction of Nitrophenol Compounds. Water Res. 2014, 48, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulou, T.; Kompotiatis, L.; Kontogeorgakos, A.; Kordas, G. Microwave Behavior of Ferrites Prepared via Sol–Gel Method. J. Magn. Magn. Mater. 2002, 246, 360–365. [Google Scholar] [CrossRef]
- Silva, A.S.; Diaz de Tuesta, J.L.; Sayuri Berberich, T.; Delezuk Inglez, S.; Bertão, A.R.; Çaha, I.; Deepak, F.L.; Bañobre-López, M.; Gomes, H.T. Doxorubicin Delivery Performance of Superparamagnetic Carbon Multi-Core Shell Nanoparticles: PH Dependence, Stability and Kinetic Insight. Nanoscale 2022, 14, 7220–7232. [Google Scholar] [CrossRef]
- Dunphy, D.R.; Sheth, P.H.; Garcia, F.L.; Brinker, C.J. Enlarged Pore Size in Mesoporous Silica Films Templated by Pluronic F127: Use of Poloxamer Mixtures and Increased Template/SiO2 Ratios in Materials Synthesized by Evaporation-Induced Self-Assembly. Chem. Mater. 2014, 27, 75–84. [Google Scholar] [CrossRef]
- Braghiroli, F.L.; Fierro, V.; Parmentier, J.; Pasc, A.; Celzard, A. Easy and Eco-Friendly Synthesis of Ordered Mesoporous Carbons by Self-Assembly of Tannin with a Block Copolymer. Green Chem. 2016, 18, 3265–3271. [Google Scholar] [CrossRef]
Material | SBET (m2 g−1) | Slangmuir (m2 g−1) | VT (cm3 g−1) | BET (R2) | DBJH (nm) |
---|---|---|---|---|---|
CoFe | 9 | 8 | 0.024 | 0.9989 | 1 |
CoFe@C | 22 | 18 | 0.043 | 0.9971 | 1.1 |
Fe3O4 | 83 | 97 | 0.022 | 0.9996 | 2.3 |
Fe3O4@C | 120 | 136 | 0.340 | 0.9998 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldo, A.P.; Bezerra, A.J.B.; Silva, A.S.; Ferreira, A.P.; Roman, F.F.; Çaha, I.; Bañobre-López, M.; Deepak, F.L.; Gomes, H.T. Carbon-Coated Magnetic Catalysts for Enhanced Degradation of Nitrophenols: Stability and Efficiency in Catalytic Wet Peroxide Oxidation. Catalysts 2025, 15, 376. https://doi.org/10.3390/catal15040376
Baldo AP, Bezerra AJB, Silva AS, Ferreira AP, Roman FF, Çaha I, Bañobre-López M, Deepak FL, Gomes HT. Carbon-Coated Magnetic Catalysts for Enhanced Degradation of Nitrophenols: Stability and Efficiency in Catalytic Wet Peroxide Oxidation. Catalysts. 2025; 15(4):376. https://doi.org/10.3390/catal15040376
Chicago/Turabian StyleBaldo, Arthur P., Ana Júlia B. Bezerra, Adriano S. Silva, Ana Paula Ferreira, Fernanda F. Roman, Ihsan Çaha, Manuel Bañobre-López, Francis Leonard Deepak, and Helder T. Gomes. 2025. "Carbon-Coated Magnetic Catalysts for Enhanced Degradation of Nitrophenols: Stability and Efficiency in Catalytic Wet Peroxide Oxidation" Catalysts 15, no. 4: 376. https://doi.org/10.3390/catal15040376
APA StyleBaldo, A. P., Bezerra, A. J. B., Silva, A. S., Ferreira, A. P., Roman, F. F., Çaha, I., Bañobre-López, M., Deepak, F. L., & Gomes, H. T. (2025). Carbon-Coated Magnetic Catalysts for Enhanced Degradation of Nitrophenols: Stability and Efficiency in Catalytic Wet Peroxide Oxidation. Catalysts, 15(4), 376. https://doi.org/10.3390/catal15040376